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ABSTRACT:   Cancer tumor prediction and diagnosis at an early stage has become a 

necessity in cancer research, as it provides an increase in the treatment success chances. 

Recently, DNA microarray technology became a powerful tool for cancer identification, 

that can analyze the expression level of a different and huge number of genes 

simultaneously. In microarray data, the large genes number versus a few records may 

affect the prediction performance. In order to handle this "curse of dimensionality” 

constraint of microarray dataset while improving the cancer identification performance, a 

dimensional reduction phase is necessary. In this paper, we proposed a framework that 

combines dimensional reduction methods and machine learning algorithms in order to 

achieve the best cancer prediction performance using different microarray datasets. In the 

dimensional reduction phase, a combination of feature selection and feature extraction 

techniques was proposed. Pearson and Ant Colony Optimization was used to select the 

most important genes. Principal Component Analysis and Kernel Principal Component 

Analysis were used to linearly and non-linearly transform the selected genes to a new 

reduced space. In the cancer identification phase, we proposed four algorithms C5.0, 

Logistic Regression, Artificial Neural Network, and Support Vector Machine. 

Experimental results demonstrated that the framework performs effectively and 

competitively compared to state-of-the-art methods.  

ABSTRAK: Ramalan tumor kanser dan diagnosis pada peringkat awal telah menjadi 

keperluan dalam kajian kanser, kerana ia membuka peluang peningkatan kejayaan dalam 

rawatan. Kebelakangan ini, teknologi mikrotatasusunan DNA menjadi alat berkuasa bagi 

mengenal pasti kanser, di mana ia mampu menganalisa level ekspresi yang pelbagai dan 

gen-gen yang banyak secara serentak. Dalam data mikrotatasusunan, gen-gen yang banyak 

ini bakal menentukan ramalan prestasi berbanding analisa melalui rekod-rekod yang 

sebilangan. Fasa pengurangan dimensi adalah perlu bagi mengawal kakangan “penentuan 

kedimensian” dataset mikrotatasusunan, sementara itu ia memantapkan lagi keberkesanan 

kenal pasti kanser. Kajian ini mencadangkan rangka kombinasi kaedah pengurangan 

dimensi dan algoritma pembelajaran mesin bagi mencapai prestasi ramalan kanser terbaik 

dengan menggunakan pelbagai dataset mikrotatasusunan. Dalam fasa pengurangan 

dimensi, kombinasi pemilihan ciri dan teknik pengekstrakan ciri telah dicadangkan, 

Pengoptimuman Pearson dan Koloni Semut bagi memilih gen yang paling penting, 

Analisis Komponen Prinsipal dan Analisis Komponen Prinsipal Kernel, bagi menukar gen 

terpilih yang linear dan tak linear kepada ruang baru yang dikurangkan. Dalam 
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menentukan fasa mengenal pasti kanser, kajian ini mencadangkan empat algoritma iaitu 

C5.0, Regresi Logistik, Rangkaian Neural Buatan dan Mesin Vektor Sokongan. Dapatan 

kajian menunjukkan rangka ini adalah berkesan dan kompetitif berbanding kaedah semasa. 

KEYWORDS: gene selection; metaheuristic-ant colony optimization; feature extraction; 

pattern recognition; microarray data analysis 

1. INTRODUCTION

According to a recent publication by the World Health Organization (WHO) in 2018,

cancer is considered the second most lethal factor for human beings. Knowing that early 

diagnosis is a mandatory and a crucial step in cancer treatment, the chance to get an 

appropriate treatment may require further measurements to increase the accuracy of cancer 

diagnosis combined with other clinical tests. With the development of machine learning 

techniques and microarray technology, the DNA analysis microarray data brings a great 

opportunity in cancer diagnosis. However, the presence of a large number of irrelevant or 

redundant genes (features) in gene expression data may increase the search space size, which 

makes pattern detection more difficult and makes it complex to capture the necessary rules 

for classification [1]. To overcome this "curse of dimensionality", a dimensional reduction 

process is strongly recommended. Dimensional reduction refers to a process that removes 

redundant and noisy features from the data, thus maximizing prediction performance. 

Dimensional reduction can be divided into feature selection (FS) and feature extraction 

(FE). FE methods create a subset of new features by combinations of existing features. The 

new features are low-dimensional features with the same or better performance in terms of 

prediction accuracy. In the literature, some proposed FE methods for cancer classification 

using gene expression data include Principal Component Analysis (PCA) [2] and kernel 

PCA [3]. On the other hand, the FS process focuses simply on the relevant features in the 

dataset by removing any redundant, irrelevant, or noisy features, which leads to better 

learning performance. The frequently used FS methods are divided into filter and wrapper. 

In the filter approach, features are scored based on statistical criteria such as Pearson 

correlation coefficients (P) [4]. In the wrapper approach [5], FS is combined with 

classification algorithms. Examples of wrapper algorithms include Ant Colony 

Optimization algorithm (ACO), Genetic Algorithm (GA), and others. When the number of 

features becomes very large, the filter methods are usually chosen due to their computational 

efficiency and simplicity [6]. In this paper, in addition to the Pearson correlation-based filter, 

a hybrid approach of feature selection has also been proposed that takes advantage of filter 

and wrapper methods. The proposed hybrid approach combines correlation-based feature 

selection with the ACO algorithm.  

