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Abstract 
        In this paper, the finite difference method is used to solve fractional hyperbolic partial 
differential equations, by modifying the associated explicit and implicit difference methods 
used to solve fractional  partial differential equation. A comparison with the exact solution is 
presented and the results are given in tabulated form in order to give a good comparison with 
the exact solution. 

 

Introduction 

        An important type of differential equations which is called fractional differential 
equations in which the differintegration is of non-integer order [1].  

       Real life problems with fractional differential equations are of great importance, since 
fractional differential equations accumulate the whole information of the function in a 
weighted form. This has many applications in physics, chemistry, engineering ,etc. For that 
reason, we need a method  for solving such equations, effectively, easy  use and applied for 
different p roblems[2]. 

          Consider the fractional order partial differential equation  [3][4]: 
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together with the initial and zero Dirichlet boundary conditions : 

tu(x,0) f (x), u (x,0)=h(x) , L x R   

u(L,t) 0, u(R,t) 0 for 0 t T 

   


                                               .………. (2)

 

where 

q

q

u(x, t)

x




 denote the left-hand partial fractional derivative of order q of the function 

u with  

respect to x and  1 < q  2 . 

           The left-handed shifted and the right-handed shifted Grünwald estimate to the left-
handed and right-handed derivatives, are given by [1][5][6] : 
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where n is the number of subdivisions of the interval [ L, R ] and q is a fractional number. 
Therefore: 
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and  
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where  g0 1 and gk  (1)k q(q 1)...(q k 1)

k!

  
, k  1,2,… 

The Explicit Finite Difference Method for Solving Fractional 
Hyperbolic Partial Differential Equations 
      The explicit finite difference method is improved to solve the initial-boundary value 
problem (1)-(2). To do this, we substitute t  tj, in eq. (1) and replace the partial derivative 
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 with its central difference approximation to get : 
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   ...................... (5) 

where tjjt, j0,1,…,m and m is the number of subdivisions of the interval [0, T], t  R . 

        Next, substitute equation (3) in equation (5) to obtain:  

  

i 1
i, j 1 i,j i, j 1 i, j

k i k 1, j i, j2 q
k 0

u 2u u c
g u s , i 1,2,...,n 1; j 0,1, ...,m 1

( t) ( x)


 

 


 
     

 
   …(6) 

On the other hand, the initial and boundary conditions given by eq.(2) becomes : 

         

i
i,0 i i

0,j j n,j

u(x ,0)
u u(x ,0) f (x ),   for  i 0,1,...,n

t

u u(L,t ) 0,  u u(R,t) 0 for j 0,1,...,m
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and by using the central difference approximation to the initial derivative conditions ,one can 
get : 

i,1 i, 1 i
1

(u u ) h
2 t

 


, i0,1,…,n 

where i ih h(x )  for i0, 1,…, n. Hence : 

i,1 i, 1 iu u 2 th   , i0,1,…, n 

Moreover, equation (6) becomes:  
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              ………….….(7) 

where i1,2,…,n1, j=0,1,…,m1. 

Therefore:  
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                 ……..………(8) 

          By substituting i, 1 i,1 iu u 2 th   
 
back  into eq.(8) one can show that 1,iu  can  

be calculated from the following equation: 

2 2i 1
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i,1 i k i k 1 i,0 iq
k 0

( t) c ( t)
u f g f s tg
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 , i=0,1,……..n −1  

where i0, 1,….. n1.  

        By evaluating the above equation for each i0,1,…,n1, one can get the values of 

i,1u , i 1,2,..., n 1  . Then by evaluating equation (7) at each i1,2,…,n1 and 

j2,3,…,m1 one can get the numerical solution of eq.(1). 

      Then the resulting equation can be explicitly solved to give: 

i 1

i, j 1 i, j i, j 1 w i w 1, j
w 0

u 2u u r g u


   


                           …………..……..(9) 

Where r =
2 qk h  .The resulting difference equation is stable since we 

 let g0=1  and  gw =
wq(q-1)k(q-w-1)

 (-1)
w

  , w = 1,2,…..  

1 ≤  q  ≤ 2 , i≠1 ,hence gi ≥ 0 for all value of  i. Therefore: 

 

i 1

w
w 0

g



   g1  (q)  q                                                        ………………(10) 

The difference between the analytical and numerical solutions of the difference equation 
remains bounded as j increases. 
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Let  the error Ei,j=u(hi, kj) ui,j then the stability condition under which the finite difference eq. 
(9) 

 is stable, to find the   stability conditions under which the error Ei,j is bounded . 

