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ABSTRACT: In the present paper, three reliable iterative methods are given and 

implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), 

Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get 

the exact and numerical solutions for Fisher's equations. The reliable iterative methods are 

characterized by many advantages, such as being free of derivatives, overcoming the 

difficulty arising when calculating the Adomian polynomial boundaries to deal with 

nonlinear terms in the Adomian decomposition method (ADM), does not request to 

calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no 

need to create a homotopy like in the Homotopy perturbation method (HPM), or any 

assumptions to deal with the nonlinear term. The obtained solutions are in recursive 

sequence forms which can be used to achieve the closed or approximate form of the 

solutions. Also, the fixed point theorem was presented to assess the convergence of the 

proposed methods. Several examples of 1D, 2D and 3D problems are solved either 

analytically or numerically, where the efficiency of the numerical solution has been verified 

by evaluating the absolute error and the maximum error remainder (𝑀𝐸𝑅) to show the 

accuracy and efficiency of the proposed methods. The results reveal that the proposed 

iterative methods are effective, reliable, time saver and applicable for solving the problems 

and can be proposed to solve other nonlinear problems. All the iterative process in this work 

implemented in MATHEMATICA®12.  

ABSTRAK: Kajian ini berkenaan tiga kaedah berulang boleh percaya diberikan dan 

dilaksanakan bagi menyelesaikan 1D, 2D dan 3D persamaan Fisher. Kaedah Daftardar-

Jafari (DJM), kaedah Temimi-Ansari (TAM) dan kaedah pengecutan Banach (BCM) 

digunakan bagi mendapatkan penyelesaian numerik dan tepat bagi persamaan Fisher. 

Kaedah berulang boleh percaya di kategorikan dengan pelbagai faedah, seperti bebas 

daripada terbitan, mengatasi masalah-masalah yang timbul apabila sempadan polinomial 

bagi mengurus kata tak linear dalam kaedah penguraian Adomian (ADM), tidak 

memerlukan kiraan pekali Lagrange sebagai kaedah berulang Variasi (VIM) dan tidak perlu 

bagi membuat homotopi sebagaimana dalam kaedah gangguan Homotopi (HPM), atau 

mana-mana anggapan bagi mengurus kata tak linear. Penyelesaian yang didapati dalam 

bentuk urutan berulang di mana ianya boleh digunakan bagi mencapai penyelesaian tepat 

atau hampiran. Juga, teorem titik tetap dibentangkan bagi menaksir kaedah bentuk 

hampiran. Pelbagai contoh seperti masalah 1D, 2D dan 3D diselesaikan samada secara 

analitik atau numerik, di mana kecekapan penyelesaian numerik telah ditentu sahkan dengan 

menilai ralat mutlak dan baki ralat maksimum (MER) bagi menentukan ketepatan dan 

kecekapan kaedah yang dicadangkan. Dapatan kajian menunjukkan kaedah berulang yang 

dicadangkan adalah berkesan, boleh percaya, jimat masa dan boleh guna bagi 

menyelesaikan masalah dan boleh dicadangkan menyelesaikan masalah tak linear lain. 

Semua proses berulang dalam kerja ini menggunakan MATHEMATICA®12. 
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1. INTRODUCTION 

Many problems arising in engineering, science, finance, ecology, chemistry, etc., can be 

expressed by partial non-linear differential equations (PDEs). A non-linear PDE solution is a 

challenge for engineers and scientists where an analytical solution cannot be obtained. 

Therefore, many mathematicians have attempted to solve these problems in different ways 

and algorithms, for examples, ADM, VIM, HPM, homotopy analysis method (HAM), finite 

difference methods and some other approximate and numerical methods, see [1-6]. 

Fisher's equation is defined as the nonlinear reaction diffusion equation that describes the 

relationship between the diffusion and nonlinear multiplication of a species [7]. Fisher’s 

equation is used in chemical kinetics and population dynamics which included problems such 

as nonlinear evolution of a population in a one-dimensional habitat and neutron population in 

a nuclear reaction and branching, the same equation occurs in neurophysiology, logistic 

growth models [8,9]. During the past half century, Fischer's equation was studied and a 

solution was found it, and the research field is still active to develop some good numerical 

algorithms and methods to obtain an accurate or approximate solution to it [10]. 

Moreover, some analytical, approximate and numerical methods were used and 

implemented to solve the Fisher’s equation such as, finite elements and the Galerkin method 

[11], homotopy perturbation method [12], modified variational iteration method [13], Sinc 

collocation method [14]. In addition, Wazwaz and Gorguis studied the Fisher equation by 

using ADM [15]. In 2017, Parand and Nicarea solved Fischer's equation by using a spectral 

collocation method based on the Bessel functions of the first kind  the Jacobian free Newton-

generalized minimum residual method with adaptive preconditions[16]. 

In this paper, the three iterative methods DJM, TAM and BCM will be applied to solve 

the 1D, 2D and 3D Fisher’s equations to obtain either exact or numerical solutions. The first 

method is the DJM suggested by Daftardar-Gejji and Jafari in 2006 [17], the second method 

is the TAM proposed by Temimi and Ansari  in 2011 [18] and the third method is the BCM 

introduced by Daftardar-Gejji and Bhalekar in 2009 [19].Theseiterative methods have been 

effectively used to solve different types of non-linear differential equations, for more details 

see [20-26]. 

This paper has been arranged as follows: In section 2, the 1D, 2D and 3D Fisher's 

equation mathematical formulation will be given. The basic ideas of three semi-analytical 

iterative methods will be presented in section 3. The convergence of the suggested techniques 

will be illustrated in section 4. In section 5, solving some examples of 1D, 2D and 3DFisher's 

equation by using the DJM, TAM and BCM will be given. Finally, the conclusion is given in 

section 6. 
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2. THE MATHEMATICAL FORMULATION OF 1D, 2D AND 3D 

FISHER'S EQUATION  

Fisher's equation is nonlinear partial differential equation that belongs to the class of 

reaction diffusion equations and has many important applications in biology, chemistry, 

physics and medicine as is the case in many reactions spread equations [13, 16]. 

In this study, the 1D Fisher’s equation can be simply present in following form 

𝑤𝑡(𝑥, 𝑡) = 𝛼𝑤𝑥𝑥(𝑥, 𝑡) + 𝛽𝑅(𝑤(𝑥, 𝑡)) + 𝑢(𝑥, 𝑡),    0≤ 𝑡 ≤ 𝑇,      a ≤ 𝑥 ≤ 𝑏,                (1) 

with the following initial conditions: 

 𝑤(𝑥, 0) = 𝑤0. 

The 2D Fisher’s equation is presented in this form 

 𝑤𝑡(𝑥, 𝑦, 𝑡) = 𝛼[𝑤𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑤𝑦𝑦(𝑥, 𝑦, 𝑡)] + 𝛽𝑅(𝑤(𝑥, 𝑦, 𝑡)) + 𝑢(𝑥, 𝑦, 𝑡),                    (2) 

 0≤ 𝑡 ≤ 𝑇,      a ≤ 𝑥, 𝑦 ≤ 𝑏, 

with the following initial conditions: 

     𝑤(𝑥, 𝑦, 0) = 𝑤0.  

The 3D Fisher’s equation can be expressed in this form 

𝑤𝑡(𝑥, 𝑦, 𝑧, 𝑡)

= 𝛼[𝑤𝑥𝑥(𝑥, 𝑦, 𝑧, 𝑡) + 𝑤𝑦𝑦(𝑥, 𝑦, 𝑧, 𝑡) + 𝑤𝑧𝑧(𝑥, 𝑦, 𝑧, 𝑡)]    + 𝛽𝑅(𝑤(𝑥, 𝑦, 𝑧, 𝑡))

+ 𝑢(𝑥, 𝑦, 𝑧, 𝑡),                                                                                                                                   (3) 

0≤ 𝑡 ≤ 𝑇,      a ≤ 𝑥, 𝑦, 𝑧 ≤ 𝑏, 

with the following initial conditions: 

𝑤(𝑥, 𝑦, 𝑧, 0) = 𝑤0,  

where 𝑡 is the time, 𝑥, 𝑦, 𝑧 are the spatial coordinate, 𝛼 the constant diffusion 

coefficient, 𝛽 the reaction factor and R the nonlinear reaction term, w unknown function and 

u is known function represent the non- homogenous term. 

3. THE BASIC CONCEPTS OF THE THREE ITERATIVE METHODS 

In this section, the basic idea of the suggested three iterative methods DJM, TAM and 

BCM will be introduced. 

3.1. The basic steps of DJM 

Daftardar-Gejji and Jafari have considered the following nonlinear functional equation 

[17, 27]: 

𝑤 = 𝑔 + 𝐿(𝑤) + 𝑁(𝑤),                                                                                                                 (4) 

where 𝐿 and 𝑁 represent are linear and nonlinear operators, respectively, 𝑔 is a known 

function and 𝑤 is an unknown function. 

We are looking for a solution 𝑤ofEq. (4) and can be obtained by the following series: 

𝑤 = ∑ 𝑤𝑝

∞

𝑝=0

.  
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Because𝐿 is linear operator, then 

𝐿 (∑ 𝑤𝑝

∞

𝑝=0

) = ∑ 𝐿(𝑤𝑝

∞

𝑝=0

). 

Hence, Eq. (4) can be written as 

∑ 𝑤𝑝

∞

𝑝=0

= 𝑔 + ∑ 𝐿(𝑤𝑝

∞

𝑝=0

) + 𝑁 (∑ 𝑤𝑝

∞

𝑝=0

), 

and the 𝑁 can be decomposed as bellow 

𝑁 (∑ 𝑤𝑝

∞

𝑝=0

) = 𝑁(𝑤0) + ∑ {𝑁 (∑ 𝑤𝑝

𝑖

𝑝=0

) − 𝑁 (∑ 𝑤𝑝

𝑖−1

𝑝=0

)}

∞

𝑖=1

. 

Now, let us define the relation as below 

𝐽0 = 𝑁(𝑤0),    

𝐽1 = 𝑁(𝑤0 + 𝑤1) − 𝑁(𝑤0), 

𝐽2 = 𝑁(𝑤0 + 𝑤1 + 𝑤2) − 𝑁(𝑤0 + 𝑤1), 

⋮ 

𝐽𝑖 = {𝑁 (∑ 𝑤𝑝

𝑖

𝑝=0

) − 𝑁 (∑ 𝑤𝑝

𝑖−1

𝑝=0

)} , 𝑖 ≥ 1.    

