مجلة ابن الهيثم للعلوم الصرفة والتطبيقية مـلاحظات حول معادلـة (المؤثرالـلاخطية

بثينه عبد الحسن احمد و مي محمد هلال قسم الرياضيات،كلية اللطوم، جامعة بغداد قسم الرياضيات، كلية التربية ابن الهيثم ،جامعة بغداد استلم البحث في 13 نيسان 2009

قبل البحث في 7 تموز 2009

الخلاصة
الثشروط الضـرورية والكافيـة لمعادلـة المؤثر X ، $X+A^{*} X^{-n} A=I$ ،لحصـول على حل موجـب حقيقي ذاتي النترافق X قد اعطيت بالاعتمـاد على هذه الشروط وبعض الخصـائص للمؤثر، وكـلك العـلا قـهـ بين الحل Xو A قد اعطيت

$$
X+A^{*} X^{-n} A=I
$$

B.A. Ahmed and M.M. Hilal
 Department of Mathematics, College of Science, University of Baghdad Department of Mathematics, College of Education Ibn Al-haitham, University of Baghdad

Received in April, 13,2009
Accepted in July, $\mathbf{7 , 2 0 0 9}$

Abstract

Necessary and sufficient conditions for the operator equation $X+A^{*} X^{-n} A=I$, to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X and A are given.

Key words: non-linear operator equation; spectral radius; positive definite operator. AMS classification: 39B42.

Introduction

Consider the non-linear operator equation
$X+A^{*} X^{-n} A=I$
where I is identity operator, and $A, A^{*}, X \in B(H)$; where $B(H)$ denotes the Banach algebra of all bounded linear operators on $\mathrm{H} ; \mathrm{H}$ is an infinite dimensional complex Hilbert space. Several authors have studied the above equation when A, X are matrices and $n=1, n=2$ and they have obtained theoretical properties of these equations. In [1] Equation (1) was studied in the case X is a self_adjoint positive operator, which arises in many applications such as in control theory and statistics and in dynamic programming
In this paper, we study equation (1) where X belongs to the set; where

$$
C:=\left\{A\left|A=T^{*} T\right|, T \in B(H) ; r(T)=\|T\|\right\}
$$

Where $r(T)$ is the spectral radius of T

1-Preliminaries

In this section we present notation, lemma and theorem which will be used in the remainder of the paper. The notation $A>0(A \geq 0)$ means that A is positive operator, and $A>B$ is used as an alternative notation for $A-B>0$.It is well-known for any operator $T \in B(H), T^{*} T$ is positive operator [2, $p .22$], let spec A denotes the spectrum of A.
Lemma 1.1[3, p. 866]: Let M and N be two arbitrary operators then:

$$
r\left(M^{*} N-N^{*} M\right) \leq r\left(M^{*} M+N^{*} N\right)
$$

Proof: By elementary calculus, we have that

$$
r\left(M^{*} N-N^{*} M\right)=r\left(\left[\begin{array}{ll}
M^{*} & N^{*}
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-I & O
\end{array}\right]\binom{M}{N}\right)
$$

Since the non-zero elements of $\operatorname{spec} M N$ and spec $N M$ are the same [4, P.43]; so for any two operators, we have:
$r\left(\left[\begin{array}{ll}M^{*} & N^{*}\end{array}\right]\left[\begin{array}{cc}O & I \\ -I & O\end{array}\right]\left[\begin{array}{c}M \\ N\end{array}\right]\right)=r\left(\left[\begin{array}{cc}0 & I \\ -I & 0\end{array}\right]\binom{M}{N}\left(\begin{array}{ll}M^{*} & N^{*}\end{array}\right)\right)$
Now, $r(A)=\mid A \|$, where $\|\|$ denotes the operator norm. so

$$
\begin{aligned}
& r\left(\left[\begin{array}{cc}
O & I \\
-I & O
\end{array}\right]\binom{M}{N}\left(\begin{array}{ll}
M^{*} & N^{*}
\end{array}\right)\right)=r\left|\left(\begin{array}{cc}
0 & I \\
-I & O
\end{array}\right)\binom{M}{N}\left(\begin{array}{ll}
M^{*} & N^{*}
\end{array}\right)\right| \\
& \leq\left\|\left[\begin{array}{cc}
O & I \\
-I & O
\end{array}\right]\right\|\left\|\left[\begin{array}{c}
M \\
N
\end{array}\right]\left[\begin{array}{ll}
M^{*} & N^{*}
\end{array}\right]\right\| \\
& \leq 1 r\left(\left[\begin{array}{c}
M \\
N
\end{array}\right]\left[\begin{array}{ll}
M^{*} & N^{*}
\end{array}\right]\right) \\
& \leq r\left(\left[\begin{array}{ll}
M^{*} & N^{*}
\end{array}\right]\left[\begin{array}{c}
M \\
N
\end{array}\right]\right) \\
& \leq r\left(M^{*} M+N^{*} N\right)
\end{aligned}
$$

Which completes the proof.