      Smith [7] shows that the error Ei,j can be written in the form : 

Ei,j=
ih je 

, where  s=
ke    γ = 1                                           ………………….(11)  

   Where  α is a complex constant, one can substitute eqs .(10), (11) into (9), to get:  

                        
1 h(1 w)2 rqe 0         

Assuming that, h(1 w)   ,then it is easily known that the equation for R is: 

2 (2 rqe ) 1 0       

Let A 2 rqe  , where e 1    

Hence the values of   are:   

2

1
A A 4

2

 
   and 

2

2
A A 4

2

 
   

From eq.(11), the error will not grow with time if  

1  , for all real β                                                                        ……………… (12) 

       Equation  (12) is called the Von-Neumann’s condition for stability .Thus we will use eq. 
(12) to  

find the stability condition of the finite difference equation. 

       For stability; as r, q and β are  real and when  giving stability while 2  gives  instability. 

When −1 ≤ A ≤ 1 , we get 1 2and   are complex number, hence:  
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1
A y 4 A
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   and 

2

1
A y 4 A

2

 
   

  Then using Von-Neumann’s condition (12) to prove that eq.(9) is stable  

For 1 A 1   , the only useful inequality  is A 1  , hence 2 rqe 1  , where 

e 1  .Therefore; 
1

r
q


   , where 1 ≤ q ≤ 2.  

Hence,  
1

r
2

  , which is the stability condition. 
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The Implicit  Finite Difference Method for Solving Fractional Hyperbolic 
Partial Differential Equations 
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       Now, we can improve and introduce similar approach for the implicit finite difference 
method 

 to solved the one–sided fractional hyperbolic partial differential equations. The resulting 
discretization takes the following form: 

i 1
i, j 1 i, j i, j 1 i, j

w i w 1, j2 q
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u 2u u c
g u

k h


 

 


 
   

 Where i 1,2,...,n 1; j 0,1,...,m 1    . Then to get  

i 1

i, j 1 i, j i, j 1 w i w 1, j 1
w 0

u 2u u r g u


    


   
   

                      …………………..(13) 

         In the above equation and under the same conditions of eq.(9) and substituting eqs. (10) 
and (11) into eq. (13), one can get: 

12    < rqe , where h(1 w)   . 

Hence the values of   are : 

1
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1
1 (1 A)

A

 
    and  

1

2

2
1 (1 A)

A

 
    where A 1 rqe  .  

          To discuss the stability of eq. (13); by using Von-Neumann’s condition (12). When A 

< 1 , 

 we get real the roots, 1  also, which gives instability while 2  gives stability for this 

problem .  

     Now, when 1 A 1   , we get complex number, which are 

1

2

1
1 (1 A)

A

  
     

and 

1

2

1
1 (1 A)

A

  
    .and the condition of the stability leads to r ≥ 1 when  1 ≤ q ≤ 2 

and 

 e 1   

     Therefore; the finite difference eq. (13) is instable for r  ≤ 
2

q
,  1 ≤ q ≤ 2.  

Illustrative Example 

   To illustrate the methods of the solution, an illustrative numerical example is considered:  

Example:- 
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Consider the fractional order partial differential equation : 
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Together with  initial and zero Dirichlet boundary conditions:   

u(x, 0)=0, 
u(x,0)

0
t





for 0 x 2  .. 

u(0, t)0, u(1, t)0  for 0 t 1  . 

          This example has the exact solution as: 
2 2u(x,t) x (x 2)t ,  [8]. which is 

considered for the  comparison purpose. Here; we use the explicit and implicit finite 
difference methods to solve this example numerically. To do this, first we divide the x-interval 

into 2 subintervals such that ix i,  i0,1,2 and the t-interval into 2 subintervals such that 

j
j

t ,
2

  j0,1,2. Thus, the initial and zero Dirichlet boundary conditions become: 

iu(x ,0) 0  for i0,1,2. 

iu(x ,0)
0

t





 for i0,1,2. 

ju(0,t ) 0  for j0,1,2. 

ju(1, t ) 0  for j0,1,2. 

         By using the central difference approximation to the initial derivative condition one can 
get: 

i,1 i, 1
1

(u u ) 0
2 t

 


; hence  

i,1 i, 1u u    for i0,1,2. 

Moreover, equation (7) becomes:  

1 i 1
2

i, j 1 i, j i, j 1 i k i k 1,j
k 0

u 2u u 0.25x g u


   


   
2 3 2 2 2

i i i j i j0 .2 5 ( 4 x 2 x 2 .5 4 6 x t 2 .5 4 6 x t )      

where  i1 and j0, 1. 

Therefore  

1 i 1
2

i,1 i,0 i, 1 i k i k 1,0
k 0

u 2u u 0.25x g u


  


   
2 3 2 2 2

i i i 0 00 .25( 4 x 2 x 2.54 6x t 2.546 x t )     
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 By substituting i, 1 i,1u u   in the above equation one can show that i,1u  can be calculated 

from the equation  

1 i 1
2

i,1 i,0 i k i k 1,0
k 0

u u 0.125x g u


 


  
2 3 2 2 2

i i i 0 00.125( 4x 2x 2.546x t 2.546xt )     

Thus  

1,1u  2 3
1 10.125( 4x 2x ) 0.25   . 