In this study, our aim is to improve the performance of cancer tumor modeling using a 

framework that combines FS and FE as dimension reduction methods with machine learning 

algorithms. 

2. RELATED WORKS

The importance of classifying cancer patients into high or low risk groups has led to

study the application of machine learning methods. Different strategies exist focusing on 

modifying the data for better fitting in a specific machine learning method; among them, we 

have dimensionality reduction, FS, and FE [7]. Several DNA microarray experiments have 

marked the power of datamining methods over clinical criteria for cancer diagnosis [8,9]. 

These studies accentuate the improvement of prediction performance based on gene 
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expression data by combining dimensional reduction techniques with machine learning 

algorithms. 

To improve prostate cancer performance modeling and mining, Hicham and al. have 

proposed a new framework combining feature selection using Pearson and feature extraction 

using PCA in conjunction with machine learning algorithms. The most important result 

achieved in this study is obtained by the Pearson-PCA-C5.0 model with 94.05% 

classification accuracy and five selected features [10]. Kar et al. proposed a combination of 

filter method based on t-test and wrapper method based on particle swarm optimization 

(PSO) to find the most relevant genes in the SRBCT microarray dataset. The study achieved 

100% accuracy for 14 selected genes [11]. 

Atiyeh and Mohammad implemented an innovative feature selection approach Based 

on Cooperative Game Theory and Qualitative Mutual Information (QMT). The 

classification accuracy on 11 microarray datasets, namely Leukemia1, SRBCT, Lung, and 

prostate cancer, shows that the proposed approach improves both accuracy and stability 

compared to other methods [12]. Chandra proposed an efficient feature selection technique 

that removes the drawbacks of [13], by taking into account the redundancy between features. 

the research study shows that the classification accuracy form using the proposed algorithm 

Inter Feature Effective range overlap (IFERO), for many cancers, is much superior 

compared to other feature selection algorithms. The proposed technique has been applied to 

8 benchmark cancer datasets [14]. 

Shun Guo et al. formulated the feature selection problem as an optimization one based 

on a newly defined linear discriminant analysis criterion. The experiment was applied to 10 

publicly available microarray datasets, and the results show that the proposed gene selection 

is an effective method for improving the accuracy of tumor classification [15]. 

The present paper aims to improve the classification performance for four benchmark 

cancer datasets. For this purpose and in order to handle the curse of dimensionality problem 

of the Microarray dataset, we propose a framework that combines FS and FE methods in 

conjunction with machine-learning algorithms. 

3.   MATERIALS AND METHODS 

Figure 1 summarizes the main steps of our proposed framework, which is based on 

feature selection using Filter and Hybrid approaches, FE using linear and non-linear PCA, 

and cancer identification (classification) using Logistic Regression (LR), C5.0 Decision 

Tree algorithm, Support-Vector Machines SVM, and Artificial Neural Network (ANN). The 

main structure of the proposed Framework is described in Algorithm 1. 

3.1  Feature Selection Methods 

The feature selection or gene selection in the context of microarray data analysis is a 

useful technique that can reduce dimensionality by removing any redundant, irrelevant or 

noisy genes, which can lead to improve the classification performance and reduce the cost 

of computation [16]. As shown in Fig. 2, the feature selection process can be reformulated 

as follows: given an original set, 𝑋 = (𝑋1,𝑋1,, ⋯ , 𝑋𝑝 ), of 𝑝 features, find the subset which 

consists of 𝑘 features (where 𝑘 ≪ 𝑝), such that the most informative features are selected. 

The proposed framework in the present paper implements two feature selection 

techniques, the filter method based on statistic tools and the hybrid method that combines 

the filter approach with ACO. 
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Fig. 1: Our proposed Framework. 

 

Fig. 2:  Feature Selection process. 

3.1.1 Filter Method using Pearson’s Correlation Coefficient 

Because they act independently of any classification process, filters are considered to 

be faster than the wrapper approach. This is because this model is frequently used when it 

comes to working with a large number of features [17]. To measure feature relevance using 

filter methods, some statistical techniques are applied for each feature, such as Pearson’s 

correlation coefficient, Spearman’s rank correlation, Pearson ‘s Chi-square, Cramer’s v, ... 

In the present paper, Pearson’s correlation in Eq. (1), denoted by 𝑟, was applied to 

recognize features (X) showing a strong linear relationship with the target (Y). 
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𝑟(𝑋,𝑌) =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑁

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑁

𝑖=1

 
(1) 

Where N is the total number of samples in the training set.  𝑋 ̅, �̅� are, respectively, the overall 

mean of the X and the Y. 𝑥𝑖 and 𝑦𝑖 are, respectively, the i-th observation in X and Y. The  

𝑟(𝑋,𝑌) always lies between ±1, where 1 indicates a perfect relationship between X and Y, and 

the 0 indicates no relationship between them. 

Then, the relevance value of each feature X is measured as (1 − pValue) × 100%, where 

pValue based on the t-statistic with df = N − 2  degree of freedom is computed using the Eq. 

(2).  

𝑝𝑉𝑎𝑙𝑢𝑒 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑇(𝑑𝑓) > 𝑡)  (2) 

With 𝑡 =  r√𝑑𝑓/(1 − 𝑟2), and T(df)  is a random variable that follows a Student’s t-

distribution with 𝑑𝑓.  
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In this study, all features (genes) in the training set with relevance greater than 95% were 

selected. 

