IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL23 (3) 2010 Bayesian Analyses of Ridge Regression Prooblems

H. M. Gorgees

Department of Mathematics, College of Education Ibn-Al-Haitham, University of Baghdad

Abstract:

A Bayesian formulation of the ridge regression problem is considerd, which derives from a direct specification of prior informations about parameters of general linear regression model when data suffer from a high degree of multicollinearity. A new approach for deriving the conventional estimator for the ridge parameter proposed by Hoerl and Kennard (1970) as well as Bayesian estimator are presented. A numerical example is studied in order to compare the performance of these estimators.

Introduction:

The problem of multicollinearity exists when there exists a linear relationship or an approximate linear relationship among two or more explanatory variables.

Multicollinearity can be thought of as a situation where two or more explanatory variables in the data set move together. As a consequence it is impossible to use this data set to decide which of the explanatory variables is producing the observed change in the response variable. No treatment of the data or transformation of the model will cure this deficiency. Consequently, the best way to deal with multicollinearity may be to find a different data set, or additional data to break the association between the related variables.

However some multicollinearity is nearly always present, but the important point is whether the multicollinearity is serious enough to cause appreciable damage to

the regression. Indicators of multicollinearity include a low determinant of the information matrix, a very high correlation among two or more explanatory variables, very high correlations among two or more estimated coefficients,

and significant regression of one explanatory variable on one or more explanatory variables.

Key words: linear regression model, multicollinearity, ridge regression, generalized shrinkage estimators, Bayesian estimator, singular value decomposition.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL23 (3) 2010

This paper deals with multicollinearity in the classical linear regression model

 $y=x\beta+u$ (1)

Where y is an $(n \times 1)$ inector of observations on the response variable, $x = (x_{ij}), i = 1, 2, ..., n, j = 1, 2, ..., p$ is an $(n \times p)$ matrix and of full column rank, β is a $(p \times 1)$ parameter vector (vector of unknown regression coefficients) and u is an $(n \times 1)$ vector of random disturbances, E(u)=0 and $var(u)=a^2$ I, and both β and a^2 are unknown. The least squares estimator of β is: (see[1]) $b_{LS}=(x^*x)^{-1}x^*y$(2)

Where $b_{l,S}$ denote the least squares estimator of β . The two key properties of $b_{l,S}$ are that it is unbiased, $E(b_{l,S})=\beta$, and that it has minimum variance among all linear unbiased estimators. The mean square error of $b_{l,S}$ is:

$$MSE(h_{LS}) = \sigma^2 \sum_{i=1}^{p} \frac{1}{\pi_i} \dots (3) \quad (see[2])$$

Where $\mathbf{d}_{\mathbf{L}}$'s are the eigenvalues of x'x and $\mathbf{d}_{\mathbf{l}} \ge \mathbf{d}_{\mathbf{z}} \ge \dots \ge \mathbf{d}_{\mathbf{p}} > 0$.. If the smallest eigenvalue of x'x is very much smaller than 1, then a seriously ill_conditioned (or multicollinearity) problem arises. Thus, for ill_conditioned data, the least squares solution yields coefficients whose absolute values are too large and whose signs may actually reverse with negligible changes in the data. That is in the case of multicollinearity the least squares estimator $\mathbf{b}_{\mathbf{L}\mathbf{S}}$ can be poor in terms of various mean squared error criterion. Consequently, a great deal of work has been done to construct alternatives to the least squares estimator when multicollinearity is present. In the seventies Hoerl and Kennard introduced a class of biased estimators for parameters in general linear regression model labeled ridge estimators as a rival to the least squares estimator when sample data are affected by a high degree of multicollinearity.

The outhers show that in any given problem there is at least one member of this class which has total mean square error smaller than the total variance of the corresponding least squares estimator. The ridge estimator depends crucially

upon an exogeneous parameter, say k. For any $k \ge 0$ the corresponding ridge

estimator denoted by b_{RR} is defined to be:

 $b_{RR} = (x'x + kI)^{-1} x'y....(4)$ (see[1])

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL23 (3) 2010

We argue that it is typically true that there is available prior informations about the parameters, and this may be exploited to find improved estimators. In this paper attention is focuced upon Bayesian formulation for generalized shrinkage estimators and ordinary ridge regression estimator, moreover a Bayes estimator as well as a conventional estimator for the ridge parameter is derived.