From the above relation we get 

𝑁 (∑ 𝑤𝑝

∞

𝑝=0

) = 𝐽0 + 𝐽1 + 𝐽2 + ⋯ + 𝐽𝑖 + ⋯    

Now, we will define the inverse operator as follows 

𝐿−1(∙) = ∫ (∙)
𝑡

0

𝑑𝜏,                                                                                                                            (5) 

By taking the inverse for together sides of Eq. (4), and applying the initial condition, we 

obtain 

∑ 𝑤𝑝

∞

𝑝=0

= 𝑓 + 𝐿−1 (𝑁 (∑ 𝑤𝑝

∞

𝑝=0

)), 

where 𝑓 represents the final formula for𝐿−1(𝑔).  

Therefore, the components of the solution 𝑤 are 

𝑤0    = 𝑓 , 

𝑤1   = 𝐿−1(𝐽0), 

𝑤2  = 𝐿−1(𝐽1), 
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⋮ 

𝑤𝑝+1 = 𝐿−1(𝐽𝑝),         𝑝 = 0,1,2, …                                                                                                   (6) 

As a result, the n-term approximate solution of Eq. (4) is presented by the following form 

𝜃𝑛 = ∑ 𝑤𝑖.                                                                                                                                      

𝑛

𝑖=0

(7) 

Finally, the solution 𝑤 for the nonlinear problem is given by 

𝑤 = ∑ 𝑤𝑝.

∞

𝑝=0

                                                                                                                                      (8) 

3.2. The basic steps of TAM 

Temimi and Ansari have presented an iterative method namely (TAM) for solving non-

linear differential equations [18, 28]. 

To explain the basic ideas of the suggested technique, we assume the general form of partial 

differential equation 

 𝐿(𝑤) + 𝑁(𝑤) + 𝑔 = 0,                                                                                                                (9) 

with boundary condition, 𝐵 (𝑤,
𝜕𝑤

𝜕𝑥
) = 0.  

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator, 𝑥, 𝑡 denotes the independent variables, 

𝑤 is an unknown function, 𝑔 is a known function and 𝐵 is a boundary operator. 

Now, we start by supposing that 𝑤0 is an initial approximation of the problem 𝑤 through 

solving the following initial equation 

𝐿(𝑤0) + 𝑔 = 0,with   𝐵 (𝑤0,
𝜕𝑤0

𝜕𝑥
) = 0. 

To obtain the next iteration 𝑤1 to the solution 𝑤, we must solve the following equation 

𝐿(𝑤1) + 𝑔 + 𝑁(𝑤0) = 0, with   𝐵 (𝑤1,
𝜕𝑤1

𝜕𝑥
) = 0. 

Similarly, all iterations  𝑤𝑛+1can be obtained as 

𝐿(𝑤𝑛+1) + 𝑔 + 𝑁(𝑤𝑛) = 0,with   𝐵 (𝑤𝑛+1,
𝜕𝑤𝑛+1

𝜕𝑥
) = 0.                                                     (10) 

Note that each of them 𝑤𝑛 is a solution to Eq. (9). Also, by increasing the iterations, we will 

obtain better accuracy for the approximate solution. 

So, the solution for the Eq. (9) is given by 

𝑤 = lim
𝑛→∞

𝑤𝑛.                                                                                                                                    (11) 

3.3. The basic steps of BCM 

To study the basic concept of the suggested technique, we assume the general form of 

nonlinear functional equation, see [19]: 

𝑤 = 𝑔 + 𝑁(𝑤),                                                                                                                               (12) 

Now, we will define successive approximations as follows 

𝑤0 = 𝑔, 
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𝑤1 = 𝑤0 + 𝑁(𝑤0), 

𝑤2 = 𝑤0 + 𝑁(𝑤1), 

⋮ 

𝑤𝑛 = 𝑤0 + 𝑁(𝑤𝑛−1),    𝑛 = 1,2, …                                                                                                 (13) 

It has been shown that the series defined by Eq. (13) is convergent [19]. Thus, the solution of 

Eq. (12) is given by 

𝑤 = lim
𝑛→∞

𝑤𝑛.                                                                                                                                    (14) 

4. THE CONVERGENCE OF THE PROPOSED TECHNIQUES 

To show the convergence of the DJM, TAM and BCM, we are going to discuss the basic 

concepts and the fundamental theorems. In the DJM the convergence can be directly proved. 

However, in TAM and BCM, we should follow some steps as below 

𝑣0 = 𝑤0,                                       

𝑣1 = 𝐴[𝑣0],                                 

𝑣2 = 𝐴[𝑣0 + 𝑣1],                       
⋮                                       

𝑣𝑛+1 = 𝐴[𝑣0 + 𝑣1 + ⋯ + 𝑣𝑛].

                                                                                                         (15) 

where the operator 𝐴 can be defined by the following form 

𝐴[𝑣𝑝] = 𝑆𝑝 − ∑ 𝑣𝑖

𝑝−1

𝑖=0

, 𝑝 = 1,2,3, …                                                                                    (16) 

where the term 𝑆𝑝 is the solution appeared from the iterative methods. 

Now, for the TAM as 

𝐿(𝑣𝑝) + 𝑔 + 𝑁 (∑ 𝑣𝑖

𝑝−1

𝑖=0

) = 0,   𝑝 = 1,2,3, …                                                                         (17) 

For the BCM 

𝑣𝑝 = 𝑣0 + 𝑁 (∑ 𝑣𝑖

𝑝−1

𝑖=0

) , 𝑝 = 1,2,3, …  

Now, applying the same conditions that used in the iterative technique, we have 

𝑤 = lim
𝑛→∞

𝑤𝑛 = ∑ 𝑣𝑛

∞

𝑛=0

. 

Hence, by using the Eqs. (15) and (16), we can get the solution by the following form 

𝑤 = ∑ 𝑣𝑖.

∞

𝑖=0

                                                                                                                                      (18) 

The following theorems show the convergence of the proposed methods: the DJM, BCM 

and TAM, more details for the theorems can be found in [29]. 

143



IIUM Engineering Journal, Vol. 22, No. 1, 2021 Salih et al. 
https://doi.org/10.31436/iiumej.v22i1.1413 

 

 

Theorem 4.1. Let 𝐴 presented in Eq. (16), be an operator from a Hilbert spaceH  to H. The 

series solution𝑤𝑛 = ∑ 𝑣𝑖
𝑛
𝑖=0  is convergent if ∃ 0 < 𝜆 < 1 when‖𝐴[𝑣0 + 𝑣1 + ⋯ + 𝑣𝑖+1]‖ ≤

𝜆‖𝐴[𝑣0 + 𝑣1 + ⋯ + 𝑣𝑖]‖ (such that‖𝑣𝑖+1‖ ≤ 𝜆‖𝑣𝑖‖) ∀i = 0, 1, …. 

Theorem 4.1 is a specific case from the Banach's fixed point theorem which is a sufficient 

condition to study the convergence of the proposed iterative methods. 

Theorem 4.2. If the series solution𝑤 = ∑ 𝑣𝑖
∞
𝑖=0 convergent, then this series will consider the 

exact solution of the present nonlinear problem. 

Theorems 4.1 and 4.2 show that the achieved solution from the DJM, TAM and BCM 

that is given in Eqs.  (6), (10) and (13), respectively, for the nonlinear equation (Eq. (4)) is 

convergent to the exact solution under the given condition, ∃ 0 < 𝜆 < 1;‖𝑣𝑖+1‖ ≤
𝜆‖𝑣𝑖‖ ∀𝑖 = 0,1,2, … . 

In other words, we will define the following parameter as 

    𝛿𝑖 = {

‖𝑣𝑖+1‖

‖𝑣𝑖‖
      𝑖𝑓      ‖𝑣𝑖‖ ≠ 0

0                 𝑖𝑓      ‖𝑣𝑖‖ = 0

                                                                                                 (19) 

Then, the series solution ∑ 𝑣𝑖
∞
𝑖=0 for the nonlinear problem converges to the exact solution w, 

when 0 ≤ 𝛿𝑖 < 1, ∀𝑖 = 0,1,2, ….Moreover, the maximum truncation error can be calculated 

using the following form: ‖𝑤 − ∑ 𝑣𝑖
𝑛
𝑖=0 ‖ ≤

1

1−𝛿
𝛿𝑛+1‖𝑣0‖, where 𝛿 = max{𝛿𝑖, 𝑖 = 0,1, … , 𝑛} 

as shown in theorem 4.3. 

5. SOLVING THE 1D, 2D AND 3D FISHER'S EQUATION 

In this section we are going to solve some examples of the 1D, 2D and 3D Fisher's 

equations by using the DJM, TAM and BCM. 

Example 5.1. Consider the 1D Fisher’s equation given in Eq. (1), when we substitute the 

values of 𝛼 = 𝛽 = 1, as follows[12, 13]: 

 𝑤𝑡 = 𝑤𝑥𝑥 + 𝑤(1 − 𝑤),                                                                                                               (20) 

The constant initial condition is given as, 𝑤(𝑥, 0) = 𝜆.  

Solving example 5.1 by using the DJM 

First of all, to implement the DJM for the 1D Fisher’s equation, we write the operator 

form of the Eq. (20) as follows 

 𝐿𝑡(𝑤) = 𝑁(𝑤),                                                                                                                              (21) 

where 𝐿𝑡 =
𝜕

𝜕𝑡
  and𝑁(𝑤) = 𝑤𝑥𝑥 + 𝑤(1 − 𝑤), is the nonlinear operator for the 1D Fisher’s 

equation. 

By taking the inverse for together sides of Eq. (21) and applying the initial condition, we 

obtain 

 𝑤 = 𝜆 + 𝐿𝑡
−1𝑁(𝑤).                                                                                                                       (22) 

Finally, according to the DJM for Eq. (22) and by applying the recurrence relation, we 

achieve the components 𝑤𝑛 as the following in a series form 

𝑤0 = 𝜆, 

𝑤1 = 𝐿𝑡
−1(𝐽0) = 𝐿𝑡

−1𝑁(𝑤0)  = 𝑡𝜆 − 𝑡𝜆2, 
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𝑤2 = 𝐿𝑡
−1(𝐽1) = 𝐿𝑡

−1𝑁(𝑤0 + 𝑤1) − 𝑤1, 

       =
𝑡2𝜆

2
−

3𝑡2𝜆2

2
−

𝑡3𝜆2

3
+ 𝑡2𝜆3 +

2𝑡3𝜆3

3
−

𝑡3𝜆4

3
, 

⋮ 

Moreover, by using a similar way the iterations 𝑤3 and 𝑤4 were also calculated but for brevity 

is not mentioned here. 