3.1.2 Ant Colony Optimization Hybrid Approach 

Hybrid methods attempt to combine the straightness of two feature selection methods. 

The most frequently used combination is the filter with a wrapper approach [17]. The present 

framework proposes a new hybrid technique (Fig. 3) that combines Pearson’s correlation 

and Ant Colony Optimization (PACO). The filter step in the framework consists of reducing 

the number of genes by removing non-informative genes in the original training set, and 

then the number of pre-selected genes is given to the ACO to select the optimal subset in 

the original training set. 

Proposed by Marco Dorigo [18], ACO is a nature-inspired metaheuristic approach. The 

idea behind ACO is to represent the search space of a problem in the form of a graph, then 

the solution of the problem is to find the optimal path in this graph using artificial ants. As 

in real ant colonies, each ant deposits the pheromone trail with the same rate on the 

components of the graph that it chooses to cross. The chosen path to cross by an ant is 

usually based on the accumulated pheromone trail. Thus, the accumulated pheromone is 

considered to be an indicator of the quality of the chosen path, which can attract ants in the 

next iterations to the corresponding areas in the search space [19].  

The ACO has been a powerful tool in many optimization problems [20-22], and for 

many reasons, it was recently used as a powerful tool for gene selection [23-25]. In feature 

selection using ACO, each node in the graph is viewed as a feature (gene), and edges 

between nodes (features) represent the choice of the next node to be selected. Thus, 

searching the optimal subset of features is to find the optimal path in the graph until such a 

stopping criterion is satisfied. The problem of feature selection using PACO can be 

reformulated as follows: given an original training set 𝑋 = (𝑋1,𝑋1,, ⋯ , 𝑋𝑝 ), of 𝑝 features, 

find the subset that consists of 𝑘 features (where 𝑘 ≪ 𝑝), such that a maximum number of 

iterations is reached. 

According Fig. 3, before starting any iteration, the number of genes in the optimal 

subset to select is initialized using a Pearson correlation-based filter, and the amount of 

pheromone in the search space is initialized to a constant value. Then, at the start of each 

iteration 𝑡, each ant 𝑘 starts in a randomly selected feature. To select (to visit) the next 

feature (nodes) from unselected ones, each ant must respect the probabilistic “transition 

rule” [19] using the  Eq. (3).  

𝑃𝑖𝑗
𝑘(𝑡) = {

𝜏𝑖𝑗
𝛼 (𝑡) ⋅ 𝜂𝑖𝑗

𝛽 (𝑡)

∑ (𝜏𝑖𝑙
𝛼(𝑡) ⋅ 𝜂𝑖𝑙

𝛽(𝑡))𝑙∈𝑆𝑖
𝑘

, ∀𝑗 ∈ 𝑆𝑖
𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) 

Where: 

𝑆𝑖
𝑘 : features set that have not been visited yet. 

𝜏𝑖𝑗(𝑡) : the amount of pheromone trail between feature 𝑖 and 𝑗. 

𝜂𝑖𝑗(𝑡) : the heuristic desirability of choosing feature 𝑗 when the ant 𝑘 at feature i. 

𝛼 ⩾ 0 : adjustable parameters deciding the relative influence of pheromone. 

𝛽 ⩾ 1 : adjustable parameters controlling the influence of  𝜂𝑖𝑗. 
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Fig. 3: Ant Colony Optimization hybrid approach. 

The constructed subset 𝑆𝑘 by the k-th ant is then evaluated using an SVM classifier, 

and the estimated Mean Square Error 𝑀𝑆𝐸𝑘 of the classification results will decide if the 

current subset is the best one. The 𝑀𝑆𝐸 is computed by applying a stratified 5 − 𝑓𝑜𝑙𝑑 Cross 

Validation method. The constructed subset is split into five-folds, and at each time, one of 

the five folds is used for the test, and the remaining folds form the training data. Then the 

average MSE for the five trials is calculated using the Eq. (4). 

𝑀𝑆𝐸 =
1

𝐾
∑

1

2
(𝑀𝑆𝐸𝑖

𝑇𝑟𝑎𝑖𝑛 + 𝑀𝑆𝐸𝑖
𝑇𝑒𝑠𝑡)

𝐾

𝑖=1
   (4) 

The subset giving the lowest MSE is known as the best one related to the best ant and 

denoted by 𝑆𝑏𝑒𝑠𝑡.  At the end of each iteration, the amount of pheromone in the search space 

is updated according to the Eq. (5) [19]. 

𝜏𝑖𝑗(𝑡 + 1) = 𝜌 ⋅ 𝜏𝑖𝑗(𝑡) + ∑ 𝛥𝜏𝑖𝑗
𝑘

𝑚

𝑘=1
   

With : Δ𝜏𝑖𝑗
𝑘 = {

𝑄

𝑀𝑆𝐸𝑘
                𝑖𝑓 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒(𝑖, 𝑗) 𝑖𝑠 𝑠𝑝𝑎𝑟𝑡 𝑜𝑓𝑆𝑘

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  
 

(5) 

Where:  

𝑚 : is the number of ants. 
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𝑆𝑘 : represents the constructed subset corresponding to the ant k.

𝜌 : denotes the pheromone evaporation coefficient. 

𝑄: a constant multiplier that defines the amount of pheromones that should put each 

      ant. 