Generalized Shrinkage Estimators:

Given an $(n \times p)$ matrix of regressors x and an $(n \times 1)$ vector of the corresponding response y. Assume that sample means have been removed from the data (so that 1'x=0'and 1'y=0, where 1 is an n vector of ones.) and write the standard linear

regression model as $E(y|x)=x\beta$ and $var(y|x)=a^2$ (I-11'/n) where β is a vector of unknown regression coefficients and a^2 is the unknown error

variance. The singular value decomposition of x will be denoted by: (see[3]).

$$X=HD^{1/2}G'$$
.....(5)

Where H is an $(n \times p)$ semi orthogonal matrix satisfy H'H= l_p , $D^{1/2}$ is a $(p \times p)$ diagonal matrix of orderd singular values of x, $d_1^{1/2} \ge d_2^{1/2} \ge \dots \ge d_p^{1/2} > 0$, G is a (p $\times p$) orthogonal matrix whose columns represent the eigenvectors of the information matrix x'x. Assume that $d_p > 0$ so that β is estimable, then as in" Obenchain (1978)" (see [4]) we get $b_{I,S}$ =GC where C= $D^{-1/2}$ H'y contains the uncorrelated components of $b_{I,S}$, where E(C)=E(G' $b_{I,S}$) = G' β = γ say, and:

$$\operatorname{Var}(C) = \operatorname{Var}(G' h_{I,S}) = G' \operatorname{Var}(h_{I,S}) G = \mathfrak{o}^2 G' (CDG')^{-1} G = \mathfrak{o}^2 D^{-1}.$$

Notice that the elements of C are uncorrelated since their variance matrix is diagonal. The vector of generalized shrinkage estimator (or generalized ridge regression estimator) will be denoted here by b_{5H} and will be of the general form : (*see*[4])

$$\mathbf{b}_{SH} = \mathrm{G}\Delta \mathrm{C} = \sum_{j=1}^{p} g_{j}^{2} \delta_{j} c_{j} \dots \dots (6)$$

Where $\overline{g_i}$ is the j_th column of the matrix G, δ_i is the j_th diagonal element of

the shrinkage factors matrix Δ , we will usually restrict the range of shrinkage factors to $0 \leq \delta_i \leq 1$, j=1,2,...,p. C_i is the j_th element of the uncorrelated components vector C. In the remaining of this section we discuss Bayesian methods for defining the form of shrinkage of sample estimates towards a subjective prior distribution. Lindely and Smith (1972) describe a Bayesian formalizim for hierarchical (multi_stage) analysis of linear models using conjugate

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.23 (3) 2010

multivariate_normal prior distribution.(*see [5]*) This formalism expresses unknown parameters at each stage of an analysis in terms of a linear model at the previous lower stage. But, although dispersion matrices at each stage can be arbitrary, they must be known. And, at the final stage, both the mean vector and the dispersion matrix must be known. The fundamental lemma of Lindely and Smith (1972) states that:

Lemma: If the sampeling distribution of the response, y, is

 $y|\theta_1 \sim N(A_1|\theta_1, V_1)$ where θ_1 is $(p_1 \times 1)$ parameter vector and the prior distribution is

 $\theta_1 \mid \theta_2 \sim N(A_2 \theta_2, V_2)$ where θ_2 is $(p_2 \times 1)$ parameter vector, then the marginal (unconditional) distribution of y is:

$$y \sim N(A_1 A_2 \theta_2, V_1 + A_1 V_2 A_1) \dots (7)$$

and the posterior (conditional) distribution of \mathcal{B}_1 given y is:

$$B_{1} | y \sim N(Bb, B) \dots (8)$$

Where : $B^{-1} = \Lambda_1 V_1^{-1} A_1 + V_2^{-1}$ and $b = \Lambda_1 V_1^{-1} y + V_2^{-1} A_2 \theta_2$

To apply this lemma and demonstrate that a simple 2_stage Bayesian formalism produces generalized shrinkage estimators, we first make the identification:

 $A_1 B_1 = x\beta$, $V_1 = o^2 I$ and $B^{-1} = o^{-2} x'x + V_2^{-1}$. Next, we set the prior mean value for β to zero by taking $B_2 = 0$ and assume that V_2^{-1} (and V_2) will be simultaneously diagonalizable with x'x by restricting attention to prior variance_covariance matrices of the general form $V_2 = o^2 .GK^{-1} G'$, where K is

a diagonal $p \times p$ matrix and G is defined as in (5). Now the Bayes estimate is the mean Bb of the posterior distribution of β given y and this mean vector is of the

general form:

$$E(\beta|y) = Bb = (A_1'V_1^{-1}A_1 + V_2^{-1})^{-1}(A_1'V_1^{-1}Y + V_2^{-1}A_2\theta_2)$$

