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Abstract: 

       A Bayesian formulation of the ridge regression problem is considerd, which derives from 
a direct specification of prior informations about parameters of general linear regression 
model when data suffer from a high degree of multicollinearity .A new approach for deriving 
the conventional estimator for the ridge parameter proposed by Hoerl and Kennard (1970) as 
well as  Bayesian estimator  are presented. A numerical example is studied in order to 
compare the performance of these estimators.  

Introduction: 

         The problem of multicollinearity  exists when there exists a linear relationship or an 

approximate linear relationship among two or more explanatory  variables.  

       Multicollinearity  can be thought of as a situation where two or more explanatory  

variables in the data set move together. As a consequence it is impossible to use this data set 

to decide which of the explanatory  variables is producing the observed change in the response 

variable. No treatment of the data or transformation of the model will cure this deficiency. 
Consequently,the best way to deal with multicollinearity  may be to find a different data set, or 

additional data to break the association between the related variables. 

 

However some multicollinearity  is nearly always present, but the important point is whether 

the multicollinearity  is serious enough to cause appreciable damage to 

the regression. Indicators of multicollinearity  include a low determinant of the information 

matrix, a very high correlation among two or more explanatory  variables , very high 

correlations among two or more estimated coefficients, 

and significant regression of one explanatory  variable on one or more explanatory  variables.  

 Key words: linear regressioin model , multicollinearity  , ridge regression , generalized 

shrinkage estimators , Bayesian estimator , singular value decomposition. 
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     This paper deals with multicollinearity  in the classical linear regression 
model        

y=xβ+u …..(1) 

Where y is an (  of observations on the response variable, x = 

(  is an (n  matrix and of full column rank, 

β is a ( p parameter vector (vector of unknown regression coefficients)  and u is an ( 

n  vector of random disturbances, E(u)=0 and var(u)= I, and both β and are 

unknown. The least squares estimator of β is:  (see[1])                       = x'y 

…..(2) 

Where denote the least squares estimator of β. The two key properties of  are that it 

is unbiased,E( )=β, and that it has minimum variance among all linear unbiased 

estimators.The mean square error of is: 

MSE( )=  ……(3)   (see[2]) 

Where "s are the eigenvalues of x'x and  ….. >0 .. If the smallest 

eigenvalue of x'x is very much smaller than 1, then a seriously ill_conditioned (or 

multicollinearity ) problem arises. Thus,for ill_conditioned data, the least squares solution 

yields coefficients whose absolute values are too large and whose signs may actually reverse 

with negligible changes in the data. That is in the case of multicollinearity  the least squares 

estimator  can be poor in terms of various mean squared error criterion. Consequently, a 

great deal of work has been done to construct alternatives to the least squares estimator when 

multicollinearity  is present. In the seventies Hoerl and Kennard introduced a class of biased 

estimators for parameters in general linear regression model labeled ridge estimators as a rival 
to the least squares estimator when sample data are affected by a high degree of 

multicollinearity .  

       The outhers show that in any given problem there is at least one member of this class 

which has total mean square error smaller than the total variance of the corresponding least 

squares estimator. The ridge estimator depends crucially 

upon an exogeneous parameter, say k. For any k  the corresponding ridge  

estimator denoted by  is defined to be:    

= x'y…….(4)    ( see[1]) 
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          We argue that it is typically true that there is available prior informations about the 

parameters, and this may be exploited to find improved estimators. In this paper attention is 

focuced upon Bayesian formulation for generalized shrinkage estimators and ordinary ridge 

regression estimator,moreover a Bayes estimator as well as a  conventional  estimator  for the 

ridge parameter is derived. 

Generalized Shrinkage Estimators: 

          Given an (n ) matrix of regressors x and an (n ) vector of the  corresponding 

response y. Assume that sample means have been removed from the data (so that 1'x=0'and 

1'y=0, where 1 is an n_vector of ones.) and write the standard linear 

regression model as E(y|x)=xβ and var(y|x)= (I-11'/n) where β is a vector of unknown 

regression coefficients and  is the unknown error  

variance. The singular value decomposition of x  will be denoted by: (see[3]).  

X=H G' …….(5) 

Where H is an (  semi orthogonal matrix satisfy H'H=  ,  is a (p  

diagonal matrix of orderd singular values of x,   ….. > 0, G is  a (p 

 orthogonal matrix whose columns represent the eigenvectors of the information matrix 

x'x. Assume  that >0 so that β is estimable, then as in" Obenchain (1978)" (see [4])  we 

get =GC where C= H'y contains the uncorrelated components of  where 

E(C)=E(G' ) = G'β =γ say, and: 

Var(C)=var(G' )=G'var( )G= G' G= . 

         Notice that the elements of C are uncorrelated since their variance matrix is diagonal. 