𝑀𝑆𝐸𝑘: denote the Mean Square Error corresponding to the constructed subset by the ant k. 

The overall pseudocode of the proposed PACO gene selection approach is illustrated in 

Algorithm 2. 

3.2  Feature Extraction Methods 

Feature extraction (FE) is the process of transforming original data with a large number 

of features into a reduced representation of a set of features. As shown in Fig. 4, the FE is 

achieved by transforming 𝑋 = (𝑋1,𝑋1,, ⋯ , 𝑋𝑝 ), of 𝑝 features to a new set of 𝑘 predictor 

variables called components (where 𝑘 ≪ 𝑝).  

Among linear and nonlinear methods, PCA and Kernel PCA are the most commonly 

used FE techniques for dimensionality reduction. In this paper, we attempt to use FE 

methods combined with FS ones in order to handle the curse of dimensionality of cancer 

datasets. 

Fig. 4: Feature Extraction process.

3.2.1 Principal Components Analysis (PCA) 

PCA is a classical dimension-reduction technique used to reduce large sets of variables 

(features) into new small ones without much loss of information from the large sets [26]. 

Mathematically, PCA attempts to transform a number of linearly correlated variables into a 

smaller number of new ones called components. In other words, PCA aims to find a linear 

subspace of lower dimensionality than the large variable space, where the new linear 
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subspace has the largest variance (has the most of the information in the large space). FE 

using PCA can be reformulated as follows:  

Given a p-dimensional training set: [𝑥1, 𝑥2, … , 𝑥𝑝]𝑛×1, Where: 𝑝 denotes the number of 

features and 𝑛 the number of patterns. We want to find Ψ, the matrix of new components 

where the number of principal components that should be retained is decided using the 

percentage of total variance explained. The pseudocode of the PCA method is illustrated in 

Algorithm 3. 

 

3.2.2 kernel-PCA 

While PCA is a dimension reduction technique that assumed to find linear 

transformation to represent the data in a lower dimension, kernel-PCA is used when we deal 

with complex structure data where linear subspace is not very useful [27]. In this paper, the 

kernel-PCA is used as an alternative to PCA when there is no linear correlation between 

features, which can affect classification accuracy. 

Introduced as a nonlinear generalization of standard PCA [27], in the kernel PCA, the 

original input matrix 𝑋1, 𝑋2, . . . , 𝑋𝑝 ∈ 𝑅𝑛 is mapped into a new feature space 

Φ(𝑋1), Φ(𝑋2), . . . , Φ(𝑋𝑝) ∈ 𝐹 and then the standard PCA is performed using this new 

feature space. However, computing Φ(𝑋) explicitly before extracting the principal 

components is extremely costly [28]. The best practice is to directly construct a kernel 

matrix using X instead of computing Φ(𝑋) explicitly [29]; thus, the mapping Φ(𝑋) is 

implicitly specified by the kernel function. The most commonly used kernel function is the 

Radial Basis Function kernel (RBF) in Eq. (6) 

𝑘(𝑥𝑖 , 𝑥𝑗) = exp(−𝛾 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2) (6) 

Where: 

 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2∶ denotes the squared Euclidean distance 

 𝛾 > 0 ∶ a parameter that sets the spread of the kernel 

 𝑑 : the degree of the kernel. 

If the new feature space is not centered, a centering transformation can be applied 

directly to the kernel matrix using Eq. (7) [30]. 

𝐾𝑐 = 𝐾 − 𝐾𝐼1/𝑛 − 𝐼1/𝑛𝐾 + 𝐼1/𝑛𝐾𝐼1/𝑛 (7) 

Where  𝐼1/𝑛 is the 𝑛 × 𝑛  matrix with all elements equal to 1/𝑛 and 𝑛 is the number of 

patterns. 

The overall pseudocode of the Kernel Principal Components Analysis method is 

illustrated in Algorithm 4. 
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4. CANCER IDENTIFICATION AND CLASSIFICATION METHODS

4.1  C5.0 Decision Tree 

C5.0 is a new decision tree algorithm developed from C4.5 by [31], which has proven 

its high detection accuracy in many research fields [32-34]. Compared to C4.5, C5.0 can 

handle different types of data, deal with missing values and support boosting to improve 

classifier accuracy  [35]. In C5.0 algorithm, samples are split into sub-samples by using a 

recursive method based on information gain ratios. Each sub-sample received from the first 

split will be split again. The split process is repeated until there is no more split that makes 

a difference in terms of information gain ratios. At the end of the process, any split which 

doesn’t have a significant contribution to the model is rejected [36]. 

4.2  Support Vector Machine 

The Support Vector Machine (SVM) is a binary classifier algorithm that has been 

successfully applied in many pattern recognition areas. In linear classification, SVM 

constructs a classification hyper-plane that separates the data into two sets by maximizing 

the margins and minimizing the classification error. The hyper-plane is constructed in the 

middle of the maximum margin. Thus, samples above the hyper-plane are classified as 

positives. Otherwise, they are classified as negatives (Fig. 5). The classification function is 

given with Eq. (8) [37]. 

𝑦 = 𝑠𝑖𝑔𝑛(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1 ) (8) 

Where y denotes the class label, w and b are the parameters of the hyper-plane, and 𝑠𝑖𝑔𝑛 

denotes the sign function. 