= $(o^{-2}.x'x + o^{-2}GKG')^{-1}o^{-2}x'y$
= $(x'x + GKG')^{-1}x'y$
= $(GDG' + GKG')^{-1}GD^{1/2}Hy$
= $G(D + K)^{-1}D^{1/2}Hy$

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL23 (3) 2010

$$=G(D + K)^{-1}DD^{-1/2}H'y = G\Delta C = h_{SH} \dots (9)$$

Where $\Delta = (D + K)^{-1}D$ is the diagonal matrix of generalized shrinkage factors and C is the vector of uncorrelated components of the least squares estimator.

The Ordinary Ridge Regression Estimator:

In the previous section we have demonstrated that all generalized shrinkage estimators are 2_stage Bayes estimators. This include of course the case of

ordinary ridge regression estimator proposed by Hoerl and Kennard (1970). To demonstrate this fact let us assume that an orthogonal matrix P is given such that $P'(x'x)^{-1}P = D = diag(n_1, ..., n_p), n_1 \ge ... \ge n_p > 0$. Morever, suppose that

 $Z = P' \dot{h}_{LS} = (Z_1, ..., Z_p)'$ and $W = P'\beta = (W_1, ..., W_p)'$ then: $Z \sim N_p (W, U^2 D)$. Let us assume that W has a prior distribution given by $W \sim N_p (0, U^2 \lambda I)$ for some positive constant λ , thus, according to the lemma stated in section 2, the posterior distribution of W given Z is:

$$W|Z \sim N_{p} \left[\sigma^{2} \lambda \left(\sigma^{2} D + \sigma^{2} \lambda I\right)^{-1} Z, \sigma^{2} \lambda I \cdot \sigma^{4} \lambda^{2} \left(\sigma^{2} D + \sigma^{2} \lambda I\right)^{-1}\right] \dots \dots (10)$$

then the

Bayes estimator of W is:

$$\hat{W} = (\lambda^{-1} D + I)^{-1} Z \text{ for } Z = P' b_{LS}. \text{ Consequently, the Bayes estimator of } \beta \text{ is:}$$

$$P\hat{W} = P(\lambda^{-1} D + I)^{-1} P' b_{LS}$$

$$= (\lambda^{-1} P D P' + I)^{-1} b_{LS}$$

$$= [\lambda^{-1} (x'x)^{-1} + I]^{-1} b_{LS} = [k(x'x)^{-1} + I]^{-1} (x'x)^{-1} x'y \text{ for } k = \lambda^{-1}$$

$$= (x'x + kI)^{-1} x'y = b_{RR} \dots (11).$$

It is obvious that the estimator in (11) coincide with the ordinary ridge regression estimator given in (4).

Estimating The Ridge Parameter_Bayesian Approach:

There are many different methods for selecting the value of the ridge parameter k. The method we try here is based upon the lemma stated in section (2). Accordingly, the marginal distribution of Z is:

$$Z \sim N_{\mu} (0, o^2 D + o^2 \lambda I)$$

VOL 22 (2) 2010

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL23 (3) 2010

$$E(Z'L)^{-1}Z) = trL)^{-1}var(Z) = trL)^{-1}(o^2D + o^2\lambda I) = o^2 trL_p + \lambda o^2 trL)^{-1} \dots (12)$$

where "tr" denotees the trace of the matrix. To find an unbiased estimator for λ , the following result is necessary. (see[6])

$$E\binom{\sigma^2}{s^2} = \frac{n-p-1}{n-p-3}$$
.....(13)

Where S^2 is an estimator of O^2 . The result in (13) can be easily proved by setting (n-p-

1)
$$S^2/O^2 = r \text{ then } r \sim \aleph_{(n-p-1)}^2$$

$$E\binom{r^{2}}{s^{2}} = E\binom{n-p-1}{r} = \frac{n-p-1}{n-p-3} \quad (see [7] page 176)$$