Thus, we get the following approximate solutions 

𝜃1 = 𝑤0 + 𝑤1 = 𝜆 + (𝜆 − 𝜆2)𝑡 + 𝑂[𝑡]5, 

𝜃2 = 𝑤0 + 𝑤1 + 𝑤2 = 𝜆 + (𝜆 − 𝜆2)𝑡 + (
𝜆

2
−

3𝜆2

2
+ 𝜆3) 𝑡2 +

1

3
(−𝜆2 + 2𝜆3 − 𝜆4)𝑡3 + 𝑂[𝑡]5, 

 ⋮ 

In general, according to Eq. (7) the n-term approximate solution obtained by the DJM will be 

    𝜃𝑛 = ∑ 𝑤𝑖

𝑛

𝑖=0

= 𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + ⋯  

Hence, according to the Eq. (8), we obtain the exact solution of Eq. (20) in a series form 

by sum of the above components 𝑤𝑖obtained from the DJM, this has the closed form obtained 

upon using the Taylor expansion: 

     𝑤 = ∑ 𝑤𝑝

∞

𝑝=0

=
𝜆ⅇ𝑡

1 − 𝜆 + 𝜆ⅇ𝑡
 . 

Solving example 5.1 by using the TAM 

To implement the TAM for the 1D Fisher’s equation, we re-write the Eq. (20) in the 

operator form, as follows 

𝐿(𝑤) = 𝑤𝑡 ,    𝑁(𝑤) = 𝑤𝑥𝑥 + 𝑤(1 − 𝑤), 

with initial condition, 𝑤(𝑥, 0) = 𝜆. 

We start by supposing that 𝑤0 is an initial approximation of the problem 𝑤 through 

solving the following initial equation 

𝐿𝑡(𝑤0) = 0, with 𝑤0(𝑥, 0) = 𝜆,  𝐿𝑡 =
𝜕

𝜕𝑡
. 

Then, we get 

 𝑤0 = 𝜆. 

Also, to get the next iteration, we have to solve the following problem 

𝐿𝑡(𝑤1) + 𝑁(𝑤0) = 0,   with  𝑤1(𝑥, 0) = 𝜆. 

Then, we get 

 𝑤1 = 𝜆 + (𝜆 − 𝜆2)𝑡 + 𝑂[𝑡]5. 

In the second iteration, we have to solve the following problem 

𝐿𝑡(𝑤2) + 𝑁(𝑤1) = 0,   with 𝑤2(𝑥, 0) = 𝜆. 

Thus, we get 
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 𝑤2 = 𝜆 + (𝜆 − 𝜆2)𝑡 + (
𝜆

2
−

3𝜆2

2
+ 𝜆3) 𝑡2 +

1

3
(−𝜆2 + 2𝜆3 − 𝜆4)𝑡3 + 𝑂[𝑡]5. 

 ⋮ 

Furthermore, by proceeding in this way the iterations 𝑤3 and 𝑤4 were also calculated but 

for the purpose of brevity is not mentioned here.Then, each iteration of the 𝑤𝑖 represents an 

approximate solution to the Eq. (20). 

Thus, According to Eq. (11) we obtain the exact solution upon using the Taylor expansion: 

 𝑤 = lim
𝑛→∞

𝑤𝑛 =
𝜆ⅇ𝑡

1−𝜆+𝜆ⅇ𝑡
 .                                                                                                       (23) 

Solving example 5.1 by using the BCM 

To implement the BCM to solve the Eq. (20), by following the identical steps as used in 

the DJM, we obtain Eq. (22). 

Also, suppose 

𝑔 = 𝜆 and  𝑁(𝑤) = 𝐿𝑡
−1𝑁(𝑤),  

where, 𝐿𝑡
−1(∙) = ∫ (∙)𝑑𝑡,

𝑡

0
𝑁(𝑤) = 𝑤𝑥𝑥 + 𝑤(1 − 𝑤). 

Applying the steps of the BCM, we get 

 𝑤0 = 𝑔 = 𝜆, 

 𝑤𝑛 =  𝑤0 + 𝑁(𝑤𝑛−1), 𝑛 ∈ ℕ. 

Hence, 

 𝑤1 = 𝜆 + (𝜆 − 𝜆2)𝑡 + 𝑂[𝑡]5, 

 𝑤2 = 𝜆 + (𝜆 − 𝜆2)𝑡 + (
𝜆

2
−

3𝜆2

2
+ 𝜆3)𝑡2 +

1

3
(−𝜆2 + 2𝜆3 − 𝜆4)𝑡3 + 𝑂[𝑡]5, 

 ⋮ 

Moreover, by using a similar way the iterations 𝑤3 and 𝑤4 were also calculated but for 

brevity is not mentioned here. 

Also, each iteration of the 𝑤𝑖 represents an approximate solution to the Eq. (20) and so 

the exact solution obtained by the BCM will be the similar to exact solution obtained by the 

DJM and TAM. 

Example 5.2. Consider the 1D Fisher’s equation given in Eq. (1) as follows [30, 31]: 

 𝑤𝑡 = 𝛼𝑤𝑥𝑥 + 𝛽𝑤(1 − 𝑤),                                                                                                          (24) 

The initial condition is given as, 𝑤(𝑥, 0) = 𝜆Sech[10𝑥]2. The exact solution is unknown. 

Solving example 5.2 by using the DJM 

To implement the DJM to solve Eq.(24), we write it in the operator form, as follows 

 𝐿𝑡(𝑤(𝑥, 𝑡)) = 𝑁(𝑤),                                                                                                                   (25) 

where,  𝐿𝑡 =
𝜕

𝜕𝑡
  and 𝑁(𝑤) = 𝛼𝑤𝑥𝑥 + 𝛽𝑤(1 − 𝑤), is the nonlinear operator of Eq.(24). 

By taking the inverse for together sides of Eq. (25) and applying the initial condition, we 

obtain 

 𝑤 = 𝜆Sech[10𝑥]2 + 𝐿𝑡
−1𝑁(𝑤).                                                                                                (26) 
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Finally, according to the DJM for Eq. (26) and by applying the recurrence relation, we 

achieve the components 𝑤𝑛  as the following in a series form 

𝑤0 = 𝜆Sech[10𝑥]2, 

𝑤1 = 𝐿𝑡
−1(𝐽0) = 𝐿𝑡

−1𝑁(𝑤0)  =
1

2
𝜆(−800𝛼 + 𝛽 − 2𝛽𝜆 + (400𝛼 +

𝛽)Cosh[20𝑥])Sech[10𝑥]4𝑡 + 𝑂[𝑡]3, 

𝑤2 = 𝐿𝑡
−1(𝐽1) = 𝐿𝑡

−1𝑁(𝑤0 + 𝑤1) − 𝑤1 

       =
1

16
𝜆(5280000𝛼2 + 800𝛼𝛽(−3 + 20𝜆) + 𝛽2(3 + 4𝜆(−3 + 4𝜆)) − 4(1040000𝛼2 +

𝛽2(−1 + 3𝜆) + 400𝛼(𝛽 + 6𝛽𝜆))Cosh[20𝑥] + (400𝛼 + 𝛽)2Cosh[40𝑥])Sech[10𝑥]6𝑡2 +
𝑂[𝑡]3, 

 ⋮ 

Also, the iterations  𝑤3 and 𝑤4were calculated but for the purpose of brevity is not mentioned 

here. 

In general, according to Eq. (7) the n-term approximate solution obtained by the DJM will be 

     𝑤𝑖 = ∑ 𝑤𝑖

4

𝑖=0

= 𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4. 

To prove the convergence analysis for the DJM for the Eq. (24), we have applied the 

process as presented in section 4. Hence, let choose the same above components obtained by 

the DJM, we get 

 𝑣0 = 𝑤0 = 𝜆Sech[10𝑥]2, 

 𝑣1 = 𝑤1 =
1

2
𝜆(−800𝛼 + 𝛽 − 2𝛽𝜆 + (400𝛼 + 𝛽)Cosh[20𝑥])Sech[10𝑥]4𝑡 + 𝑂[𝑡]3, 

 ⋮ 

and so on, when we substitute the values of 𝛼 = 0.1, 𝜆=0.1 and 𝛽 =1 in the iterations above 

and we evaluate the 𝛿𝑖 given in Eq. (19) to check the convergent conditions of the obtained 

estimated solution, then, we get 

𝛿0 =
‖𝑣1‖

‖𝑣0‖
= 0.001875362147319159 < 1, 

𝛿1 =
‖𝑣2‖

‖𝑣1‖
= 0.00407630739235568 < 1, 

𝛿2 =
‖𝑣3‖

‖𝑣2‖
= 0.005390541847501205 < 1, 

𝛿3 =
‖𝑣4‖

‖𝑣3‖
= 0.007399148330331557 < 1. 

The results of 𝛿𝑖, for all 𝑖 ≥  0, 0 < 𝑡 < 1 and 0 ≤ 𝑥 ≤ 1, are less than one. Therefore, 

according to the convergence condition, the approximate solution obtained by the DJM is 

converges. 

Solving example 5.2 by using the TAM 

To implement the TAM for solving the Eq. (24), we write it in the operator form, so we 

have the following form 

 𝐿(𝑤) = 𝑤𝑡 ,    𝑁(𝑤) = 𝛼𝑤𝑥𝑥 + 𝛽𝑤(1 − 𝑤), 
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with initial condition, 𝑤(𝑥, 0) = 𝜆Sech[10𝑥]2. 

We start by supposing that 𝑤0 is an initial approximation of the problem 𝑤 through 

solving the following initial equation 

𝐿𝑡(𝑤0) = 0, with 𝑤0(𝑥, 0) = 𝜆Sech[10𝑥]2,  𝐿𝑡 =
𝜕

𝜕𝑡
. 

Then, we get 

𝑤0 = 𝜆Sech[10𝑥]2, 

Also, to obtain the next iteration, we have to solve the following problem 

𝐿𝑡(𝑤1) + 𝑁(𝑤0) = 0,   with   𝑤1(𝑥, 0) = 𝜆Sech[10𝑥]2. 

