IJ-@-Perfect Functions Between Bitopological Spaces

Y. Y. Yousif and N. S. Jassim Department of Mathematics, College of Education- Ibn Al-Haitham, University of Baghdad

Abstract

In this paper we introduce a lot of concepts in bitopological spaces which are ij- ω -converges to a subset, ij- ω -directed toward a set, ij- ω -closed functions, ij- ω -rigid set, ij- ω -continuous functions and the main concept in this paper is ij- ω -perfect functions between bitopological spaces. Several theorems and characterizations concerning these concepts are studied.

1. Introduction and Preliminaries

A set X with two topologies τ_1 and τ_2 is called bitopological space [1] and is denoted by (X, τ_1 , τ_2). The closure and interior of A in (X, τ_i) is denoted by τ_i -cl(A) and τ_i -int(A), where i=1, 2. For other notions or notations not defined here we follow closely R. Engelking [2].

Definition: 1.1. [3]. A filter \Im on a set X is a nonempty collection of nonempty subsets of X with the properties:

(a) If $F_1, F_2 \in \mathfrak{I}$, then $F_1 \cap F_2 \in \mathfrak{I}$,

(b) If $F \in \mathfrak{I}$ and $F \subseteq F^* \subseteq X$, then $F^* \in \mathfrak{I}$.

Definition: 1.2. [3]. A filter base \Im on a set X is a nonempty collection of nonempty subsets of X such that if F_1 , $F_2 \in \Im$ then $F_3 \subseteq F_1 \cap F_2$ for some $F_3 \in \Im$.

Definition: 1.3. [3]. If \mathfrak{I} and \mathcal{G} are filter bases on X, we say that \mathcal{G} is finer than \mathfrak{I} (written as $\mathfrak{I} \leq \mathcal{G}$) if for each $F \in \mathfrak{I}$, there is $G \in \mathcal{G}$ such that $G \subseteq F$ and that \mathfrak{I} meets \mathcal{G} if $F \cap G \neq \phi$ for every $F \in \mathfrak{I}$ and $G \in \mathcal{G}$.

Definition: 1.4. [3]. A point x of a space X is called a condensation point of the set $A \subseteq X$ if every nbd of the point x contains an uncountable subset of this set.

Clearly the set of all condensation points of a set A is closed.

Definition: 1.5. [4]. A subset of a space X is called ω -closed if it contains all its condensation points. Also $cl^{\omega}(A)$ will denote the intersection of all ω -closed sets which contains A. i.e., $cl^{\omega}(A)=\cap\{F: F \text{ is } \omega\text{-closed and } A\subseteq F\}$, then A is ω -closed iff $A=cl^{\omega}(A)$.

2. IJ- ω -Perfect Functions between Bitopological Spaces

In this section a number of useful results about ij- ω -converges to a subset, ij- ω -directed toward a set, ij- ω -closed functions, ij- ω -rigid set, and ij- ω -continuous functions are derived and used to obtain characterization theorem for an ij- ω -perfect functions between bitop ological spaces.

Definition: 2.1. A point x in bitopological space (X, τ_1, τ_2) is called an ij- ω -condensation point of a subset A of X iff for any τ_i -open nbd U of x, $(\tau_j-cl^{\omega}(U)) \cap A \neq \phi$. The set of all ij- ω -condensation points of A is called the ij- ω -closure of A and denoted by ij- ω -cl^{ω}(A). A set A \subset X is called ij- ω -closed if A=ij- ω -cl^{ω}(A).

Definition: 2.2. A point x in bitopological space (X, τ_1, τ_2) is called an ij- ω -condensation point of a filter base \Im on X if it is an ij- ω -condensation point of every number of \Im . The set of all ij- ω -condensation points of \Im is called ij- ω -condensed of \Im and is denoted by ij- ω -cod \Im .