However, in a real classification problem, datasets are often linearly non-separable. 

Therefore, Eq. (8) will allow some of the samples to be on the wrong side of the hyper-

plane. To overcome this problem of non-linearity, a nonlinear transformation of the input 

vectors into a new feature space is performed, and then a linear separation is performed 

using this new feature space [37]. To perform a nonlinear SVM, the product (x, y) is replaced 

by a kernel function (Eq. (9)).  

𝑦 = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖, 𝑥) + 𝑏)
𝑛

𝑖=1
 (9) 
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Fig. 5: Support Vector Machines diagram

In this paper a Gaussian kernel (Eq. (6)) was used to deal with the problem of non-linearity. 

4.3  Artificial Neural Network 

Introduced by [38], the Artificial neural network (ANN) is a form of distributed 

computation inspired by networks of human biological neurons. As shown in Fig. 6(a), An 

ANN consists of a set of interconnected artificial neurons that are organized in a minimum 

of three layers: the input layer, hidden layer, and output layer. All nodes (neurons) in each 

layer of the network are connected to the nodes of the next layer with no connection back, 

and all the connections are defined by weight values denoted by 𝑤. In the input layer, all 

nodes get information from the outside and pass it to the nodes of the next layer weighted 

by w. If we take a look at one of the hidden or output neurons (Fig. 6 (b)), we find that each 

node computes the weighting sum of all the N neurons of the previous layer and passes it 

through an activation function [39]. Equation (10) represents the equation for a given 

neuron. 

𝑧𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗
𝑁

𝑖=1
) (10) 

A Common choice for the activation function is non-linear functions such as the logistic 

sigmoid function given by the Eq. (11). 

𝑓(𝑥) =
1

1+𝑒−𝑥  𝑤𝑖𝑡ℎ  0 ⩽ 𝑓(𝑥) ⩽ 1 (11) 

Fig. 6: Artificial Neural Network diagram. 
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4.4  Logistic Regression 

As an extension of the linear regression algorithm for classification problems, Logistic 

Regression aims to find the best fitting model, which squeezes the output of a linear equation 

between 0 and 1 using the logistic function (Eq. (11)). In linear regression, the relationship 

between output and features is modeled using a linear equation (Eq. (12)). However, in a 

classification problem, it is strongly recommended to have probabilities between 0 and 1, 

which can force the outcome to be only between 0 and 1 (Eq. (13)). 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2+. . . +𝑏𝑛𝑥𝑛 (12) 

𝑓(𝑥) =
1

1+𝑒−(𝑏0+𝑏1𝑥1+𝑏2𝑥2+...+𝑏𝑛𝑥𝑛) (13) 

4.5  Performance Evaluation 

The datamining process has several ways to check the performance of any classification 

model. The quality of any classification model is built from the confusion matrix (Table 1), 

which summarizes the comparison between predicted and observed classes for all 

observations. 

Table 1: Confusion matrix 

Predicted classes 

True False 

Observed classes 
True True positives (TP) True negatives (TN) 

False False positives (FP) False negatives (FN) 

Different types of evaluation measure are available, and the most commonly used in 

practice is the classification accuracy (Eq. (14)), which evaluates the classification 

performance by the percentage of correct predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
(14) 

Another common evaluation metric used in Machine Learning is the receiver operating 

characteristic (ROC) curve which is created by plotting the True Positive Rate (𝑇𝑃𝑅 =
𝑇𝑃/(𝑇𝑃 + 𝐹𝑁))  against the False Positive Rate (𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)). The Area Under 

the ROC Curve (AUC) provides a good idea about model performance. The model that 

gives 100% of correct predictions has an AUC of 1, while the model that gives 100% of 

wrong predictions has an AUC of 0.  

In the present paper, both accuracy and ROC curve were used to evaluate the 

performance of each generated model. 

5. EXPERIMENTAL RESULTS

5.1  Dataset Description 

In order to evaluate the ability of our framework to adapt to different situations, 

experiments are achieved on several public high-dimensional microarray datasets with 

different properties (number of genes, number of patterns, and the number of classes). 

Description of the datasets used in the present work is provided in Table 2. 
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Table 2: Microarray Datasets Characteristics 

Dataset Description Genes Patterns Classes 
Missing 

Values 
Ref. 

Prostate Is the development of cancer in the prostate, a gland 

in the male reproductive system 

10509 102 2 No [40] 

Leukemia1 It is one of the most common childhood cancers that 

affect leukocytes, but it most often occurs in older 

adults. 

5327 72 3 No [41] 

SRBCT Small-round-blue-cell tumors are four different 

childhood tumors; Ewing's family of tumors (EWS), 

neuroblastoma (NB), non-Hodgkin lymphoma and 

rhabdomyosarcoma (RMS) 

2308 83 4 No [42] 

Lung It is a malignant tumor caused by uncontrolled cell 

growth in lung tissues 

12600 203 5 No [43] 

5.2  Partitioning 

In order to avoid the overestimating prediction, a stratified 5 − 𝑓𝑜𝑙𝑑 cross-validation 

technique was employed. Using this technique, samples are split into five equal folds 

(subset) of samples. One of the five folds is used as a testing step, and the remaining four 

folds are put together to form the training data. This process is repeated five times. The 

stratification process was used to ensure that all folds are made by preserving the same 

percentage of samples for each class. 