Then, we get 

𝑤1 = 𝜆Sech[10𝑥]2 +
1

2
𝜆(−800𝛼 + 𝛽 − 2𝛽𝜆 + (400𝛼 + 𝛽)Cosh[20𝑥])Sech[10𝑥]4𝑡 +

𝑂[𝑡]3. 

In the second iteration, we have to solve the following problem 

𝐿𝑡(𝑤2) + 𝑁(𝑤1) = 0 ,   with  𝑤2(𝑥, 0) = 𝜆Sech[10𝑥]2. 

Thus, we get 

 𝑤2 = 𝜆Sech[10𝑥]2 +
1

2
𝜆(−800𝛼 + 𝛽 − 2𝛽𝜆 + (400𝛼 + 𝛽)Cosh[20𝑥])Sech[10𝑥]4𝑡 +

1

16
𝜆(5280000𝛼2 + 800𝛼𝛽(−3 + 20𝜆) + 𝛽2(3 + 4𝜆(−3 + 4𝜆)) − 4(1040000𝛼2 +

𝛽2(−1 + 3𝜆) + 400𝛼(𝛽 + 6𝛽𝜆))Cosh[20𝑥] + (400𝛼 + 𝛽)2Cosh[40𝑥])Sech[10𝑥]6𝑡2 +
𝑂[𝑡]3, 

 ⋮ 

Also, the iterations  𝑤3 and 𝑤4were calculated but for the purpose of brevity is not mentioned 

here. 

To prove the convergence of the TAM for the Eq. (24), we have applied the procedure as 

presented in Eqs. (15), (16) and (17), and we evaluate the 𝛿𝑖  given in Eq. (19) to check the 

convergent conditions of the obtained estimated solution, then we get: 

𝛿0 =
‖𝑣1‖

‖𝑣0‖
= 0.0018753621473192403 < 1,       

𝛿1 =
‖𝑣2‖

‖𝑣1‖
= 0.004076307392334906 < 1, 

𝛿2 =
‖𝑣3‖

‖𝑣2‖
= 0.0053905418254422 < 1, 

𝛿3 =
‖𝑣4‖

‖𝑣3‖
= 0.007399147822582866 < 1. 

The results of 𝛿𝑖, for all 𝑖 ≥  0, 0 < 𝑡 < 1 and 0 ≤ 𝑥 ≤ 1, are less than one. Therefore, 

according to the convergence condition, the approximate solution obtained by the TAM is 

converges. 

Solving example 5.2 by using the BCM 

To implement the BCM to solve the Eq. (24), by following the identical steps as used in 

the DJM, we obtain Eq. (26). 

Also, suppose,  

148



IIUM Engineering Journal, Vol. 22, No. 1, 2021 Salih et al. 
https://doi.org/10.31436/iiumej.v22i1.1413 

 

 

𝑔 = 𝜆Sech[10𝑥]2 and   𝑁(𝑤) = 𝐿𝑡
−1𝑁(𝑤),  

where, 𝐿𝑡
−1(∙) = ∫ (∙)𝑑𝑡,

𝑡

0
𝑁(𝑤) = 𝛼𝑤𝑥𝑥 + 𝛽𝑤(1 − 𝑤). 

Applying the steps of the BCM, we get 

 𝑤0 = 𝑔 = 𝜆Sech[10𝑥]2, 

 𝑤𝑛 =  𝑤0 + 𝑁(𝑤𝑛−1) , 𝑛 ∈  ℕ. 

Hence, 

𝑤1 = 𝜆Sech[10𝑥]2 +
1

2
𝜆(−800𝛼 + 𝛽 − 2𝛽𝜆 + (400𝛼 + 𝛽)Cosh[20𝑥])Sech[10𝑥]4𝑡

+ 𝑂[𝑡]3, 

𝑤2 = 𝜆Sech[10𝑥]2 +
1

2
𝜆(−800𝛼 + 𝛽 − 2𝛽𝜆 + (400𝛼 + 𝛽)Cosh[20𝑥])Sech[10𝑥]4𝑡

+
1

16
𝜆(5280000𝛼2 + 800𝛼𝛽(−3 + 20𝜆) + 𝛽2(3 + 4𝜆(−3 + 4𝜆))

− 4(1040000𝛼2 + 𝛽2(−1 + 3𝜆) + 400𝛼(𝛽 + 6𝛽𝜆))Cosh[20𝑥]

+ (400𝛼 + 𝛽)2Cosh[40𝑥])Sech[10𝑥]6𝑡2 + 𝑂[𝑡]3. 

⋮ 

Also, the iterations  𝑤3 and 𝑤4were calculated but for the purpose of brevity is not mentioned 

here. 

To prove the convergence analysis for the BAM for the Eq. (24), we have applied the 

similar process as presented in section 4 and then, we evaluate the 𝛿𝑖 given in Eq. (19) to 

check the convergent conditions of the obtained estimated solution, then we get 

𝛿0 =
‖𝑣1‖

‖𝑣0‖
= 0.0018753621473191209 < 1,       

𝛿1 =
‖𝑣2‖

‖𝑣1‖
= 0.004076307392346145 < 1, 

𝛿2 =
‖𝑣3‖

‖𝑣2‖
= 0.005390541859136445 < 1, 

𝛿3 =
‖𝑣4‖

‖𝑣3‖
= 0.0073991506075805555 < 1. 

The results of 𝛿𝑖, for all 𝑖 ≥  0, 0 < 𝑡 < 1and0 ≤ 𝑥 ≤ 1, are less than one. Therefore, 

according to the convergence condition, the approximate solution obtained by the BCM is 

converges. 

Because the exact solution of the Eq. (24) is unknown, the 𝑀𝐸𝑅𝑛will be calculated as 

follows, 𝑀𝐸𝑅𝑛 = max
0≤𝑥≤1

|𝑤𝑡 − 𝛼𝑤𝑥𝑥 − 𝛽𝑤(1 − 𝑤)|, to test the efficiency of the approximate 

solutions that we obtained by the DJM, TAM, BCM, and compared them with the ADM and 

VIM [13, 31], for two values of the time t equal to either 0.0001 or 0.001. From Fig. 1, it can 

be easily recognized that the error is decreasing by increasing the number of iterations. Also, 

good agreement have been achieved with ADM and VIM, without required to calculate 

Adomian polynomials to handle the nonlinear terms in ADM, or compute Lagrange 

multiplier as in VIM and time saver. 
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 (a)                                                                      (b) 

Fig. 1. The 𝑀𝐸𝑅𝑛 values for example 5.2 obtained by the DJM, TAM, BCM, ADM and VIM 

for times (a) 𝑡 = 0.0001, (b) 𝑡 = 0.001. 

 

Example 5.3. Consider the 2D Fisher’s equation given in Eq. (2), when we substitute the 

values of 𝛼 = 𝛽 = 1, as follows [11,16]: 

 𝑤𝑡 = 𝑤𝑥𝑥 + 𝑤𝑦𝑦 + 𝑡𝑤(1 − 𝑤) + 𝑢(𝑥, 𝑦, 𝑡),                                                                          (27) 

and the initial condition, 𝑤(𝑥, 𝑦, 0) = 𝑥2 + 𝑦2. 

where, 𝑢(𝑥, 𝑦, 𝑡) = −4 + 2𝑡 − 𝑡(1 − 𝑡2 − 𝑥2 − 𝑦2)(𝑡2 + 𝑥2 + 𝑦2),    0 < 𝑡 <  1. The exact 

solution for this equation is 

𝑤 = 𝑥2 + 𝑦2 + 𝑡2. 

Solving example 5.3 by using the DJM 

To implement the DJM to solve Eq. (27), we write it in the operator form, as follows 

 𝐿𝑡(𝑤) = 𝑁(𝑤),                                                                                                                             (28) 

where, 𝐿𝑡 =
𝜕

𝜕𝑡
  and 𝑁(𝑤) = 𝑤𝑥𝑥 + 𝑤𝑦𝑦 + 𝑡𝑤(1 − 𝑤) + 𝑢(𝑥, 𝑦, 𝑡), is the nonlinear operator 

for the Eq. (27). 

By taking the inverse for both sides of Eq. (28), and applying the initial condition, we get 

 𝑤 = (𝑥2 + 𝑦2)+𝐿𝑡
−1𝑁(𝑤).                                                                                                        (29) 

Finally, according to the DJM for Eq. (29) and by applying the recurrence relation, we 

achieve the components 𝑤𝑛  as the following in a series form 

𝑤0 = 𝑥2 + 𝑦2, 

𝑤1 = 𝐿𝑡
−1(𝐽0) = 𝐿𝑡

−1𝑁(𝑤0)  = 𝑡2 −
𝑡4

4
+

𝑡6

6
+

𝑡4𝑥2

2
+

𝑡4𝑦2

2
, 

𝑤2 = 𝐿𝑡
−1(𝐽1) = 𝐿𝑡

−1𝑁(𝑤0 + 𝑤1) − 𝑤1 
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                    =
𝑡4

4
+

2𝑡5

5
−

5𝑡6

24
+

𝑡8

12
−

19𝑡10

480
+

𝑡12

144
−

𝑡14

504
−

𝑡4𝑥2

2
+

𝑡6𝑥2

6
−

𝑡8𝑥2

6
+

𝑡10𝑥2

40

−
𝑡12𝑥2

72
−

𝑡6𝑥4

6
−

𝑡10𝑥4

40
−

𝑡4𝑦2

2
+

𝑡6𝑦2

6
−

𝑡8𝑦2

6
+

𝑡10𝑦2

40
−

𝑡12𝑦2

72
−

1

3
𝑡6𝑥2𝑦2

−
1

20
𝑡10𝑥2𝑦2 −

𝑡6𝑦4

6
−

𝑡10𝑦4

40
, 

⋮ 

Furthermore, by proceeding in this way the iterations 𝑤3 and 𝑤4were also calculated but for 

the purpose of brevity is not mentioned here. 

To prove the convergence analysis of the DJM for the Eq. (27), we have applied the process 

as presented in section 4. Hence, let choose the same above components obtained by the 

DJM, we get 

𝑣0 = 𝑤0 = 𝑥2 + 𝑦2, 

𝑣1 = 𝑤1 = 𝑡2 −
𝑡4

4
+

𝑡6

6
+

𝑡4𝑥2

2
+

𝑡4𝑦2

2
, 

⋮ 

and so on, by using the iterations above and we evaluate the 𝛿𝑖 given in Eq. (19) to check the 

convergent conditions of the obtained approximate solution. Then, we get 

𝛿0 =
‖𝑣1‖

‖𝑣0‖
=  0.00005000375008333333 < 1, 

𝛿1 =
‖𝑣2‖

‖𝑣1‖
= 0.00007459982180570717 < 1, 

𝛿2 =
‖𝑣3‖

‖𝑣2‖
= 0.005312394687736893 < 1, 

𝛿3 =
‖𝑣4‖

‖𝑣3‖
= 0.00021050502578039127 < 1. 