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.23 (2) 2010

Definition: 2.3. A filter base \mathfrak{T} on bitopological space (X, τ_1, τ_2) is said to be ij- ω -converges to a subset $A \subseteq X$ (written as $\mathfrak{T} \xrightarrow{ij-\omega} A$) if for every τ_i -open cover \mathcal{A} of A, there is a finite subfamily $\mathcal{B} \subseteq \mathcal{A}$ and $F \in \mathfrak{T}$ such that $F \subseteq \cup \{\tau_i \text{-cl}^{\omega}(B) : B \in \mathcal{B}\}$. We say \mathfrak{T} ij- ω -converges to a point $x \in X$ (written as $\mathfrak{T} \xrightarrow{ij-\omega} x$) iff $\mathfrak{T} \xrightarrow{ij-\omega} \{x\}$ or equivalently, $\tau_i \text{-cl}^{\omega}(U)$ of every τ_i -open nbd U of x contains some member of \mathfrak{T} .

Theorem: 2.4. A point x in bitopological space (X, τ_1, τ_2) is an ij- ω -condensation of a filter base \Im on X if there exists a filter base \Im^* finer than \Im such that $\Im^* \xrightarrow{ij-\omega} x$.

Proof: (\Rightarrow) Let x be an ij- ω -condensation point of a filter base \Im on X, then every τ_i -open nbd U of x, the τ_j - ω -closure of U contains a member of \Im and thus contains a member of any filter base \Im^* finer than \Im , so that $\Im^* \xrightarrow{ij-\omega} x$.

(\Leftarrow) Suppose that x is not an ij- ω -condensation point of a filter base \Im on X, then there exists an τ_i -open nbd U of x such that τ_j - ω -closure of U contains no member of \Im . Denote by \Im^* the family of sets $F^*=F\cap(X-\tau_j-cl^{\omega}(U))$ for $F\in\Im$, then the sets F^* are nonempty. Also \Im^* is a filter base and indeed it is finer than \Im , because given $F_1^*=F_1\cap(X-\tau_j-cl^{\omega}(U))$ and $F_2^*=F_2\cap(X-\tau_j-cl^{\omega}(U))$, there is an $F_3\subseteq F_1\cap F_2$ and this gives $F_3^*=F_3\cap(X-\tau_j-cl^{\omega}(U))\subseteq F_1\cap F_2\cap(X-\tau_j-cl^{\omega}(U)))$, by construction \Im^* not ij- ω -convergent to x. This is a contradiction, and thus x is an ij- ω -condensation point of a filter base \Im on X.

Definition: 2.5. A filter base \Im on bitopological space (X, τ_1, τ_2) is said to be ij- ω -directed toward a set A $\subseteq X$, written as $\Im \xrightarrow{ij-\omega-d} A$, iff every filter base *G* finer than \Im has an ij- ω -condensation point in A. i.e., $(ij-\omega-cod G) \cap A \neq \phi$. We write $\Im \xrightarrow{ij-\omega-d} x$ to mean $\Im \xrightarrow{ij-\omega-d} \{x\}$, where $x \in X$.

Theorem: 2.6. Let \mathfrak{I} be a filter base on bitopological space (X, τ_1, τ_2) and a point $x \in X$, then $\mathfrak{I} \xrightarrow{ij-\omega} x$ iff $\mathfrak{I} \xrightarrow{ij-\omega-d} x$.

Proof: (\Leftarrow) If \Im does not ij- ω -converge to x, then there exists a τ_i -open nbd U of x such that $F \not\subset \tau_j$ -cl^{ω}(U), for all $F \in \Im$. Then $\mathcal{G} = \{(X - \tau_i - cl^{\omega}(U) \cap F : F \in \Im\}$ is a filter base on X finer than \Im , and clearly $x \notin ij - \omega$ -cod \mathcal{G} . Thus \Im cannot be $ij - \omega$ -directed towards x. (\Rightarrow) Clear.

Definition: 2.7. A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is said to be ij- ω -perfect if for each filter base \Im on f(X), ij- ω -directed towards some subset B of f(X), the filter base $f^{-1}(\Im)$ is ij- ω -directed towards $f^{-1}(B)$ in X.