5.3  Data Preprocessing 

Before supplying the datasets to our analysis system, it was necessary to perform data 

preprocessing, as it is an important step in the data analysis process. In the present paper, 

gene expression datasets were preprocessed using the standard procedure, which includes 

log transformation and standardization. 

a) Data Transformation

The main motivation for using the log transformation is due to the asymmetric

distribution of the derived expression levels [44], which can affect the identification of 

expression Patterns, and prospective Classification in Human Cancer Genomes [45]. 

In the present work, before transforming our data (training or testing set) using Eq. (15), 

a test of normality using Shapiro-Wilk [46,47] is used to evaluate whether the distribution 

of the data agrees with normal distribution. The calculated P-value of the Shapiro–Wilk test 

for each gene shows a strong significance, which indicates a deviation from the normal 

distribution for most of the gene expressions. 

𝑋 = 𝐿𝑜𝑔10(𝑋 − 1 + 𝑀𝑖𝑛(𝑋)) (15) 

b) Data Standardization

Gene expression levels for each gene were standardized using the Eq. (16). The result

is that expression levels for each feature have a mean 0 and variance 1. 

𝑋 =
𝑋−𝑋

𝜎
(16) 

Where: 𝑋 is the overall mean of the feature 𝑋 and 𝜎,  its standard deviation. 
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5.4  Experimental Settings 

a) System Configuration

Using parallel processing, our proposed framework was implemented in Python 3.7

language. All of the experiments were carried out using an Intel Xeon E5-2637 v2 3.5 GHz 

PC with 64 GB of RAM. 

b) Parameters Settings

The parameters used in our Framework are shown in Table 3:

Table 3: Parameters settings used in our proposed Framework 

Parameter Value 

PACO parameters 

Number of ants 10 

Number of selected features Initialized using the filter method 

𝛼 1 

𝛽 5 

𝑄 100 

𝜌 0.5 

SVM Kernel RBF 

PCA parameters 

𝛼 0.8 

Kernel-PCA parameters 

 d Initialized using standard PCA 

Kernel RBF 

ANN classifier parameters 

The number of hidden nodes Calculated by using Geometric-Pyramid-Rule [48] 

The number of hidden layers 1 

Activation function Logistic 

Solver (optimization algorithm) adam 

Max iterations 1000 

SVM classifier parameters 

Kernel RBF 

6. RESULTS AND DISCUSSION

Table 4, which is also presented as graphs in Fig. 7, shows the overall performance of

dimension reduction techniques and their respective classification algorithms used in the 

four public microarray datasets described in Table 2. 36 different models were generated 

for each microarray dataset. The quality of each model is measured by the number of 

selected genes 𝑘, the dimension of the new subspace 𝑘’generated by using the FE process, 

the running time 𝑡 (the running time reported here includes both the dimension reduction 

and classification stages), and the cancer prediction performance which represents the 

average accuracy of the training and testing sets. The results of each dataset are as follows: 

For the SRBCT dataset, Table 4 and Fig. 7 show that the shrinkage models P-PCA-

SVM, P-PCA-ANN, and P-PCA-LR provide an excellent accuracy of 100%. The power of 

these models resides in the fact that the number of genes was reduced twice. The first 

reduction was obtained using Pearson correlation-based feature selection (Line 9 in 

Algorithm 1), the dimension of dataset passed from 𝑝 = 2308 (the original number of genes 

in the dataset as reported in Table. 2) to a new subset of 𝑘 = 727 while selecting only the 
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more representative genes with relevance greater than 95%. Then, the new k-dimension 

subset was transformed to a linear subspace using PCA where only the first 𝑘’ = 22 

predictors (components) that explain approximately 80% of the total variation of genes 

subset (the cumulative variance equal to 80%) were retained. The same results were 

achieved by P-KPCA-SVM, P-KPCA-ANN, and P-KPCA-LR models with the nonlinear 

transformation (KPCA) for the feature extraction method. The classification rate was close 

to 100% for most shrinkage models using the PACO-based feature selection method with a 

more significant response time increase. Fortunately, there is almost no significant accuracy 

loss for the rest of the generated models. 

Table 4: Performance measurement using our Framework on the four datasets 
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2308 1 100 
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12600 2 95.42 
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10509 1 93.17 

5
3
2
7
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5327 1 91.46 

LR 2308 1 100 12600 12 98.75 10509 1 97.62 5327 1 100 

ANN 2308 6 100 12600 60 98.75 10509 27 97.62 5327 13 100 

C50 3 1 96.45 4 21 96.74 2 6 94 2 4 95.57 

P
C

A
 

PCA-SVM 24 1 100 53 2 95.61 15 1 85.79 30 1 93.61 

PCA-LR 24 1 100 53 2 97.13 15 1 88.29 30 1 100 

PCA-ANN 24 1 100 53 2 97.44 17 1 93.39 30 1 100 

PCA-C50 6 1 92.6 8 1 96.03 4 1 88.78 5 1 89.77 

K
P

C
A

 