The results of 𝛿𝑖, for all 𝑖 ≥  0, 0 < 𝑡 < 1 and 0 ≤ 𝑥, 𝑦 ≤ 1, are less than one. Therefore, the 

approximate solution obtained by the DJM is converges. 

Also, the absolute error (Abs. errs.) will be calculated to check the accuracy of the 

approximate solutions that obtained by the DJM for three values of the time 𝑡 =
0.1, 0.01 and 0.001, presented in Fig. 2. Moreover, Table 1 shows the absolute error values 

obtained by DJM for the iterations with 𝑥 =  {0, 0.2, 0.4, 0.6, 0.8, 1}. It can be easily 

recognized that the error is decreasing by increasing the number of iterations and decreasing 

the time. 
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time iteration 1 iteration 2 iteration 3 iteration 4 

t = 0.1 

    

t = 0.01 

    

t= 0.001 

    

 

Fig. 2. The absolute error values for example 5.3 obtained by the DJM for 𝑤1, 𝑤2, 𝑤3, and 𝑤4 

with different values of t. 

Table 1: The absolute error values for example 5.3 obtained by DJM, for four iterations with 

different values of t. 

Time 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

t=0.1 0 0.00002516666666677221 0.0000039574960347114 3.439519622754291 × 10−8 2.367214207006091 × 10−9 

0.2 0.000027166666666776434 0.000003950495930156153 3.636235764046649 × 10−8 2.352566504062037 × 10−9 

0.4 0.000033166666666789095 0.000003926295568490412 4.225011372322602 × 10−8 2.303341876975943 × 10−9 

0.6 0.0000431666666668102 0.00000387529480571418 5.200767991296621 × 10−8 2.203745339426222 × 10−9 

0.8 0.00005716666666683975 0.000003781493401827455 6.551841495654667 × 10−8 2.027660150299521 × 10−9 

1 0.00007516666666687773 0.000003622491020830237 8.255182044155353 × 10−8 1.739110699410879 × 10−9 

t=0.01 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 2.500166636275423 × 10−9 3.995843050700178 × 10−11 3.428213061620738 × 10−15 2.459218564137952 × 10−17 

0.2 2.700166635059928 × 10−9 3.995150072691333 × 10−11 3.626173005459958 × 10−15 2.45742245436945 × 10−17 

0.4 3.300166631413446 × 10−9 3.992751138664317 × 10−11 4.219916824177479 × 10−15 2.451761901624386 × 10−17 

0.6 4.300166625335975 × 10−9 3.987686248617691 × 10−11 5.208940479372794 × 10−15 2.441165215801239 × 10−17 

0.8 5.700166616827516 × 10−9 3.978355402549054 × 10−11 6.592083907044729 × 10−15 2.421667439210999 × 10−17 

1 7.500166605888068 × 10−9 3.962518600455048 × 10−11 8.367051017590978 × 10−15 2.391594246117009 × 10−17 

t=0.001 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 2.500446168850624 × 10−13 3.997917031149732 × 10−16 3.428519345071701 × 10−22 1.29344286891825 × 10−23 

0.2 2.700463948967092 × 10−13 3.997781031149732 × 10−16 3.626601056472554 × 10−22 2.982009645350879 × 10−23 

0.4 3.300517289316497 × 10−13 3.997341031149732 × 10−16 4.220832590662312 × 10−22 5.933053221032608 × 10−24 

0.6 4.300606189898838 × 10−13 3.996501031149732 × 10−16 5.211163547602576 × 10−22 2.836415786838725 × 10−23 

0.8 5.700730650714116 × 10−13 3.995101031149732 × 10−16 6.597477927229343 × 10−22 4.991046909818666 × 10−23 

1 7.500890671762329 × 10−13 3.992917031149732 × 10−16 8.379546129453018 × 10−22 3.223603558845966 × 10−23 

Solving example 5.3 by using the TAM 

To implement the TAM to solve the Eq. (2), we write it in the operator form, as follows 

 𝐿(𝑤) = 𝑤𝑡 ,    𝑁(𝑤) = 𝑤𝑥𝑥 + 𝑤𝑦𝑦 + 𝑡𝑤(1 − 𝑤) + 𝑢(𝑥, 𝑦, 𝑡), 

with initial condition, 𝑤(𝑥, 𝑦, 0) = 𝑥2 + 𝑦2. 
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We start by supposing that 𝑤0is an initial approximation of the problem 𝑤 through 

solving the following initial equation 

𝐿𝑡(𝑤0) = 0  , with 𝑤0(𝑥, 𝑦, 0) = 𝑥2 + 𝑦2,  𝐿𝑡 =
𝜕

𝜕𝑡
. 

Then, we get 

 𝑤0 = 𝑥2 + 𝑦2. 

Also, to get the next iteration, we have to solve the following problem 

𝐿𝑡(𝑤1) + 𝑁(𝑤0) = 0 , with  𝑤1(𝑥, 𝑦, 0) = 𝑥2 + 𝑦2. 

Then, we get 

 𝑤1 = 𝑡2 −
𝑡4

4
+

𝑡6

6
+ 𝑥2 +

𝑡4𝑥2

2
+ 𝑦2 +

𝑡4𝑦2

2
. 

In the second iteration, we have to solve the following problem 

𝐿𝑡(𝑤2) + 𝑁(𝑤1) = 0,   with 𝑤2(𝑥, 𝑦, 0) = 𝑥2 + 𝑦2. 

Thus, we get 

𝑤2 = 𝑡2 +
2𝑡5

5
−

𝑡6

24
+

𝑡8

12
−

19𝑡10

480
+

𝑡12

144
−

𝑡14

504
+ 𝑥2 +

𝑡6𝑥2

6
−

𝑡8𝑥2

6
+

𝑡10𝑥2

40
−

𝑡12𝑥2

72

−
𝑡6𝑥4

6
−

𝑡10𝑥4

40
+ 𝑦2 +

𝑡6𝑦2

6
−

𝑡8𝑦2

6
+

𝑡10𝑦2

40
−

𝑡12𝑦2

72
−

1

3
𝑡6𝑥2𝑦2

−
1

20
𝑡10𝑥2𝑦2 −

𝑡6𝑦4

6
−

𝑡10𝑦4

40
, 

⋮ 

Furthermore, by proceeding in this way the iterations 𝑤3 and 𝑤4were also calculated but for 

the purpose of brevity is not mentioned here. 

To prove the convergence for the TAM for the Eq. (27), we have applied the process as 

given in Eqs. (15), (16) and (17), and we evaluate the 𝛿𝑖  given in Eq. (19) to check the 

convergent conditions of the obtained approximate solution. Then, we ge 

𝛿0 =
‖𝑣1‖

‖𝑣0‖
=  0.00005000375008334945 < 1, 

𝛿1 =
‖𝑣2‖

‖𝑣1‖
= 0.00007459982251031754 < 1, 

𝛿2 =
‖𝑣3‖

‖𝑣2‖
= 0.005312373670156887 < 1, 

𝛿3 =
‖𝑣4‖

‖𝑣3‖
= 0.00020729220357214892 < 1. 

 

The results of 𝛿𝑖, for all 𝑖 ≥  0, 0 < 𝑡 < 1 and 0 ≤ 𝑥, 𝑦 ≤ 1, are less than one. Therefore, the 

obtained approximate solution by the TAM is converges. 
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Also, the absolute error will be calculated with the same values of x, t given in solving 

the problem by using the DJM. It can be seen clearly in Fig. 3 and Table 2 the error is 

decreasing by increasing the number of iterations. Moreover, the error approximately tends to 

zero at the fourth iteration with t= 0.001. 

time iteration 1 iteration 2 iteration 3 iteration 4 

t = 0.1 

    

t = 0.01 

    

t= 0.001 

    

 

Fig. 3. The absolute error values for example 5.3obtained by the TAM for 𝑤1, 𝑤2, 𝑤3, and 𝑤4 

with different values of t. 

Table 2: The absolute error values for example 5.3 obtained by TAM, for four iterations with 

different values of t. 

Time 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

t=0.1 0 0.00002516666666677221 0.0000039574960347114 3.439519623976705 × 10−8 2.367214167742215 × 10−9 

0.2 0.000027166666666776434 0.000003950495930156153 3.636235775678065 × 10−8 2.352566464552952 × 10−9 

0.4 0.000033166666666789095 0.000003926295568490412 4.225011396297162 × 10−8 2.303341833237437 × 10−9 

0.6 0.0000431666666668102 0.00000387529480571418 5.200767994040234 × 10−8 2.20374528521472 × 10−9 

0.8 0.00005716666666683975 0.000003781493401827455 6.551841491564403 × 10−8 2.027660084974458 × 10−9 

1 0.00007516666666687773 0.000003622491020830237 8.255182026850605 × 10−8 1.739110619403128 × 10−9 

t=0.01 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 2.500166636275423 × 10−9 3.995843050700178 × 10−11 3.341687278453353 × 10−15 2.465204689688915 × 10−17 

0.2 2.700166635059928 × 10−9 3.995150072691333 × 10−11 3.760880495917718 × 10−15 2.463849436973309 × 10−17 

0.4 3.300166631413446 × 10−9 3.992751138664317 × 10−11 4.32986979603811 × 10−15 2.461138931542095 × 10−17 

0.6 4.300166625335975 × 10−9 3.987686248617691 × 10−11 5.329070518200751 × 10−15 2.448941657101633 × 10−17 

0.8 5.700166616827516 × 10−9 3.978355402549054 × 10−11 6.439293542825908 × 10−15 2.434033877229957 × 10−17 

1 7.500166605888068 × 10−9 3.962518600455048 × 10−11 8.215650382226158 × 10−15 2.401507812055392 × 10−17 

t=0.001 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 2.500446168850624 × 10−13 3.997917031149732 × 10−16 1.39778012230615 × 10−16 0. 

0.2 2.700463948967092 × 10−13 3.997781031149732 × 10−16 5.551115123125783 × 10−17 0. 

0.4 3.300517289316497 × 10−13 3.997341031149732 × 10−16 2.775557561562891 × 10−17 0. 