Then  

1 2
2

1,2 1,1 1,0 1 k 2 k,1
k 0

u 2u u 0.25x g u 


   
2 3 2 2 2

1 1 1 1 1 10 .2 5 ( 4 x 2 x 2 .5 4 6 x t 2 .5 4 6 x t )    0.947.   

These values are tabulated down with the comparison with the exact solution. See table (1) 

        Second, we divide the x-interval into 10 and the t-interval into 10 subinterval. Thus, the 
initial and zero Dirichlet boundary conditions become: 

iu(x ,0) 0 , 
iu(x ,0)

0
t





for  i  0,1,…,10. 

    ju(0, t ) 0 , ju(1, t ) 0 , for j  0,1,…,10. 

      The results are presented in table (2). 

 

Conclusions  
1. The finite difference method gave the numerical solution of the fractional differential 
equations and it depended on the Grunwald estimate for the fractional derivatives . 
2. The stability results in the finite partial differential equation case as generalization and 
unification for the corresponding result in the classical hyperbolic partial differential equation. 
3. Similar to this  work, the explicit finite difference method can be also used to solve the 
initial-boundary value problems of the two-sided fractional hyperbolic partial differential 

equations given by,   
u(x, t)

t




  c(x, t)

q

q

u(x, t)

x




 + d(x, t)

q

q

u(x, t)

x




 + s(x, t) 

         together with the initial and zero Dirichlet boundary conditions: 

     
u(x,0) f (x) ,u(L, t) 0,u(R,t) 0 for L x R      

    where  L  x  R, 0  t  T, 

q

q

u(x, t)

x




 and  

q

q

u(x, t)

x




 denote the left-handed and the 

right- handed partial fractional derivatives of order q of the function u with respect to x and 1 
< q  2. 
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In this case equation (4) becomes  

i 1 n i 1
i, j 1 i, j 1

i, j 1 i, j i, j 1 w i w 1, j w i w 1, j i, jq q
w 0 w 0

c d
u 2u u g u g u s

( x) ( x)

  
 

     
 

    
 

 
            

 

4. In a similar manner, the implicit finite difference method can be also used to solve the 
initial-boundary value problems of the two-sided fractional hyperbolic partial differential 
equations given   by equations:-

 
u(x, t)

t




  c(x, t)

q

q

u(x, t)

x




 + d(x, t)

q

q

u(x, t)

x




 + s(x, t) 

In this case eq.(4)becomes: 

i 1 n i 1
i, j 1 i,j 1

i, j 1 i, j i, j 1 w i w 1,j 1 w i w 1,j 1 i, j 1q q
w 0 w 0

c d
u 2u u g u g u s

( x) ( x)

  
 

        
 

    
 

 
 

where i1,2,…, n1; j0,1,…,m1. 
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Table (1) Represents the numerical and the exact solutions for nm2 of example. 

xi tj 
Numerical solution ui,j 

Exact solution u(xi,tj) 
Explicit method Implicit method 

1 0.5 0.25 0.25 0.25 

1 1 0.9472 0.9684 1 
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Table (2) Represents the numerical and the exact solutions for nm10 of example. 

xi tj 
Numerical solution ui,j 

Exact solution u(xi,tj) 
Explicit method  Implicit method  

1 0.5 0.25 0.25 0.25 

1 1 0.994 0.995 1 

0.8 0.2 0.0398 0.0389 0.031 

0.2 0.7 0.0326 0.0393 0.035 

0.4 0.9 0.2129 0.2026 0.207 

0.6 1 0. 5096 0. 5063 0. 504 

1.2 0.7 0.5655 0.5641 0.564 

1.4 0.3 0.1014 0.1042 0.106 

1.6 0.8 0.6568 0.6551 0.655 

1.8 1 0.6466 0.6467 0.648 
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                                           ق الفروقات المنتھیة لحل المعادلات التفاضلیة    ائطر
  الجزئیة الكسریة من نوع القطع الزائد

  

  
  

  غدیر جاسم محمد
  .جامعة بغداد، ابن الھیثم -قسم الریاضیات، كلیة التربیة

  
  لخلاصةا

لح�ل )  finite difference method( في ھذا البحث ، استخدمت طریق�ة الفروق�ات المنتھی�ة          
 Hyperbolic partial (  الكس�ریة م�ن ن�وع القط�ع الزائ�د الرت�ب يت التفاض�لیة الجزئی�ة  ذالمع�ادلا

differational equation ( ھیة الصریحة والض�منیة ،بتطویر طریقة الفروقات المنت)Explicit and 
Implicit method                                                                     . (                                                                                                               

وأعطیت النت�ائج ف�ي ج�داول للحص�ول عل�ى أفض�ل مقارن�ة  حیحالنتائج العددیة  مع الحل الص ورنتق    
 . حیحمع الحل الص
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