In the following theorem we show that only points of Y could be sufficient for the subset B in definition (2.7) and hence $ij-\omega$ -direction can be replaced in view of theorem (2.4) by $ij-\omega$ -convergence.

Theorem: 2.8. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ be a function. Then the following are equivalent:

(a) f is ij- ω -perfect.

(b) For each filter base \Im on f(X), which is ij- ω -convergent to a point y in Y, f⁻¹(\Im) $\xrightarrow{ij-\omega-d}$ f⁻¹(y).

(c) For any filter base \Im on X, ij- ω -cod $f(\Im) \subset f(ij-\omega$ -cod $\Im)$.

Proof: (a) \Rightarrow (b) Follows from theorem (2.6).

(b) \Rightarrow (c) Let $y \in ij \cdot \omega - cod f(\mathfrak{T})$. Then by theorem (2.4), there is a filter base G on f(X) finer than $f(\mathfrak{T})$ such that $G \xrightarrow{ij \cdot \omega} y$. Let $\mathcal{U} = \{f^{-1}(G) \cap F : G \in G \text{ and } F \in \mathfrak{T}\}$. Then \mathcal{U} is a filter base on X finer than $f^{-1}(G)$. Since $G \xrightarrow{ij \cdot \omega - d} y$, by theorem (2.6) and f is $ij \cdot \omega$ -perfect, $f^{-1}(G) \xrightarrow{ij - \omega - d} f^{-1}(y)$. \mathcal{U} being finer than $f^{-1}(G)$, we have $f^{-1}(y) \cap (ij \cdot \omega - cod \mathcal{U}) \neq \phi$. It is then clear that $f^{-1}(y) \cap (ij \cdot \omega - cod \mathfrak{T}) \neq \phi$. Thus $y \in f(ij \cdot \omega - cod \mathfrak{T})$.

(c) \Rightarrow (a) Let \Im be a filter base on f(X) such that it is ij- ω -directed towards some subset B of f(X). Let *G* be a filter base on X finer than f¹(\Im). Then f(*G*) is a filter base on f(X) finer than

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.23 (2) 2010

 \mathfrak{T} and hence $B \cap (ij - \omega - \operatorname{cod} f(\mathcal{G})) \neq \phi$. Thus by (c) $B \cap f(ij - \omega - \operatorname{cod} \mathcal{G}) \neq \phi$ so that $f^{-1}(B) \cap (ij - \omega - \operatorname{cod} \mathcal{G}) \neq \phi$. This shows that $f^{-1}(\mathfrak{T})$ is ij- ω -directed towards $f^{-1}(B)$. Hence f is ij- ω -perfect.

Definition: 2.9. A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is called ij- ω -closed if the image of each ij- ω -closed set in X is ij- ω -closed in Y.

Theorem: 2.10. A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is ij- ω -closed if ij- ω -cl^{ω}f(A) \subset f(ij- ω -cl^{ω}(A)), for each A \subset X.

Proof: Straightforward.

Theorem: 2.11. The ij- ω -perfect function $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is ij- ω -closed.

Proof: Follows from theorem (2.10) and theorem (2.8 (a) \Rightarrow (c)) by taking $\Im = \{A\}$.

Definition: 2.12. A subset A of bitopological space (X, τ_1, τ_2) is said to be ij- ω -rigid in X if for each filter base \mathfrak{T} on X with $(ij-\omega-cod\mathfrak{T})\cap A=\phi$, there is $U\in\tau_i$ and $F\in\mathfrak{T}$ such that $A\subset U$ and τ_j - $cl^{\omega}(U))\cap F=\phi$, or equivalent, iff for each filter base \mathfrak{T} on X whenever $A\cap(ij-\omega-cod\mathfrak{T})=\phi$, then for some $F\in\mathfrak{T}$, $A\cap(ij-\omega-cl^{\omega}(F))=\phi$.