KPCA-SVM 24 1 100 53 1 92.36 15 1 85.79 30 1 92.46 

KPCA-LR 24 1 96.3 54 1 80.44 15 1 85.18 28 1 80.53 

KPCA-ANN 24 1 92.6 53 2 81.82 16 1 53.05 30 1 86.7 

KPCA-C50 5 1 89.26 11 1 87.52 6 1 90.67 6 1 84.91 

P
e
a

r
so

n
 

P
e
a

r
so

n
 

P-SVM 727 727 1 100 4566 4566 6 96 2824 2824 3 97 1120 1120 4 100 

P-LR 727 727 1 100 4534 4534 13 97.5 2640 2640 6 97.5 985 985 3 100 

P-ANN 727 727 3 100 4534 4534 15 98.75 2640 2640 8 97.5 985 985 5 100 

P-C50 727 4 2 96.3 4679 4 10 96.74 2824 2 5 91.01 988 3 3 96.67 

P
C

A
 

P-PCA-SVM 727 22 1 100 4264 59 4 97.5 2824 17 3 95.15 1035 26 2 100 

P-PCA-LR 727 22 1 100 4534 57 8 97.5 1801 18 4 94.62 1035 26 2 100 

P-PCA-ANN 727 22 2 100 4446 59 7 98.75 2824 17 4 94 1035 26 3 100 

P-PCA-C50 756 5 1 96.45 4566 7 6 92.67 2824 6 3 97 1035 3 2 100 

K
P

C
A

 

P-KPCA-SVM 727 22 1 100 4566 60 5 95.72 2640 17 5 95.06 985 28 3 100 

P-KPCA-LR 727 22 1 99.24 4446 59 6 84.79 1801 18 4 93.39 1035 26 2 88.07 

P-KPCA-ANN 756 22 2 99.23 4566 60 6 79.8 1801 18 4 90.39 1035 26 3 92.46 

P-KPCA-C50 756 3 1 93.68 4534 9 7 92.19 2640 4 5 91.34 1041 3 2 93.33 

P
A

C
O

 

P
A

C
O

 

PACO-SVM 727 727 214 100 4566 4566 4502 95.42 2640 2640 3298 93.17 1120 1120 1081 92.31 

PACO-LR 727 727 214 100 4534 4534 4705 98.75 1801 1801 3591 97.62 985 985 1290 100 

PACO-ANN 727 727 215 100 4534 4534 4709 99 2640 2640 3301 97.5 985 985 1291 100 

PACO-C50 750 4 156 96.13 4446 4 6366 96.27 1801 4 3591 95.24 1035 3 1163 100 

P
C

A
 

PACO-PCA-SVM 727 23 214 100 4264 52 6241 95.61 2640 15 3298 90.12 1035 28 1163 95.79 

PACO-PCA-LR 727 23 214 100 4264 52 6241 97.13 1801 17 3591 91.53 985 30 1289 100 

PACO-PCA-ANN 727 23 215 100 4566 52 4503 97.56 2824 16 3620 92.15 988 30 1157 96.67 

PACO-PCA-C50 750 5 156 92.26 4264 8 6241 96.52 1801 6 3591 88.62 985 3 1289 91.13 

K
P

C
A

 

PACO-KPCA-SVM 727 23 214 100 4264 52 6240 94.63 2640 15 3298 87.62 1120 30 1081 96.15 

PACO-KPCA-LR 727 23 214 96.3 4446 54 6362 80.75 3879 16 3456 87.68 988 30 1157 80.53 

PACO-KPCA-ANN 756 23 192 97.22 4264 52 6241 84.26 2824 16 3620 55.82 985 30 1290 89.29 

PACO-KPCA-C50 847 6 158 90 4446 11 6362 87.22 3879 5 3456 93.17 1120 5 1081 87.61 
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Fig. 7: Performance measurement using our Framework on the four datasets. 

For the Lung dataset, The PACO-ANN model achieved the highest classification 

performance of 99% over the entire set of generated models while using only 36% of genes 

(𝑘 = 4534 most significant genes) from the original pre-processed dataset by using PACO-

based feature selection (Line 13 in Algorithm 1). As there is no feature extraction process 

in this model, the selected subset of 𝑘 genes PACO-based was used as an input layer for the 

ANN classifier, thus 𝑘 = 𝑘′ = 4534. In contrast, this model took about 4709 seconds, 

which is considered to be a significant response time compared to the other generated 

models. 

16



IIUM Engineering Journal, Vol. 22, No. 1, 2021 Hamim et al. 
https://doi.org/10.31436/iiumej.v22i1.1447 

 

For the Prostate dataset, the best performance was achieved by the PACO-LR model 

since the average classification accuracy of LR (Logistic Regression algorithm) reached 

97.62% when involving only 𝑘 = 1801 genes from 𝑝 = 10509 by using the PACO feature 

selection method. The same average accuracy was achieved (97.62%) when applying LR 

and ANN on the p original genes without any dimensionality reduction process. 

For the Leukemia1 dataset, with the different values of 𝑘 and 𝑘′, almost all generated 

models produced high average classification performance close to 100%. 