0.6 4.300606189898838 × 10−13 3.996501031149732 × 10−16 1.665334536937734 × 10−16 0. 

0.8 5.700730650714116 × 10−13 3.995101031149732 × 10−16 1.110223024625156 × 10−16 0. 

1 7.500890671762329 × 10−13 3.992917031149732 × 10−16 2.220446049250313 × 10−16 0. 
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Solving example 5.3 by using the BCM 

To implement the BCM to solve the Eq. (2), by following the same steps as in the DJM, 

we obtain Eq. (29). 

Also, suppose 

𝑔 = 𝑥2 + 𝑦2,   and   𝑁(𝑤) = 𝐿𝑡
−1𝑁(𝑤), 

where, 𝐿𝑡
−1(∙) = ∫ (∙)𝑑𝑡,

𝑡

0
𝑁(𝑤) = 𝑤𝑥𝑥 + 𝑤𝑦𝑦 + 𝑡𝑤(1 − 𝑤) + 𝑢(𝑥, 𝑦, 𝑡). 

Applying the steps of the BCM, we get 

 𝑤0 = 𝑔 = 𝑥2 + 𝑦2, 

 𝑤𝑛 =  𝑤0 + 𝑁(𝑤𝑛−1) , 𝑛 ∈ ℕ. 

Hence, 

𝑤1 = 𝑡2 −
𝑡4

4
+

𝑡6

6
+ 𝑥2 +

𝑡4𝑥2

2
+ 𝑦2 +

𝑡4𝑦2

2
, 

𝑤2 = 𝑡2 +
2𝑡5

5
−

𝑡6

24
+

𝑡8

12
−

19𝑡10

480
+

𝑡12

144
−

𝑡14

504
+ 𝑥2 +

𝑡6𝑥2

6
−

𝑡8𝑥2

6
+

𝑡10𝑥2

40
−

𝑡12𝑥2

72

−
𝑡6𝑥4

6
−

𝑡10𝑥4

40
+ 𝑦2 +

𝑡6𝑦2

6
−

𝑡8𝑦2

6
+

𝑡10𝑦2

40
−

𝑡12𝑦2

72
−

1

3
𝑡6𝑥2𝑦2

−
1

20
𝑡10𝑥2𝑦2 −

𝑡6𝑦4

6
−

𝑡10𝑦4

40
, 

⋮ 

Furthermore, by proceeding in this way the iterations 𝑤3 and 𝑤4were also calculated but for 

the purpose of brevity is not mentioned here. 

To prove the convergence analysis of the BCM for the Eq. (27), we have applied the similar 

process as presented in section 4 and then, we evaluate the 𝛿𝑖 to check the convergent 

conditions of the obtained approximate solution. Thus, we get 

 

𝛿0 =
‖𝑣1‖

‖𝑣0‖
= 0.00005000375008334945 < 1, 

𝛿1 =
‖𝑣2‖

‖𝑣1‖
= 0.00007459982251031754 < 1, 

𝛿2 =
‖𝑣3‖

‖𝑣2‖
= 0.0053123909674375296 < 1, 

𝛿3 =
‖𝑣4‖

‖𝑣3‖
= 0.00020887885059192363 < 1. 

The results of 𝛿𝑖, for all 𝑖 ≥  0, 0 < 𝑡 < 1 and 0 ≤ 𝑥, 𝑦 ≤ 1,  are less than one. Therefore, 

the obtained approximate solution is converges. 

Also, the absolute errors will be calculated to check out the efficiency for the 

approximate solutions that we found by the BCM for the same values of x, t used in the DJM 
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and TAM. It can be observed from Fig. 4 and Table 3 the absolute error values obtained by 

BCM is decreasing by increasing the number of iterations and decreasing the time. 

time iteration 1 iteration 2 iteration 3 iteration 4 

t = 0.1 

    

t = 0.01 

    

t= 0.001 

    

 

Fig. 4. The absolute error values for example 5.3 obtained by the BCM for 𝑤1, 𝑤2, 𝑤3, and 𝑤4 

with different values of t. 

Table 3: The absolute error values for example 5.3 obtained by BCM, for four iterations with 

different values of t. 

Time 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

t=0.1 0 0.00002516666666677221 0.0000039574960347114 3.439519622754291 × 10−8 2.367214207006091 × 10−9 

0.2 0.000027166666666776434 0.000003950495930156153 3.636235764046649 × 10−8 2.352566504062037 × 10−9 

0.4 0.000033166666666789095 0.000003926295568490412 4.225011372322602 × 10−8 2.303341876975943 × 10−9 

0.6 0.0000431666666668102 0.00000387529480571418 5.200767991296621 × 10−8 2.203745339426222 × 10−9 

0.8 0.00005716666666683975 0.000003781493401827455 6.551841495654667 × 10−8 2.027660150299521 × 10−9 

1 0.00007516666666687773 0.000003622491020830237 8.255182044155353 × 10−8 1.739110699410879 × 10−9 

t=0.01 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 2.500166636275423 × 10−9 3.995843050700178 × 10−11 3.428213061620738 × 10−15 2.459218564137952 × 10−17 

0.2 2.700166635059928 × 10−9 3.995150072691333 × 10−11 3.626173005459958 × 10−15 2.45742245436945 × 10−17 

0.4 3.300166631413446 × 10−9 3.992751138664317 × 10−11 4.219916824177479 × 10−15 2.451761901624386 × 10−17 

0.6 4.300166625335975 × 10−9 3.987686248617691 × 10−11 5.208940479372794 × 10−15 2.441165215801239 × 10−17 

0.8 5.700166616827516 × 10−9 3.978355402549054 × 10−11 6.592083907044729 × 10−15 2.421667439210999 × 10−17 

1 7.500166605888068 × 10−9 3.962518600455048 × 10−11 8.367051017590978 × 10−15 2.391594246117009 × 10−17 

t=0.001 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 2.500446168850624 × 10−13 3.997917031149732 × 10−16 3.428519345071701 × 10−22 1.29344286891825 × 10−23 

0.2 2.700463948967092 × 10−13 3.997781031149732 × 10−16 3.626601056472554 × 10−22 2.982009645350879 × 10−23 

0.4 3.300517289316497 × 10−13 3.997341031149732 × 10−16 4.220832590662312 × 10−22 5.933053221032608 × 10−24 

0.6 4.300606189898838 × 10−13 3.996501031149732 × 10−16 5.211163547602576 × 10−22 2.836415786838725 × 10−23 

0.8 5.700730650714116 × 10−13 3.995101031149732 × 10−16 6.597477927229343 × 10−22 4.991046909818666 × 10−23 

1 7.500890671762329 × 10−13 3.992917031149732 × 10−16 8.379546129453018 × 10−22 3.223603558845966 × 10−23 

 

Example 5.4. Consider the 3D Fisher’s equation given in Eq. (3), with 𝛼 = 𝛽 = 1, as follows 

 𝑤𝑡 = 𝑤𝑥𝑥 + 𝑤𝑦𝑦 + 𝑤𝑧𝑧 + 𝑡𝑤(1 − 𝑤) + 𝑢(𝑥, 𝑦, 𝑧, 𝑡),                                                          (30) 
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and the initial condition, 𝑤(𝑥, 𝑦, 𝑧, 0) = 𝑥3 + 𝑦3 + 𝑧3, 

where, 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 3𝑡2 − 6𝑥 − 6𝑦 − 6𝑧 − 𝑡(1 − 𝑡3 − 𝑥3 − 𝑦3 − 𝑧3)(𝑡3 + 𝑥3 + 𝑦3 + 𝑧3). 

The exact solution for this equation is 

𝑤 = 𝑥3 + 𝑦3 + 𝑧3 + 𝑡3. 

Solving example 5.4 by using the DJM 

To implement the DJM for solving the Eq.(30), we write it in the operator form as 

follows 

 𝐿𝑡(𝑤(𝑥, 𝑦, 𝑧, 𝑡)) = 𝑁(𝑤),                                                                                                           (31) 

where, 𝐿𝑡 =
𝜕

𝜕𝑡
  and 𝑁(𝑤) = 𝑤𝑥𝑥 + 𝑤𝑦𝑦 + 𝑤𝑧𝑧 + 𝑡𝑤(1 − 𝑤) + 𝑢(𝑥, 𝑦, 𝑧, 𝑡). 

By taking the inverse for together sides of Eq. (31), and applying the initial condition, we 

obtain 

 𝑤 = (𝑥3 + 𝑦3 + 𝑧3)+𝐿𝑡
−1𝑁(𝑤).                                                                                              (32) 

Finally, according to the DJM for Eq. (32) and by applying the recurrence relation, we 

achieve the components 𝑤𝑛 as the following in a series form 

𝑤0 = 𝑥3 + 𝑦3 + 𝑧3, 

𝑤1 = 𝐿𝑡
−1(𝐽0) = 𝐿𝑡

−1𝑁(𝑤0) = 𝑡3 −
𝑡5

5
+

𝑡8

8
+

2𝑡5𝑥3

5
+

2𝑡5𝑦3

5
+

2𝑡5𝑧3

5
, 

𝑤2 = 𝐿𝑡
−1(𝐽1) = 𝐿𝑡

−1𝑁(𝑤0 + 𝑤1) − 𝑤1 

                        =
𝑡5

5
−

𝑡7

35
−

𝑡8

8
+

21𝑡10

400
−

𝑡12

300
−

𝑡13

52
+

𝑡15

300
−

𝑡18

1152
+

2𝑡6𝑥

5
−

2𝑡5𝑥3

5
+

4𝑡7𝑥3

35
−

21𝑡10𝑥3

200
+

𝑡12𝑥3

75
−

𝑡15𝑥3

150
−

4𝑡7𝑥6

35
−

𝑡12𝑥6

75
+

2𝑡6𝑦

5
−

2𝑡5𝑦3

5
+

4𝑡7𝑦3

35
−

21𝑡10𝑦3

200
+

𝑡12𝑦3

75
−

𝑡15𝑦3

150
−

8

35
𝑡7𝑥3𝑦3 −

2

75
𝑡12𝑥3𝑦3 −

4𝑡7𝑦6

35
−

𝑡12𝑦6

75
+

2𝑡6𝑧

5
−

2𝑡5𝑧3

5
+

4𝑡7𝑧3

35
−

21𝑡10𝑧3

200
+

𝑡12𝑧3

75
−

𝑡15𝑧3

150
−

8

35
𝑡7𝑥3𝑧3 −

2

75
𝑡12𝑥3𝑧3 −

8

35
𝑡7𝑦3𝑧3 −

2

75
𝑡12𝑦3𝑧3 −

4𝑡7𝑧6

35
−

𝑡12𝑧6

75
, 

⋮ 

By continuing in this way the iterations 𝑤3 and 𝑤4were also calculated but for the purpose of 

brevity is not mentioned here. 