The vector of generalized shrinkage estimator (or generalized ridge regression estimator) will 

be denoted here by  and will be of the general  form : (see[4]) 

=G∆C=  …….. (6) 

Where  is the j_th column of the matrix G,  is the j_th diagonal element of 

the shrinkage factors matrix ∆, we will usually restrict the range of shrinkage factors to 0  

, j= 1,2, ….,p.  is the j_th element of the uncorrelated components vector C. In the 

remaining of this section we discuss Bayesian methods for defining the form of shrinkage of 

sample estimates towards a subjective prior distribution.Lindely and Smith (1972) describe a 

Bayesian formalizim for hierarchical (multi_stage) analysis of linear models using conjugate 
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multivariate_normal prior distribution.(see [5])  This formalism expresses  unknown 

parameters at each stage  of an analysis in terms of a linear model at the previous lower stage . 

But, although dispersion matrices at each stage can be arbitrary , they must be known. And, at 

the final stage, both the mean vector and the dispersion matrix must be known.The 

fundamental lemma of Lindely and Smith (1972) states that: 

Lemma:If the sampeling distribution of the response,y, is 

y| ~ N( , ) where is ( ×1) parameter vector and the prior distribution is 

  ~ N( , ) where  is ( ×1) parameter vector, then the marginal 

(unconditional) distribution of y is: 

y ~ N(  , + ') ……(7) 

and the posterior (conditional) distribution of  given y is: 

|y ~ N(Bb , B) ………(8) 

Where : = ' +  and b= ' y+ 

        To apply this lemma and demonstrate that a simple 2_stage Bayesian formalism 

produces generalized shrinkage estimators, we first make the identification: 

 = xβ , = I and = x'x + . Next, we set the prior mean value for β 

to zero by taking =0 and assume that  (and ) will be simultaneously diagonalizable 

with x'x by restricting attention to prior variance_covariance matrices of the general form   

= .G G', where K is 

a diagonal p×p matrix and G is defined as in (5) . Now the Bayes estimate is the mean Bb of 

the posterior distribution of β given y and this mean vector is of the 

general form: 

E(β|y)=Bb= ( ' Y+ ) 

= 

= 

= G H'y 

=G H'y 
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=G D H'y = G∆C =  …….(9) 

Where ∆ = D is the diagonal matrix of generalized shrinkage factors and C is 

the vector of uncorrelated components of the least squares estimator. 

The Ordinary Ridge Regression Estimator: 

        In the previous section we have demonstrated that all generalized shrinkage estimators 

are 2_stage Bayes estimators. This include of course the case of 

ordinary ridge regression estimator p roposed by Hoerl and Kennard (1970). To demonstrate 

this fact let us assume that an orthogonal matrix P is given such that P' P = D = 

diag( ,….., ), ≥…….≥ >0. Morever, suppose that 

Z = P'  = ( ,….., )' and W=P'β = ( ,…., )' then:  Z ~ (W, D).  Let us 

assume that W has a prior distribution given by W ~ (0, λI)  for some positive constant 

λ, thus, according to the lemma stated in section 2, the posterior distribution of W given Z is: 

W|Z ~ [ λ Z, λI- ] …….(10)     

then the 

Bayes estimator of W is: 

 = Z for Z=P' . Consequently, the Bayes estimator of β is: 

P  = P P' 

= 

=  = x'y  for k =  

= x'y =  ……(11). 

       It is obvious that the estimator in (11) coincide with the ordinary ridge regression 

estimator given  in (4). 

 Estimating The Ridge Parameter_Bayesian Approach: 

     There are many different methods for selecting the value of the ridge parameter k. The 

method we try here is based upon the lemma stated in section (2). Accordingly,the marginal 

distribution of Z is:  

Z ~ (0, D+ λI) 
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E(Z' Z) = tr var(Z) = tr ( D+ λ I) =  tr +λ tr  …..(12) 

where "tr" denotees the trace of the matrix.To find an unbiased estimator for λ, the following 

result is necessary.   (see[6]) 

E(  =  ……..(13) 

Where is an estimator of . The result in (13) can be easily proved by setting (n-p-

1) / =r then r ~   

E( ) = E( ) =     (see [7] page 176) 

From (12) and (13) an unbiased estimator for λ can be obtained as: 

 = [ ( ) - p]/tr   or equivalently: 

 =  = [ ( ) – P]/tr(x'x) ……….(14)  

 Estimating the ridge parameter_New Approach:  

        Substituting from Δ in formula (6) by D it can easily be shown that the 

ordinary ridge regression estimator is a member of generalized shrinkage estimators class, in 

such a case the shrinkage factors  of ordinary ridge regression estimator will  have the form 

:  

=   , 1   ………(15) 

       In (1970) Hoerl and Kennard proposed an estimator for the ridge parameter given 

as:  =    ……..(16)     [ see[ 8 ]) 