From (12) and (13) an unbiased estimator for λ can be obtained as:

$$\hat{\lambda} = \begin{bmatrix} n-p-3 & 2tD & 12 \\ n-p-1 & 5^2 \end{bmatrix} - p]/trD^{-1} \text{ or equivalently:}$$

$$\hat{\lambda} = \hat{k}^{-1} = \left[\frac{n-p-3}{n-p-1} \left(\frac{b_{LS'} x \cdot x \cdot b_{LS}}{S^2}\right) - P\right]/tr(x'x) \dots (14)$$

Estimating the ridge parameter New Approach:

Substituting from Δ in formula (6) by $(D \mid kI)^{-1}$ D it can easily be shown that the ordinary ridge regression estimator is a member of generalized shrinkage estimators class, in such a case the shrinkage factors $\delta_{\mathbf{f}}$ of ordinary ridge regression estimator will have the form

$$\delta_i = rac{d_i}{d_i + k}$$
, $1 \le i \le p$ (15)

:

In (1970) Hoerl and Kennard proposed an estimator for the ridge parameter given as: $\hat{k}_{HK} = \frac{p_{3}^{2}}{n_{1}n_{1}}$ (16) [see[8])

In this section, a new approach is used to derive k_{HK} given in (16), this approach is represented by minimizing $MSE(b_{5H})$ as follows:

$$M SE(\mathbf{h}_{5H}) = M SE(G\Delta C) = GM SE(\Delta C)G'$$

Where $MSE(\Delta C) = \sigma^2 \Delta^2 D^{-1} + (I-\Delta)\gamma\gamma'(I-\Delta)$ Is the mean squared error matrix of ΔC with ith diagonal element given as: { see[3]}

Differintiating M SE($\hat{\mathbf{0}}_i C_i$) with respect to $\hat{\mathbf{0}}_i$, we obtain:

$$\frac{\partial MSE(\delta_i c_i)}{\partial \delta_i} = 2 o^2 \delta_i / d_i - 2(1 - \delta_i) \gamma_i^2 \dots \dots \dots (18)$$

While the second partial derivative is nonnegative constant it follows that equating the derivative in (18) to zero will yield a minimum value for $M \operatorname{SE}(\mathfrak{D}_i \mathcal{C}_i)$ this optimal amount of shrinkage for the i_th uncorrelated component \mathcal{C}_i is:

$$\delta_l^{MSE} = \frac{\gamma_l^2}{\gamma_l^2 + (\frac{\sigma^2}{d_i})} = \frac{d_i}{d_i + \frac{\sigma^2}{\gamma_i^2}} \dots \dots \dots (19)$$

We derive the formula in (19) as follows:

$$2\sigma^{2}\delta_{i}/d_{i}-2(1-\delta_{i})\gamma_{i}^{2}=0 \text{ then } \sigma^{2}\delta_{i}/d_{i}=\gamma_{i}^{2}-\delta_{i}\gamma_{i}^{2} \text{ hence } \frac{\sigma^{2}}{a_{i}}=\frac{\gamma_{i}^{2}}{\delta_{i}}-\gamma_{i}^{2} \text{ which implies that}$$
$$\frac{\sigma^{2}}{a_{i}}+\gamma_{i}^{2}=\frac{\gamma_{i}^{2}}{\delta_{i}} \text{ then solving for } \delta_{i} \text{ we obtain the required result.}$$

Now we suggest comparing the shrinkage factor of ridge regression estimator given in equation (15) with δ_l^{MSE} given in equation (19), hence we conclude that the value of the ridge parameter k must be equal to ν^2/γ_i^2 . Since each of ν^2 and γ_i^2 is unknown, we can use their estimated values, thus :

Where \mathfrak{S}^2 is the residual mean square in the analysis of variance table obtained from the standard least squares fit.

Numerical Example:

In this section a data set suffer from a high degree of multicollinearity is used. The data are from Aljibori (2004) (see [11] for details). It was designed to measure the effect of five explanatory variables $\mathbb{Z}_1, \mathbb{Z}_2, \dots, \mathbb{Z}_1$ on the response variable y. Where the explanatory variables represent the number of , managerials , technicians, skilled workers, unskilled workers and service workers respectively, while the response variable y represents the productivity of the industrial sector in Iraq measured by the suplus value method for the period 21 years from 1970 to 1990.Our purpose is only to compare the performance of Bayesian and conventional estimators for the ridge parameter. The original data are presented in table (1).

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.23 (3) 2010

For this data we found that the estimated value of the ridge parameter was k = k

0.125260 and k = 0.494107 obtained by applying the formula in (14) and in (20) respectively. In order to make the ridge regression analysis we used the numeric calculation statistical system (NCSS) and the results were given in table (2) through table (6).