To prove the convergence of the DJM for the Eq. (30), we have applied the process as 

presented in section 4. Hence, let choose the same above components obtained by the DJM, 

we get 

𝑣0 = 𝑤0 = 𝑥3 + 𝑦3 + 𝑧3, 

𝑣1 = 𝑤1 = 𝑡3 −
𝑡5

5
+

𝑡8

8
+

2𝑡5𝑥3

5
+

2𝑡5𝑦3

5
+

2𝑡5𝑧3

5
, 

⋮ 
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and so on, by using the iterations above and we evaluate the 𝛿𝑖 given in Eq. (19) to check the 

convergent conditions of the obtained approximate solution, then, we get 

𝛿0 =
‖𝑣1‖

‖𝑣0‖
= 3.333666666708334 × 10−7 < 1, 

𝛿1 =
‖𝑣2‖

‖𝑣1‖
= 0.00009879727563096987 < 1, 

𝛿2 =
‖𝑣3‖

‖𝑣2‖
= 0.012075415524177402 < 1 , 

𝛿3 =
‖𝑣4‖

‖𝑣3‖
= 0.0002323087617440097 < 1. 

The results of 𝛿𝑖, for all 𝑖 ≥  0, 0 < 𝑡 < 1 and 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1, are less than one. Therefore, 

the approximate solution obtained by the DJM is converges. 

 

Also, the absolute errors are calculated to check out the efficiency for the approximate 

solutions for various values of the time 𝑡 = 0.1, 0.01  and 0.001,  given in Fig. 5. Moreover, 

Table 4 shows the absolute error values obtained by DJM for the iterations with 𝑥 =

 {0, 0.2, 0.4, 0.6, 0.8, 1}, it can be easily recognized that the error is decreasing by increasing 

the number of iterations and decreasing the value of time. 

 

time iteration 1 iteration 2 iteration 3 iteration 4 

t = 0.1 

    

t = 0.01 

    

t= 0.001 

    

 

Fig. 5. The absolute error values for example 5.4 obtained by the DJM for 𝑤1, 𝑤2, 𝑤3, and𝑤4 

with different values of t. 
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Table 4: The absolute error values for example 5.4 obtained by DJM, for four iterations with 

different values of t. 

Time 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

t=0.1 0 0.00000600124999983187 7.742699323627617 × 10−7 1.320252550675336 × 10−8 1.67004493323643 × 10−9 

0.2 0.000006033249999831014 8.539948308988224 × 10−7 1.406757778557003 × 10−8 1.837622725104753 × 10−9 

0.4 0.000006257249999825021 9.320281606034605 × 10−7 1.530290758255603 × 10−8 2.05549086807278 × 10−9 

0.6 0.000006865249999808754 0.000001006328729380217 1.746112293136207 × 10−8 2.314295728200713 × 10−9 

0.8 0.000008049249999777076 0.000001073714315230005 2.128396463294381 × 10−8 2.597436775633328 × 10−9 

1 0.000010001249999724848 0.000001128545093286537 2.767829010265537 × 10−8 2.872778668825741 × 10−9 

t=0.01 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 6.000000496442226 × 10−11 7.97649253302486 × 10−13 9.38428773337254 × 10−17 1.070649645329436 × 10−18 

0.2 6.032000499089918 × 10−11 8.77622012661146 × 10−13 1.023660726055963 × 10−16 1.233279971202261 × 10−18 

0.4 6.256000517623761 × 10−11 9.574272321717656 × 10−13 1.138474363261675 × 10−16 1.45012040569936 × 10−18 

0.6 6.864000567929908 × 10−11 1.036862409700589 × 10−12 1.331019827670317 × 10−16 1.707618421664664 × 10−18 

0.8 8.048000665894506 × 10−11 1.115610940256718 × 10−12 1.669606053641445 × 10−16 2.087089182034583 × 10−18 

1 1.000000082740371 × 10−10 1.193110458849249 × 10−12 2.242460647913282 × 10−16 2.493664996716629 × 10−18 

t=0.001 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 6.661338147750939 × 10−16 3.998857142857143 × 10−19 9.392000002026451 × 10−25 1.48331235938098 × 10−48 

0.2 6.696865284538944 × 10−16 4.798838784 × 10−19 1.024444335758498 × 10−24 2.117582368135751 × 10−22 

0.4 6.94555524205498 × 10−16 5.598706176 × 10−19 1.139348554054155 × 10−24 2.117582368135751 × 10−22 

0.6 7.620570841027075 × 10−16 6.398310107428573 × 10−19 1.332174526510562 × 10−24 2.117582368135751 × 10−22 

0.8 8.93507490218326 × 10−16 7.197387264 × 10−19 1.67146743228809 × 10−24 2.117582368135751 × 10−22 

1 1.110223024625156 × 10−15 7.995428571428572 × 10−19 2.246031746364245 × 10−24 3.004975599994815 × 10−47 

 

Solving example 5.4 by using the TAM 

To implement the TAM for Eq.(30), we write it in the operator form, as follows 

 𝐿(𝑤) = 𝑤𝑡 ,    𝑁(𝑤) = 𝑤𝑥𝑥 + 𝑤𝑦𝑦 + 𝑤𝑧𝑧 + 𝑡𝑤(1 − 𝑤) + 𝑢(𝑥, 𝑦, 𝑧, 𝑡),  

with initial condition, 

 𝑤(𝑥, 𝑦, 𝑧, 0) = 𝑥3 + 𝑦3 + 𝑧3. 

We start by assuming that 𝑤0 is an initial approximation of the problem 𝑤 through 

solving the following initial equation 

𝐿𝑡(𝑤0) = 0  , with 𝑤0(𝑥, 𝑦, 𝑧, 0) = 𝑥3 + 𝑦3 + 𝑧3,  𝐿𝑡 =
𝜕

𝜕𝑡
. 

Then, we get 

 𝑤0 = 𝑥3 + 𝑦3 + 𝑧3. 

Also, to obtain the next iteration, we have to solve the following problem 

𝐿𝑡(𝑤1) + 𝑁(𝑤0) = 0 , with  𝑤1(𝑥, 𝑦, 𝑧, 0) = 𝑥3 + 𝑦3 + 𝑧3. 

Then, we get 

𝑤1 = 𝑡3 −
𝑡5

5
+

𝑡8

8
+ 𝑥3 +

2𝑡5𝑥3

5
+ 𝑦3 +

2𝑡5𝑦3

5
+ 𝑧3 +

2𝑡5𝑧3

5
. 

In the second iteration, we have to solve the following problem 

𝐿𝑡(𝑤2) + 𝑁(𝑤1) = 0 ,   with 𝑤2(𝑥, 𝑦, 𝑧, 0) = 𝑥3 + 𝑦3 + 𝑧3. 

Thus, we get 
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𝑤2 = 𝑡3 −
𝑡7

35
+

21𝑡10

400
−

𝑡12

300
−

𝑡13

52
+

𝑡15

300
−

𝑡18

1152
+

2𝑡6𝑥

5
+ 𝑥3 +

4𝑡7𝑥3

35
−

21𝑡10𝑥3

200

+
𝑡12𝑥3

75
−

𝑡15𝑥3

150
−

4𝑡7𝑥6

35
−

𝑡12𝑥6

75
+

2𝑡6𝑦

5
+ 𝑦3 +

4𝑡7𝑦3

35
−

21𝑡10𝑦3

200
+

𝑡12𝑦3

75

−
𝑡15𝑦3

150
−

8

35
𝑡7𝑥3𝑦3 −

2

75
𝑡12𝑥3𝑦3 −

4𝑡7𝑦6

35
−

𝑡12𝑦6

75
+

2𝑡6𝑧

5
+ 𝑧3 +

4𝑡7𝑧3

35

−
21𝑡10𝑧3

200
+

𝑡12𝑧3

75
−

𝑡15𝑧3

150
−

8

35
𝑡7𝑥3𝑧3 −

2

75
𝑡12𝑥3𝑧3 −

8

35
𝑡7𝑦3𝑧3

−
2

75
𝑡12𝑦3𝑧3 −

4𝑡7𝑧6

35
−

𝑡12𝑧6

75
. 

⋮ 

and by continuing in this way the iterations 𝑤3and 𝑤4were also calculated but for the purpose 

of brevity is not mentioned here. 

 

To prove the convergence for the TAM for the Eq. (30), we have applied the process as 

given in Eqs. (15), (16) and (17), and we evaluate the 𝛿𝑖 given in Eq. (19) to check the 

convergent conditions of the obtained approximate solution. 

 Then, we get 

 

𝛿0 =
‖𝑣1‖

‖𝑣0‖
= 3.333666667160173 × 10−7 < 1, 

𝛿1 =
‖𝑣2‖

‖𝑣1‖
= 0.00009879757291895636 < 1, 

𝛿2 =
‖𝑣3‖

‖𝑣2‖
= 0.012067708416467766 < 1,  

𝛿3 =
‖𝑣4‖

‖𝑣3‖
= 0. < 1. 

 

The results of 𝛿𝑖, for all 𝑖 ≥  0, 0 < 𝑡 < 1 and 0 ≤ x, y, z ≤ 1, are less than one. Therefore, a 

convergent approximate solution is obtained. Also, the absolute errors are evaluated in 

similar cases done for the DJM. Fig. 6 and Table 5 show the absolute error values obtained 

by TAM , it can be easily recognized that the error is decreasing by increasing the number of 

iterations and deceasing the time. 
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time iteration 1 iteration 2 iteration 3 iteration 4 

t = 0.1 

    

t = 0.01 

    

t= 0.001 

    

Fig. 6. The absolute error values for example 5.4 obtained by the TAM for 𝑤1, 𝑤2, 𝑤3,

and𝑤4 with different values of t. 
 