Theorem: 2.13. If a function $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is ij- ω -closed such that for each $y \in Y$, $f^{-1}(y)$ is ij- ω -rigid in X, then f is ij- ω -perfect.

Proof: Let \Im be a filter base on f(X) such that $\Im \xrightarrow{ij-\omega} y$ in Y, for some $y \in Y$. If G is a filter base on X finer than the filter base $f^{-1}(\Im)$, then f(G) is a filter base on Y, finer than \Im . Since $\Im \xrightarrow{ij-\omega-d} y$ by theorem (2.4), $y \in ij-\omega-cod f(G)$, i.e., $y \in \bigcap \{ij-\omega-cl^{\omega}f(G) : G \in G\}$ and hence $y \in \bigcap \{f(ij-\omega-cl^{\omega}(G) : G \in G\}$ by theorem (2.10), since f is $ij-\omega-closed$. Then $f^{-1}(y)\cap ij-\omega-cl^{\omega}(G)\neq \phi$, for all $G \in G$. Hence for all $U \in \tau_i$ with $f^{-1}(y)\subset U$, $\tau_j-cl^{\omega}(U)\cap G\neq \phi$, for all $G \in G$. Since $f^{-1}(y)$ is $ij-\omega-rigid$, it then follows that $f^{-1}(y)\cap(ij-\omega-codG)\neq \phi$. Thus $f^{-1}(\Im)\xrightarrow{ij-\omega-d} f^{-1}(y)$. Hence by theorem (2.8 (b) \Rightarrow (a)), f is $ij-\omega$ -perfect.

Definition: 2.14. A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is called ij- ω -continuous if for any S_i -open nbd V of f(x), there exists a τ_i -open nbd U of x such that $f(\tau_i - cl^{\omega}(U)) \subset S_i - cl^{\omega}(V)$.

Theorem: 2.15. If an ij- ω -continuous function $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is ij- ω -perfect then f is ij- ω -closed and for each $y \in Y$, $f^{-1}(y)$ is ij- ω -rigid in X.

Proof: By theorem (2.11) f an ij- ω -perfect function is ij- ω -closed. To prove the other part, let $y \in Y$, and suppose \mathfrak{T} is a filter base on X such that (ij- ω -cod \mathfrak{T}) $\cap f^{-1}(y)=\phi$. Then $y \notin f(ij-\omega$ -cod \mathfrak{T}). Since f is ij- ω -perfect, by theorem (2.8 (a) \Rightarrow (c)) $y \notin ij-\omega$ -cod f(\mathfrak{T}). Thus there exists an $F \in \mathfrak{T}$ such that $y \notin ij-\omega$ -cl^{ω} f(F). There exists an S_i -open nbd V of y such that S_j -cl^{ω}(V) \cap f(F)= ϕ . Since f is ij- ω -continuous, for each $x \in f^{-1}(y)$ we shall get a τ_i -open nbd U_x of x such that $f(\tau_j$ -cl^{ω}(U) \subset Y-f(F). Then $f(\tau_j$ -cl^{ω}(U) \cap f(F)= ϕ , so that τ_j -cl^{ω}(U) \cap F= ϕ . Then $x \notin ij-\omega$ -cl^{ω}(F), for all $x \in f^{-1}(y)$, so that $f^{-1}(y) \cap (ij-\omega$ -cl^{ω}(F))= ϕ , Hence $f^{-1}(y)$ is ij- ω -rigid in X.

From theorems (2.13) and (2.15) we obtain.

Corollary: 2.16. An ij- ω -continuous function $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is ij- ω -perfect if f is ij- ω -closed and for each $y \in Y$, $f^{-1}(y)$ is ij- ω -rigid in X.

We show that the above theorem remains valid if ij- ω -closedness of f is replaced by a strictly weaker condition which we shall call weak ij- ω -closedness of f. Thus we define as follows.