       In this section, a new  approach  is used to derive  given in  (16)   , this approach is 

represented by minimizing  MSE( )  as follows: 

MSE( ) = MSE(GΔC) = GMSE(ΔC)G'  

Where MSE(ΔC) = +(I-Δ)γγ'(I-Δ) Is the mean squared error matrix of ΔC  with 

ith diagonal element given as:    { see[3]} 
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MSE( ) = / +  ……….(17)  

Differintiating MSE( ) with respect to  we obtain: 

 =2 / -2(1- )  ……….  (18) 

         While the second partial derivative is nonnegative constant it follows that equating the 

derivative in (18) to zero will yield a minimum value for MSE( ) this optimal amount of 

shrinkage for the i_th uncorrelated component  is: 

=  =  …….. (19) 

     We derive the formula in (19) as follows:  

2 / -2(1- ) =0 then / = -  hence  =  -  which implies that 

  + =   then solving for  we obtain the required result. 

      Now we suggest comparing the shrinkage factor of ridge regression estimator given in 

equation (15) with  given in equation (19), hence we conclude that the value of the 

ridge parameter k must be equal to / . Since each of  and is unknown, we can use 

their estimated values, thus : 

 =  =  ……….(20)  

Where  is the residual mean square in the analysis of variance table obtained from the 

standard least squares fit. 

Numerical Example: 

       In this section a data set suffer from a high degree of multicollinearity  is used. The data 

are from Aljibori (2004) (see [11] for details). It was designed to measure the effect of five 

explanatory  variables , ,….,  on the response variable y. Where the explanatory  

variables represent the number of , managerials , technicians, skilled workers, unskilled 

workers and service workers respectively, while the response variable y represents the 
productivity of the industrial sector in Iraq measured by the surplus value method for the 

period 21 years from 1970 to 1990.Our purpose is only to compare the performance of 

Bayesian and conventional estimators for the ridge parameter. The original data are presented 

in table (1). 
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        For this data we found that the estimated value of the ridge parameter was         = 

0.125260 and = 0.494107  obtained by applying the formula in (14) and in (20) respectively. 

In order to make the ridge regression analysis we used the numeric calculation statistical 

system (NCSS) and the  results were given  in table (2) through table (6). 

Pearson correlations were  given for all variables in table (2). These correlation coefficients 

show which explanatory  variables are highly correlated with response variable and with each 

other. Explanatory  variables that are highly correlated with one another may cause 
multicollinearity  problem.  

      Table (3) gives an eigenvalue analysis of the explanatory  variables after they      

have been centerd and scaled. Notice that incremental percent is the percent 

this eigenvalue is of the total. Percents near zero indicate a multicollinearity  problem. The 

condition number is the largest eigenvalue divided by each corresponding eigenvalue. 

Condition numbers more than 100 indicates multicollinearity  problem. (See[9]). 

Conclusions: 

1_A new approach for estimating the ridge parameter was introduced by using the singular 
value decomposition technique. 

2_In their development of ridge regression, Hoerl and Kennard focus attention on the 

eigenvalues of the information matrix x'x. A seriously non orthogonal   problem is 

characterized by the fact that the smallest eigenvalue is very much smaller than unity . In our 

problem the smallest eigenvalue is 0.0093 this indicates that our data set suffer from a high 

degree of multicollinearity .             3_It should also be noted that the variance inflation factor 

(VIF) is an additional measure of multicollinearity . It is the reciprocal of (1- ) where  is 

the square 

value of the multiple correlation coefficient between the explanatory  variable  and other 

explanatory  variables. A VIF of 10 or more indicates a multicollinearity  problem. (See[10]). 

In our problem the largest VIF value is 65.16 which is an additional indicator that our data set 

suffer from a high degree of multicollinearity .                                                                             

                                       4_  Since one of the objects of ridge regression is to reduce the 
standard error of the regression coefficients, it is of interest to see how much reduction has 

taken place. For our problem it should be noted from table (5) and table (6)  that the standard 

errors for the ridge regression coefficients are less than the corresponding standard errors for 

least squares coefficients. Also we note that the standard errors for the ridge regression 

coefficients obtained by using the conventional  mehod for estimating the ridge parameter are 

less than the corresponding standard errors for the ridge regression coefficients obtained by 

using the Bayesian method. From this comparison we conclude that the conventional mehod 
is performed better than the Bayesian method for this data set. 
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Table(1)Effects of five explanatory variables x1,x2,….,x5    

the response variable y on  

 

  

  

  

  

  

  

  

  

  

  

  

 