Table 5: The absolute error values for example 5.4 obtained by TAM, for four iterations with 

different values of t. 
Time 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

t=0.1 0 0.00000600124999983187 7.742699323627617 × 10−7 1.320252529524168 × 10−8 1.670044996390784 × 10−9 

0.2 0.000006033249999831014 8.539948308988224 × 10−7 1.406757776933886 × 10−8 1.837622790263129 × 10−9 

0.4 0.000006257249999825021 9.320281606034605 × 10−7 1.530290782980614 × 10−8 2.055490934144838 × 10−9 

0.6 0.000006865249999808754 0.000001006328729380217 1.746112321399096 × 10−8 2.314295792548229 × 10−9 

0.8 0.000008049249999777076 0.000001073714315230005 2.128396436873458 × 10−8 2.597436836145397 × 10−9 

1 0.000010001249999724848 0.000001128545093286537 2.767828988226028 × 10−8 2.872778724757538 × 10−9 

t=0.01 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 6.000000496442226 × 10−11 7.97649253302486 × 10−13 2.220446049250313 × 10−16 8.050561119707455 × 10−17 

0.2 6.032000499089918 × 10−11 8.77622012661146 × 10−13 2.220446049250313 × 10−16 8.033323999230829 × 10−17 

0.4 6.256000517623761 × 10−11 9.574272321717656 × 10−13 2.220446049250313 × 10−16 8.010475285478645 × 10−17 

0.6 6.864000567929908 × 10−11 1.036862409700589 × 10−12 4.440892098500626 × 10−16 7.982205560864032 × 10−17 

0.8 8.048000665894506 × 10−11 1.115610940256718 × 10−12 0. 7.948578352858036 × 10−17 

1 1.000000082740371 × 10−10 1.193110458849249 × 10−12 0. 7.909974826286921 × 10−17 

t=0.001 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 6.661338147750939 × 10−16 3.998857142857143 × 10−19 0. 8.274037093680878 × 10−17 

0.2 6.696865284538944 × 10−16 4.798838784 × 10−19 0. 8.274037093680878 × 10−17 

0.4 6.94555524205498 × 10−16 5.598706176 × 10−19 0. 8.274037093680878 × 10−17 

0.6 7.620570841027075 × 10−16 6.398310107428573 × 10−19 0. 8.274037093680878 × 10−17 

0.8 8.93507490218326 × 10−16 7.197387264 × 10−19 0. 8.274037093680878 × 10−17 

1 1.110223024625156 × 10−15 7.995428571428572 × 10−19 0. 8.274037093680878 × 10−17 

 

Solving example 5.4 by using the BCM 

To implement the BCM to solve the Eq. (30), we followed similar steps as given for the 

DJM, we obtain Eq. (32). 

Also, suppose 
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𝑔 = 𝑥3 + 𝑦3 + 𝑧3,   and  𝑁(𝑤) = 𝐿𝑡
−1𝑁(𝑤),   

Where, 

𝐿𝑡
−1(∙) = ∫ (∙)𝑑𝑡,

𝑡

0
𝑁(𝑤) = 𝑤𝑥𝑥 + 𝑤𝑦𝑦 + 𝑤𝑧𝑧 + 𝑡𝑤(1 − 𝑤) + 𝑢(𝑥, 𝑦, 𝑧, 𝑡) . 

Applying the steps of the BCM, we get 

𝑤0 = 𝑔 = 𝑥3 + 𝑦3 + 𝑧3, 

𝑤𝑛 =  𝑤0 + 𝑁(𝑤𝑛−1) , 𝑛 ∈ ℕ. 

Hence, 

𝑤1 = 𝑡3 −
𝑡5

5
+

𝑡8

8
+ 𝑥3 +

2𝑡5𝑥3

5
+ 𝑦3 +

2𝑡5𝑦3

5
+ 𝑧3 +

2𝑡5𝑧3

5
, 

𝑤2 = 𝑡3 −
𝑡7

35
+

21𝑡10

400
−

𝑡12

300
−

𝑡13

52
+

𝑡15

300
−

𝑡18

1152
+

2𝑡6𝑥

5
+ 𝑥3 +

4𝑡7𝑥3

35
−

21𝑡10𝑥3

200
+

𝑡12𝑥3

75
−

𝑡15𝑥3

150
−

4𝑡7𝑥6

35
−

𝑡12𝑥6

75
+

2𝑡6𝑦

5
+ 𝑦3 +

4𝑡7𝑦3

35
−

21𝑡10𝑦3

200
+

𝑡12𝑦3

75
−

𝑡15𝑦3

150
−

8

35
𝑡7𝑥3𝑦3 −

2

75
𝑡12𝑥3𝑦3 −

4𝑡7𝑦6

35
−

𝑡12𝑦6

75
+

2𝑡6𝑧

5
+ 𝑧3 +

4𝑡7𝑧3

35
−

21𝑡10𝑧3

200
+

𝑡12𝑧3

75
−

𝑡15𝑧3

150
−

8

35
𝑡7𝑥3𝑧3 −

2

75
𝑡12𝑥3𝑧3 −

8

35
𝑡7𝑦3𝑧3 −

2

75
𝑡12𝑦3𝑧3 −

4𝑡7𝑧6

35
−

𝑡12𝑧6

75
, 

⋮ 

and the iterations 𝑤3 and 𝑤4were also calculated but for the purpose of brevity is not 

mentioned here. 

To prove the convergence of the BCM for the Eq. (30), we have applied the similar 

procedure as presented in section 4 and then, we evaluate the 𝛿𝑖 to check the convergent 

conditions of the obtained approximate solution.  

Then, we get 

𝛿0 =
‖𝑣1‖

‖𝑣0‖
= 3.333666667160173 × 10−7 < 1, 

𝛿1 =
‖𝑣2‖

‖𝑣1‖
= 0.00009879757291895636 < 1, 

𝛿2 =
‖𝑣3‖

‖𝑣2‖
= 0.012071065747678055 < 1, 

𝛿3 =
‖𝑣4‖

‖𝑣3‖
= 0.00012935399757212153 < 1. 

The results of 𝛿𝑖, for all 𝑖 ≥  0, 0 < 𝑡 < 1 and 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1, are less than one. Therefore, 

the obtained approximate solution by the BCM is converges. 

Fig. 7 and Table 6 show the absolute error values obtained by BCM, it can be easily 

recognized that the error is decreasing by increasing the number of iterations and decreasing 

the time. 
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time iteration 1 iteration 2 iteration 3 iteration 4 

t = 0.1 

    

t = 0.01 

    

t= 0.001 

    

Fig. 7. The absolute error values for example 5.4 obtained by the BCM for 𝑤1, 𝑤2, 𝑤3, and𝑤4 

with different values of t. 

Table 6: The absolute error values for example 5.4 obtained by BCM, for four iterations with 

different values of t. 

Time 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

t=0.1 0 0.00000600124999983187 7.742699323627617 × 10−7 1.320252550675336 × 10−8 1.67004493323643 × 10−9 

0.2 0.000006033249999831014 8.539948308988224 × 10−7 1.406757778557003 × 10−8 1.837622725104753 × 10−9 

0.4 0.000006257249999825021 9.320281606034605 × 10−7 1.530290758255603 × 10−8 2.05549086807278 × 10−9 

0.6 0.000006865249999808754 0.000001006328729380217 1.746112293136207 × 10−8 2.314295728200713 × 10−9 

0.8 0.000008049249999777076 0.000001073714315230005 2.128396463294381 × 10−8 2.597436775633328 × 10−9 

1 0.000010001249999724848 0.000001128545093286537 2.767829010265537 × 10−8 2.872778668825741 × 10−9 

t=0.01 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 6.000000496442226 × 10−11 7.97649253302486 × 10−13 9.38428773337254 × 10−17 1.070649645329436 × 10−18 

0.2 6.032000499089918 × 10−11 8.77622012661146 × 10−13 1.023660726055963 × 10−16 1.233279971202261 × 10−18 

0.4 6.256000517623761 × 10−11 9.574272321717656 × 10−13 1.138474363261675 × 10−16 1.45012040569936 × 10−18 

0.6 6.864000567929908 × 10−11 1.036862409700589 × 10−12 1.331019827670317 × 10−16 1.707618421664664 × 10−18 

0.8 8.048000665894506 × 10−11 1.115610940256718 × 10−12 1.669606053641445 × 10−16 2.087089182034583 × 10−18 

1 1.000000082740371 × 10−10 1.193110458849249 × 10−12 2.242460647913282 × 10−16 2.493664996716629 × 10−18 

t=0.001 𝒙𝒊 Abs. errs. For 1stiteration Abs. errs. For 2nditeration Abs. errs. For 3rditeration Abs. errs. For 4th iteration 

 0 6.661338147750939 × 10−16 3.998857142857143 × 10−19 9.392000002026451 × 10−25 1.48331235938098 × 10−48 

0.2 6.696865284538944 × 10−16 4.798838784 × 10−19 1.024444335758498 × 10−24 2.117582368135751 × 10−22 

0.4 6.94555524205498 × 10−16 5.598706176 × 10−19 1.139348554054155 × 10−24 2.117582368135751 × 10−22 

0.6 7.620570841027075 × 10−16 6.398310107428573 × 10−19 1.332174526510562 × 10−24 2.117582368135751 × 10−22 

0.8 8.93507490218326 × 10−16 7.197387264 × 10−19 1.67146743228809 × 10−24 2.117582368135751 × 10−22 

1 1.110223024625156 × 10−15 7.995428571428572 × 10−19 2.246031746364245 × 10−24 3.004975599994815 × 10−47 
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6. CONCLUSION  

In this paper, we presented and applied three iterative methods to solve the nonlinear 1D, 

2D and 3D Fisher’s equation. These methods can be applied without restriction conditions for 

nonlinear equations unlike VIM and ADM; where they required furthermore calculations like 

Adomian polynomials to handle the nonlinear terms in the ADM and calculate Lagrange 

multiplier as in the VIM which required additional time during the calculation process. It can 

be concluded, that the absolute error values and the  maximum error remainder decreased 

when increased the iterations and decreased the time. Also, it has been noticed after solving 

1D, 2D and 3D problems the TAM provided highest accuracy and required less time in 

comparison to the DJM and BCM. Moreover, the proposed methods: DJM, TAM, and BCM 

are accurate, reliable and applicable to solve the nonlinear problems. However, the limitation 

of the proposed methods that by increasing the interval of x and 𝑡, the accuracy deteriorates 

and the error is increasing. Since these approaches lead to an expansion of the solution, where 

we increase the interval of x and 𝑡, in fact we go farther from the initial point. Thus, the 

accuracy of the proposed methods diminishes as in Taylor exapansion.  
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