Definition: 2.17. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is said to be weakly ij- ω -closed if for every $y \in f(X)$ and every τ_i -open set U containing $f^{-1}(y)$ in X, there exists a S_i -open nbd V of y such that $f^{-1}(S_i\text{-cl}^{\omega}(V)) \subset \tau_i\text{-cl}^{\omega}(U)$.

Theorem: 2.18. The ij- ω -closed function $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is weakly ij- ω -closed.

Proof: Let $y \in f(X)$ and let U be a τ_i -open set containing $f^{-1}(y)$ in X. By theorem (2.10) and since f is ij- ω -closed, we have $ij-\omega$ -cl^{ω} $f(X-\tau_j-cl^{<math>\omega$}(U)) \subset f[\tau_i-cl^{ω}(X-\tau_j-cl^{ω}(U)]. Now since $y \notin f[\tau_i-cl^{<math>\omega$}(X-\tau_j-cl^{$\omega$}(U)], y \notin ij- ω -cl^{ω} $f(X-\tau_j-cl^{<math>\omega$}(U)) and thus there exists an S_i-open nbd V of y in Y such that S_j-cl^{ω}(V) $\cap f(X-\tau_j-cl^{<math>\omega$}(U))=\phi which implies that $f^{-1}(S_j-cl^{<math>\omega$}(V)) \cap (X-\tau_j-cl^{ω}(U))=\phi, i.e., $f^{-1}(S_j-cl^{<math>\omega$}(V)) \subset \tau_j-cl^{ω}(U), and thus f is weakly ij- ω -closed.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.23 (2) 2010

The converse of the above theorem is not true, which is shown in the next example. **Example: 2.19.** Let τ_1 , τ_2 , S_1 and S_2 be any topologies and $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ be a constant function, then f is weakly ij- ω -closed for i, j=1 and 2 (i≠j). Now, let X=Y=IR. If S_1 or S_2 is the discrete topology on Y, then $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ given by f(x)=0, for all $x \in X$, is neither 12- ω -closed nor 21- ω -closed, irrespectively of the topologies τ_1 , τ_2 and S_2 (or S_1).

Theorem: 2.20. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ be ij- ω -continuous. Then f is ij- ω -perfect if

(a) f is weakly $ij-\omega$ -closed, and

(b) $f^{-1}(y)$ is ij- ω -rigid, for each $y \in Y$.

Proof: Suppose $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is an ij- ω -continuous function satisfying the conditions (a) and (b). To prove that f is ij- ω -perfect we have to show in view of theorem (2.13) that f is ij- ω -closed. Let $y \in ij-\omega-cl^{\omega}f(A)$, for some non-null subset A of X, but $y \notin f(ij-\omega-cl^{\omega}(A))$. Then $\mathcal{B} = \{A\}$ is a filter base on X and $(ij-\omega-cd\mathcal{B}) \cap f^{-1}(y) = \phi$. By $ij-\omega$ -rigidity of $f^{-1}(y)$, there is a τ_i -open set U containing $f^{-1}(y)$ such that $\tau_j-cl^{\omega}(U) \cap A = \phi$. By weak $ij-\omega-closed$ ness of f, there exists an S_i-open nbd V of y such that $f^{-1}(S_j-cl^{\omega}(V)) \cap A = \phi$, i.e., $(S_j-cl^{\omega}(V)) \cap f(A) = \phi$, which is impossible since $y \in ij-\omega-cl^{\omega}f(A)$. Hence $y \in f(ij-\omega-cl^{\omega}(A))$. So f is $ij-\omega$ -closed.

From theorems (2.18) and (2.20) we get.

Corollary: 2.21. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ be an ij- ω -continuous function. Then f is ij- ω -perfect if

(a) f is weakly ij- ω -closed, and

(b) $f^{-1}(y)$ is ij- ω -rigid, for each $y \in Y$.

Definition: 2.22. A subset A in bitopological space (X, τ_1, τ_2) is called ij- ω -set in X if for each τ_i -open cover \mathcal{A} of A, there is a finite subcollection \mathcal{B} of \mathcal{A} such that $A \subset \cup \{\tau_j - cl^{\omega}(U) : B \in \mathcal{B}\}$.