Pearson correlations were given for all variables in table (2). These correlation coefficients show which explanatory variables are highly correlated with response variable and with each other. Explanatory variables that are highly correlated with one another may cause multicollinearity problem.

Table (3) gives an eigenvalue analysis of the explanatory variables after they

have been centerd and scaled. Notice that incremental percent is the percent

this eigenvalue is of the total. Percents near zero indicate a multicollinearity problem. The condition number is the largest eigenvalue divided by each corresponding eigenvalue. Condition numbers more than 100 indicates multicollinearity problem. *(See[9])*.

Conclusions:

1_A new approach for estimating the ridge parameter was introduced by using the singular value decomposition technique.

2_In their development of ridge regression, Hoerl and Kennard focus attention on the eigenvalues of the information matrix x'x. A seriously non orthogonal problem is characterized by the fact that the smallest eigenvalue is very much smaller than unity. In our problem the smallest eigenvalue is 0.0093 this indicates that our data set suffer from a high degree of multicollinearity. 3_It should also be noted that the variance inflation factor (VIF) is an additional measure of multicollinearity. It is the reciprocal of $(1-r_{i}^{2})$ where r_{i}^{2} is the square

value of the multiple correlation coefficient between the explanatory variable X_i and other explanatory variables. A VIF of 10 or more indicates a multicollinearity problem. *(See[10])*. In our problem the largest VIF value is 65.16 which is an additional indicator that our data set suffer from a high degree of multicollinearity.

4_ Since one of the objects of ridge regression is to reduce the standard error of the regression coefficients, it is of interest to see how much reduction has taken place. For our problem it should be noted from table (5) and table (6) that the standard errors for the ridge regression coefficients are less than the corresponding standard errors for least squares coefficients. Also we note that the standard errors for the ridge regression coefficients obtained by using the conventional mehod for estimating the ridge parameter are less than the corresponding standard errors for the ridge regression coefficients obtained by using the Bay esian method. From this comparison we conclude that the conventional mehod is performed better than the Bay esian method for this data set.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL 23 (3) 2010

References:

1. Draper, N.R. and Smith, H. (1981),"Applied regression analysis" second edition, John Wiley and Sons, New York.

2.Goldstein, M. and Smith, A.F.M. (1974), "Ridge type estimator for regression analysis." Jornal Royal Statistical Society. B36, 284_291.

3.Rao,C.R.(1973),"Linear Statistical Inference and Its Applications."second edition, John Wiley and Sons. New York.

4.Obenchain, R.L. (1978), "Good and optimal ridge estimators." Ann. Statist.6, 1111_1121.

5.Lindley, D.V. and Smith, A.F.M. (1972), "Bayes estimators for the linear model." Jornal Royal Statistical Society. B34, 1_41.

6.Srivastava, M.I. (2002), "Methods Of Multivariate Statistics." Wiley, New York

7.Hogg,R.V. and Craig,A.T.(1978),"Introduction to mathematical statistics." Fourth edition,Macmillan pub.Co.New York.

8.Hoerl,A.E. and Kennard,R.W.(1970),"Ridge regression: Biased estimation for non orthogonal problems."Technometrics. <u>12</u>, 55_67.

9.Chatterjee,S. and Price,P.(1977),"Regression analysis by example."John Wiley and Sons, New York.

10.Marquardit, D.W.(1970), "Generalized inverse, Ridge regression, and nonlinear estimation." Technometrics. <u>12</u>, 591_612.

11 الجبوري ، خالد ابر اهيم سلمان. (2004) : تخطيط الموارد البشرية ودور ها في تنمية القطاع الصناعي في العراق الفترة 1970_1970. رسالة ماجستير مقدمة الى مجلس المعهد العالي للدر اسات السياسية والدولية في الجامعة المستنصرية.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VO L23 (3) 2010