Table(2) Correlation matrix section  

Y X5 X4 X3 X2 X1 
0.749380 0.821688 0.380475 - 0.780634 0.967806 1.000000 X1 
0.790267 0.912351 -0.541955 0.688120 1.000000 0.967806 X2 
0.631133 0.513239 0.028945 - 1.000000 0.688120 0.780634 X3 
0.295671 - 0.645230 - 1.000000 0.028945 - 0.541955 - 0.380475 - X4 
0.806230 1.000000 0.645230 - 0.513239 0.912351 0.821688 X5 
1.000000 0.806230 0.295671 - 0.631133 0.790267 0.749380 y 

  

Table(3) Eigen values of correlations 

 

 

 

X5 X4 X3 X2 X1 y 
14216 50096 24524 473 1516 1271 
16467 57133 26012 1923 1514 1440 
18697 66795 30360 2490 2037 1355 
18716 66263 29385 2734 2019 1509 
20696 61718 36619 3322 2210 1254 
23474 61028 37393 3563 2234 1220 
25283 69344 40034 4205 2525 1546 
26172 66181 10310 4293 2381 1916 
28108 62039 49163 5278 2944 2381 
30707 69339 57299 8529 3528 2585 
32561 69671 60965 9661 4308 2810 
33609 69047 56600 9840 4444 1440 
32789 65441 55789 10830 4588 2493 
52340 44175 44125 12968 4075 3285 
47633 52476 46492 12875 4563 3062 
63398 48322 46599 12163 4031 3403 
62205 49672 49070 12712 4479 2875 
47530 47330 49035 12610 4343 2861 
46260 46160 48013 12615 4299 2596 
4510 45123 40860 12630 4345 1710 
44915 44925 49095 12955 4865 1777 

Condition 
number 

Cumulative 
percent 

Incremental 
percent 

eigenvalue No. 

1.00 72.47 72.47 3.623598 1 
3.45 93.51 21.04 1.051811 2 
7.151 97.73 4.22 0.211248 3 

34.83 99.81 2.08 0.104043 4 
389.65 100.00 0.19 0.009300 5 
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Table(4)Eigenvectors of correlations 

X5 X4 X3 X2 X1 eigenvalue No. 
0.487824 - 0.304255 0.284390 - 0.518719 - 0.502625 - 3.623598 1 
0.210802 0.751940 - 0.592083 - 0.007497 - -0.199033 1.051811 2 
0.425416 0.569859 0.539120 - 0.222736 0.190854 0.211248 3 
0.710381 - 0.109447 - 0.303237 - 0.292886 0.552851 0.104043 4 
0.179037 0.074329 - 0.035429 - 0.771674 - 0.604718 0.009300 5 

 

Table(5)Ridge vs. Least squares comparison section for k = 0.125260  

LS standad 
error 

Ridge  
standard 

error 

LS  
VIF 

Ridge VIF Standarded LS  
coefficients 

Standardized 
Ridge coefficients 

Explanatory 
variables 

0.4965 0.0884 42.54 0.955 0.9859 - 0.0126 X1 
0.1562 0.0184 65.16 0.637 1.1247 0.2329 X2 
0.0127 0.0093 3.326 1.248 0.2634 0.1695 X3 

0.0154 0.0114 2.808 1.085 0.4680 0.1653 X4 
0.0181 0.0085 9.261 1.447 0.7006 0.5359 X5 

 

Table(6)Ridge vs. Least squares comparison section for k = 0.494107 

LS standard 
error 

Ridge 
standard 

error 

LS VIF Ridge VIF Standardized 
LS 

Coefficients 

Standardized 
Ridge 

Coefficients 

Explanatory 
variables 

0.4965 0.0447 42.54 0.1892 -0.9859 0.1319 X1 
0.1562 0.0092 65.16 0.1254 .12471 0.1970 X2 
0.0127 0.0059 3.326 0.3861 0.2634 0.1563 X3 
0.0154 0.0079 2.808 0.4101 0.4680 0.0452 X4 
0.0181 0.0044 9.261 0.2951 0.7006 0.3126 X5 
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  2010 )3( 23مجلة ابن الھیثم للعلوم الصرفة والتطبیقیة               المجلد

 توظیف اسلوب بیز في تحلیل انحدار الحرف

  

  حازم منصور كوركیس

  جامعة بغداد،ابن الھیثم -كلیة التربیة،قسم الریاضیات 

  

  

  خلاصھال

فر معلومات مسبقة عن احرف على فرض تواسلوب بیز في تحلیل انحدار الحرف وتقدیر معلمة ال وظففي ھذا البحث 

كما تم ، وان الانموذج یعاني من مشكلة التعدد الخطي غیر التام بدرجة كبیرة  ،معلمات انموذج الانحدار الخطي العام

ومن  1970في عام  Hoerl and Kennardاستخدام اسلوب جدید في ایجاد مقدر معلمة الحرف الذي اقترحھ كل من 

  .عددي اجریت مقارنة لأفضلیة اداء ھذه المقدرات خلال دراسة مثال 
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