Theorem: 2.23. A subset A of a bitopological space (X, τ_1, τ_2) is an ij- ω -set if for each filter base \Im on A, $(ij-\omega-cod\Im) \cap A \neq \phi$.

Proof: (\Rightarrow) Clear.

(\Leftarrow) Let \mathcal{A} be a τ_i -open cover of \mathcal{A} such that the τ_j - ω -closed of the union of any finite subcollection of \mathcal{A} is not cover A. Then $\mathfrak{I}=\{A \setminus \tau_j - cl^{\omega}_X(\cup_{\mathcal{B}} U_{\mathcal{B}}) : \mathcal{B} \text{ is finite sub collection of } \mathcal{A}\}$ is a filter base on A and (ij- ω -cod \mathfrak{I}) $\cap A=\phi$. This contradiction yields that A is ij- ω -set.

Theorem: 2.24. If $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is ij- ω -perfect and B \subset Y is an ij- ω -set in Y, then $f^{-1}(B)$ is an ij- ω -set in X.

Proof: Let \mathfrak{T} be a filter base on $f^{-1}(B)$, then $f(\mathfrak{T})$ is a filter base on B. Since B is an ij- ω -set in Y, $B \cap ij$ - ω -cod $f(\mathfrak{T}) \neq \phi$ by theorem (2.23). By theorem (2.8 (a) \Rightarrow (c)), $B \cap f(ij - \omega - cod(\mathfrak{T})) \neq \phi$, so that $f^{-1}(B) \cap ij - \omega - cod(\mathfrak{T}) \neq \phi$. Hence by theorem (2.23), $f^{-1}(B)$ is an ij- ω -set in X.

The converse of the above theorem is not true, is shown in the next example.

Example: 2.25. Let X=Y=IR, τ_1 and τ_2 be the cofinite and discrete topologies on X and S_1 , S_2 respectively denote the indiscrete and usual topologies on Y. Suppose $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is the identity function. Each subset of either of (X, τ_1, τ_2) and (Y, S_1, S_2) is a 12- ω -set. Now, any non-void finite set A \subset X is 12- ω -closed in X, but f(A) (i.e., A) is not 12- ω -closed in Y (in fact, the only 12- ω -closed subsets of Y are Y and ϕ).

The theorem (2.24) and the above example suggest the definition of a strictly weaker version of ij- ω -perfect functions as given below.

Definition: 2.26. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is said to be almost ij- ω -perfect if for each ij- ω -set K in Y, $f^{-1}(K)$ is an ij- ω -set in X.

By analogy to theorem (2.13), a sufficient condition for a function to be almost ij- ω -perfect, is proved as follows.

Theorem: 2.27. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ be any function such that

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.23 (2) 2010

(a) $f^{-1}(y)$ is ij- ω -rigid, for each $y \in Y$, and

(b) f is weakly $ij-\omega$ -closed.

Then f is almost $ij-\omega$ -perfect.

Proof: Let B be an ij- ω -set in Y and let \Im b e a filter base on $f^{-1}(B)$. Now $f(\Im)$ is a filter base on B and so by theorem (2.23), (ij- ω -cod(\Im)) $\cap B \neq \phi$. Let $y \in [ij-\omega-cod(\Im)] \cap B$. Suppose that \Im has no ij- ω -condensation point in $f^{-1}(B)$ so that (ij- ω -cod(\Im)) $\cap f^{-1}(y)=\phi$. Since $f^{-1}(y)$ is ij- ω rigid, there exists an $F \in \Im$ and a τ_i -open set U containing $f^{-1}(y)$ such that $F \cap \tau_i$ -cl^{ω}(U)= ϕ . By weak ij- ω -closedness of f, there is a S_i-open nbd V of y such that $f^{-1}(S_j$ -cl^{ω}(V)) $\subset \tau_j$ -cl^{ω}(U) which implies that $f^{-1}(S_j$ -cl^{ω}(V)) $\cap F=\phi$, i.e., S_j -cl^{ω}(V) $\cap f(F)=\phi$, which is a contradiction. Thus by theorem (2.23), $f^{-1}(B)$ is an ij- ω -set in X and hence f is almost ij- ω -perfect.