Table(1)Effects of five explanatory variables x1,x2,....,x5

V	X1	X2	X3	X4	<i>X</i> 5
y 1271	1516	172	24524	50006	14216
12/1	1510	4/3	24324	57122	14210
1440	1514	1923	26012	5/133	1646/
1355	2037	2490	30360	66795	18697
1509	2019	2734	29385	66263	18716
1254	2210	3322	36619	61718	20696
1220	2234	3563	37393	61028	23474
1546	2525	4205	40034	69344	25283
1916	2381	4293	10310	66181	26172
2381	2944	5278	49163	62039	28108
2585	3528	8529	57299	69339	30707
2810	4308	9661	60965	69671	32561
1440	4444	9840	56600	69047	33609
2493	4588	10830	55789	65441	32789
3285	4075	12968	44125	44175	52340
3062	4563	12875	46492	52476	47633
3403	4031	12163	46599	48322	63398
2875	4479	12712	49070	49672	62205
2861	4343	12610	49035	47330	47530
2596	4299	12615	48013	46160	46260
1710	4345	12630	40860	45123	4510
1777	4865	12955	49095	44925	44915

on the response variable y

Table(2) Correlation matrix section

	X1	X2	X3	X4	X5	Y
X1	1.000000	0.967806	0.780634	-0.380475	0.821688	0.749380
X2	0.967806	1.000000	0.688120	-0.541955	0.912351	0.790267
X3	0.780634	0.688120	1.000000	-0.028945	0.513239	0.631133
X4	-0.380475	-0.541955	-0.028945	1.000000	-0.645230	-0.295671
X5	0.821688	0.912351	0.513239	-0.645230	1.000000	0.806230
У	0.749380	0.790267	0.631133	-0.295671	0.806230	1.000000

Table(3) Eigen values of correlations

No.	eigenvalue	Incremental	Cumulative	Condition
		percent	percent	number
1	3.623598	72.47	72.47	1.00
2	1.051811	21.04	93.51	3.45
3	0.211248	4.22	97.73	17.15
4	0.104043	2.08	99.81	34.83
5	0.009300	0.19	100.00	389.65

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL 23 (3) 2010

No.	eigenvalue	X1	X2	X3	X4	X5
1	3.623598	-0.502625	-0.518719	-0.284390	0.304255	-0.487824
2	1.051811	-0.199033	-0.007497	-0.592083	-0.751940	0.210802
3	0.211248	0.190854	0.222736	-0.539120	0.569859	0.425416
4	0.104043	0.552851	0.292886	-0.303237	-0.109447	-0.710381
5	0.009300	0.604718	-0.771674	-0.035429	-0.074329	0.179037

Table(4)Eigenvectors of correlations

Table(5)Ridge vs. Least squares comparison section for k = 0.125260

Explanatory variables	Standardized Ridge coefficients	Standarded LS coefficients	Ridge VIF	LS VIF	Ridge standard	LS standad error
	-				error	
X1	0.0126	-0.9859	0.955	42.54	0.0884	0.4965
X2	0.2329	1.1247	0.637	65.16	0.0184	0.1562
X3	0.1695	0.2634	1.248	3.326	0.0093	0.0127
X4	0.1653	0.4680	1.085	2.808	0.0114	0.0154
X5	0.5359	0.7006	1.447	9.261	0.0085	0.0181

Table(6)Ridge vs.	Least so	uares comi	parison s	ection f	or k = 0.	494107
I abie(0)Iuage is	Leuse sq			cection 1	01 IL 01	

Explanatory	Standardized	Standardized	Ridge VIF	LS VIF	Ridge	LS standard
variables	Ridge	LS			standard	error
	Coefficients	Coefficients			error	
X1	0.1319	-0.9859	0.1892	42.54	0.0447	0.4965
X2	0.1970	1.1247	0.1254	65.16	0.0092	0.1562
X3	0.1563	0.2634	0.3861	3.326	0.0059	0.0127
X4	0.0452	0.4680	0.4101	2.808	0.0079	0.0154
X5	0.3126	0.7006	0.2951	9.261	0.0044	0.0181

المجلد23 (3) 2010

مجلة ابن الهيثم للعلوم الصرفة والتطبيقية

توظيف اسلوب بيز في تحليل انحدار الحرف

حازم منصور کورکیس

قسم الرياضيات ،كلية التربية ابن الهيثم ،جامعة بغداد

الخلاصه

في هذا البحث وظف اسلوب بيز في تحليل انحدار الحرف وتقدير معلمة الحرف على فرض توافر معلومات مسبقة عن معلمات انموذج الانحدار الخطي العام، وان الانموذج يعاني من مشكلة التعدد الخطي غير التام بدرجة كبيرة ، كما تم استخدام اسلوب جديد في ايجاد مقدر معلمة الحرف الذي اقترحه كل من Hoerl and Kennard في عام 1970 ومن خلال دراسة مثال عددي اجريت مقارنة لأفضلية اداء هذه المقدرات .