The power of our framework resides in the fact that it proposes a large number of 

models that combine different dimensionality reduction techniques with the classification 

process.  The major aim behind this combination is to use a bare minimum of dimensions 

while maximizing the classification performance. Regarding Table 5, the most interesting 

result concerned the Leukemia1 dataset since the best model, P-PCA-C5.0, achieved an 

excellent accuracy of 100%  with only 𝑘′ = 3 selected dimensions and a response time of 2 

seconds, which is much better than what was reported in [11-12], [14-15]. The classification 

accuracy of 100% was obtained by computing the percentage of correct predictions from 

the confusion matrix (c) shown in Fig. 9. The strongest point of the P-PCA-C5.0 model 

resides in the fact that the original number of genes 𝑝 = 5327 was reduced three times to 

arrive at 𝑘′ = 3 dimensions. The first reduction was obtained by selecting only the 𝑘 =
1035 most relevant genes by using Pearson correlation-based feature selection. Then, using 

the PCA based FE, the new subset of 𝑘 genes was converted into a new subspace of 26 

dimensions (components), which in turn reduced into 𝑘′ = 3 dimensions by using the innate 

feature selection capacity of C5.0 algorithm [49,50]. The quality of the P-PCA-C5.0 model 

in terms of classifications performance was validated by the area under the ROC curve 

(AUC). As we can notice from ROC curves (g) and (h) drawn in Fig. 8, the average AUC 

of testing and training set shows a maximum value of 𝐴𝑈𝐶 = 1 which can confirm the 

quality of our favorite model. With a significant increase of consumed time, PACO-C5.0 

model achieved exactly the same results (in terms of classification accuracy and dimension 

reduction degree), except that the 𝑘′ = 3 in this model represents the numbers of genes 

instead of dimensions (components) obtained by P-PCA-C5.0. 
   

Table 5: Table summarizing our favorite models for each gene expression dataset 

Dataset Model p k k' 
Accuracy 

(%) 

𝑨𝑼𝑪

=
𝑨𝑼𝑪𝑻𝒓𝒂𝒊𝒏 + 𝑨𝑼𝑪𝑻𝒆𝒔𝒕

𝟐
 

t(s) 

SRBCT C5.0 2308 2308 3 96.45 0.98 1 

Lung P-C5.0 12600 4679 4 96.74 0.985 10 

Prostate C5.0 10509 10509 2 94 0.935 6 

Leukemia1 
P-PCA-C5.0 5327 1035 3 100 1 2 

PACO-C5.0 5327 1035 3 100 1 1163 

 

For the Prostate dataset, the power of the C5.0 algorithm in terms of FS and 

classification performance was enough to achieve the best result compared to the other 

generated models. As we can notice from confusion matrix (d) in Fig. 9, 4 out of 102 

samples are incorrectly classified by the C5.0 model, resulting an average accuracy of  
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Fig. 8: ROC curves showing the performance of our favorite model on the training and 

testing sets of each dataset. 

94% with only 𝑘′ = 2 genes such as reported in Table 5, which is better than what is reported 

in [10]. The average AUC of 0.935 obtained from the ROC curves (e) and (f) confirms the 

quality of our model in terms of classification performance.  
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For the Lung dataset, as we can notice from Table 5, the P-C5.0 model achieved a 

classification accuracy of 96.74% (calculated from confusion matrix (b) in Fig. 9) by 

involving only 4 genes. This model benefitted from both Pearson correlation-based feature 

selection to reduce the number of genes from 𝑝 = 12600 to = 4679 , and from the innate 

power of C5.0 to reduce a second time the number of genes from 𝑘 to 𝑘′ = 4. The average 

AUC of 0.99 could validate the choice of our model. 

For the SRBCT dataset, our favorite model, C5.0, achieved almost the same accuracy 

on the Prostate dataset using only 𝑘′ = 3 genes from 𝑝 = 2308. 

According to the results reported in Table 4 and Table 5, our framework could improve 

both the accuracy and degree of dimensionality reduction compared with state-of-the-art 

methods. 

Fig. 9: Confusion Matrix of our favorite models for each dataset. (a) C5.0 model for 

SRBCT dataset; P-C5.0 model for Lung cancer dataset; (c) P-PCA-C5.0 and PACO-C5.0 

models for Leukemia1 dataset; (d) P-PCA-C5.0 and PACO-C5.0 models for Prostate 

dataset.

7. CONCLUSIONS AND FUTURE WORK

Genes expression data analysis is challenging the conventional prediction techniques,

since limited labeled samples versus a large number of genes may significantly affect the 

classification performance. To overcome this issue, a new generic approach combining 

dimensional reduction techniques with machine learning algorithms was proposed. The 

main objective behind this approach is to improve prediction performance for microarray 

datasets while involving a bare minimum number of predictors. The dimensional reduction 

process used in this paper is a combination of FS and FE techniques. The FS using Pearson 

correlation or PACO aims at selecting the most relevant genes, while FE using PCA or 

kernel-PCA aims at transforming the original genes space into a new linear or non-linear 

subspace. Dimensional reduction techniques were combined with four classifiers SVM, 

ANN, LR, and C5.0. We conducted the experiments on four public microarray gene 

expression data sets, SRBCT, leukemia1, lung, and Prostate cancer.  Experimental results 
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show that the number of genes was efficiently reduced to reach two genes, with a high 

classification accuracy that reached up to 100% (Table 5), making our framework very 

effectively competitive with the reference approaches. Moreover, our experiment confirms 

that our coupling of dimensionality reduction with classification makes our framework 

powerful in terms of its ability to adapt with different kinds of microarray datasets. 

Our future work includes experimentation of our proposed approach on new gene 

expression datasets, and study of new data mining techniques that can enhance our 

framework in many different aspects in the aim of identifying, with high performance, 

previously unknown cancer-related genes, which may guide further cancer research. 
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