We now give some applications of $ij-\omega$ -perfect functions. The following characterization theorem for an $ij-\omega$ -continuous function is recalled to this end.

Theorem: 2.28. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, S_1, S_2)$ is ij- ω -continuous if $f(ij-\omega-cl^{\omega}(A)) \subset ij-\omega-cl^{\omega}f(A)$, for each $A \subset X$.

Proof: (\Rightarrow) Suppose that $x \in ij - \omega - cl^{\omega}(A)$ and V is S_i -open nbd of f(x). Since f is $ij - \omega$ -continuous, there exists a τ_i -open nbd U of x such that $f(\tau_j - cl^{\omega}(U)) \subset S_j - cl^{\omega}(V)$. Since $\tau_j - cl^{\omega}(U) \cap A \neq \phi$, then $S_j - cl^{\omega}(V) \cap f(A) \neq \phi$. So, $f(x) \in ij - \omega - cl^{\omega}f(A)$. This shows that $f(ij - \omega - cl^{\omega}(A)) \subset ij - \omega - cl^{\omega}f(A)$.

(\Leftarrow) Clear.

Theorem: 2.29. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, S_1, R_2)$ be ij- ω -continuous and ij- ω -perfect. Then f^{-1} preserves ij- ω -rigidity.

Proof: Let B be an ij- ω -rigid set in Y and let \Im be a filter base on X such that $f^{-1}(B) \cap (ij-\omega - cod(\Im)) = \phi$. Since f is ij- ω -perfect and $B \cap f(ij-\omega - cod(\Im)) = \phi$ by theorem (2.8 (a) \Rightarrow (c)) we get $B \cap (ij-\omega - cod f(\Im)) = \phi$. Now B being an ij- ω -rigid set in Y, there exists an $F \in \Im$ such that $B \cap ij-\omega - cl^{\omega}(F) = \phi$. Since f is ij- ω -continuous, by theorem (2.28) it follows that $B \cap f(ij-\omega - cl^{\omega}(F)) = \phi$. Thus $f^{-1}(B) \cap (ij-\omega - cl^{\omega}(F)) = \phi$. This proves that $f^{-1}(B)$ is ij- ω -rigid.

References

- 1. Kelly J. C. (1963), Bitopological Spaces, Proc. London Math. Soc., <u>13</u>,71-89.
- 2. Englking R., (1989), Outline of General Topology, Amsterdam.
- 3. Bourbaki N., 1975, General Topology, Part I, Addison-Wesly, Reding, mass.
- Hdeib H. Z., (1982), ω-closed mappings, Revista Colombian a de Mathematics, <u>XVI</u>, 65-78.

المجلد 23 (2) 2010

مجلة ابن الهيثم للعلوم الصرفة والتطبيقية

الدوال التامة من النمط-IJ-@ بين الفضاءات التبولوجية الثنائية

يوسف يعكوب يوسف و نيران صباح جاسم قسم الرياضيات، كلية التربية - ابن الهيثم، جامعة بغداد

الخلاصة

في هذا البحث نحن قدمنا العديد من المفاهيم في الفضاءات التبولوجية الثنائية التي هية الاقتراب لمجموعة جزئية من النمط-@-ij، الاتجاه المباشر لمجموعة من النمط-@-ij، الدوال المغلقة من النمط.@-ij، صلابة مجموعة من النمط-ij -@، الدوال المستمرة من النمط-@-ij، والمفهوم الرئيسي في هذا البجث هو الدوال التامة من النمط-@-ij بين الفضاءات التبولوجية الثنائية. كذلك العديد من المبرهنات و المميزات المتعلقة بهذه المفاهيم درست.