2- Necessary and sufficient conditions of the solution of the equation

We study the existence of the solution of equation (1) by the following theorem:
Theorem 2.1: the operator equation (1) has a solution X positive operator if and only if the operator A takes the following factorization form
$A= \begin{cases}\left(W^{*} W\right)^{\frac{n-1}{2}} W^{*} Z & \ldots \text { if } n \text { is odd } \\ \left(W^{*} W\right)^{\frac{n}{2}} Z & \ldots \text { if } n \text { is even }\end{cases}$
where W is an invertible operator and $W^{*} W+Z^{*} Z=I$.
Proof: suppose that equation (1) has a solution X. Then, using the set C we can write X as $X=W^{*} W$.
Equation (1) can be written as

$$
W^{*} W+A^{*}\left(W^{*} W\right)^{-n} A=I
$$

The prove using mathematical induction:

- Suppose $n=1$, then

$$
\begin{aligned}
& W^{*} W+A *\left(W^{*} W\right)^{-1} A=I \\
& W^{*} W+A^{*} W^{-1}\left(W^{*}\right)^{-1} A=I
\end{aligned}
$$

Further, we can rewrite the last equations as:

$$
\begin{equation*}
W^{*} W+\left(\left(W^{-1}\right)^{*} A\right)^{*}\left(W^{*}\right)^{-1} A=I \tag{3}
\end{equation*}
$$

Equation (3) can be rewritten in the equivalent form [5, p.171]:
$\left[\begin{array}{c}W \\ W^{-*} A\end{array}\right]^{*}\left[\begin{array}{c}W \\ W^{-*} A\end{array}\right]=I$
Now, set $Z=W^{-*} A$; then $A=W^{*} Z$ as desired,

- Suppose it is true when $n=p$ to show that it is true when $n=p+1$
$W^{*} W+A^{*}\left(W^{*} W\right)^{-(P+1)} A=I$
$W^{*} W+A^{*}\left(W^{*} W\right)^{-P}\left(W^{*} W\right)^{-1} A=I$
If

$$
W^{*} W+A^{*}\left(W^{*} W\right)^{-1}\left(W^{*} W\right)^{-1}\left(W^{*} W\right)^{-1} \ldots\left(W^{*} W\right)^{-1}\left(W^{*} W\right)^{-1} A=I
$$

then $W^{*} W+A^{*} W^{-1} W^{-*} W^{-1} \ldots W^{-1} W^{-*} W^{-1} W^{-*} A=I$

$$
\begin{equation*}
W^{*} W+\left(W^{-*} W^{-1} W^{-*} W^{-1} \ldots W^{-*} A\right)^{*}\left(W^{-*} W^{-1} W^{-*} \ldots W^{-*}\right) A=I \tag{5}
\end{equation*}
$$

Equation (5) can be rewritten in the equivalent form:

$$
\left[\begin{array}{cc}
W & \\
W^{-*} W^{-1} W^{-*} & . . W^{-*} A
\end{array}\right]^{*}\left[\begin{array}{c}
W \\
W^{-*} W^{-1} W^{-*} \\
\ldots W^{-*} A
\end{array}\right]
$$

Now, set $Z=W^{-*} W^{-1} W^{-*} \ldots W^{-*} A$, then $A=W^{*} W W^{*} W \ldots W^{*} Z$, as form $\left(W^{*} W\right)^{\frac{p-1}{2}} W^{*} Z$ If p is even, then:

$$
\begin{align*}
& W^{*} W+A^{*}\left(W^{*} W\right)^{-1}\left(W^{*} W\right)^{-1} \ldots\left(W^{*} W\right)^{-1}\left(W^{*} W\right)^{-1} A=I \\
& W^{*} W+A^{*} W^{-1} W^{-*} W^{-1} W^{-*} \ldots W^{-1} W^{-*} W^{-1} W^{-*} A=I \\
& W^{*} W+\left(W^{-1} W^{-*} W^{-1} \ldots W^{-*} A\right)^{*}\left(W^{-1} W^{-*} W^{-1} \ldots W^{-*} A\right)=I \tag{6}
\end{align*}
$$

Equation (6) can be rewritten in the equivalent form:
$\left[\begin{array}{c}W \\ W^{-1} W^{-*} W^{-1} \ldots W^{-*} A\end{array}\right]^{*}\left[\begin{array}{c}W \\ W^{-1} W^{-*} W^{-1} \ldots W^{-*} A\end{array}\right]=I$
New, set $Z=W^{-1} W^{-*} W^{-1} \ldots W^{-*} A$; then $A=\left(W^{*} W W^{*} W W^{*} W \ldots W^{*} W\right) Z$, as form $\left(W^{*} W\right)^{\frac{P}{2}} Z$
Conversely, assume that the operator A admits the factorization $A=\left(W^{*} W W^{*} W \ldots W^{*}\right) Z$, if n is odd, and set $X=W^{*} W$, we then need to show that X (which is positive operator) is a solution to the operator equation (1), we have:

$$
\begin{aligned}
X+A^{*} X^{-n} A & =W^{*} W+\left(W^{*} W W^{*} W \ldots W^{*} Z\right)^{*}\left(W^{*} W\right)^{-n}\left(W^{*} W W^{*} W \ldots W^{*}\right) Z \\
& =W^{*} W+Z^{*} W W^{*} W W^{*} \ldots\left(W^{*} W\right)^{-1} \ldots\left(W^{*} W\right)^{-1}\left(W^{*} W W^{*} W \ldots W^{*}\right) Z \\
& =W^{*} W+Z^{*} W W^{*} \ldots W W^{-1} W^{-*} \ldots W^{-1} W^{-*} W^{*} W W^{*} W \ldots W^{*} Z \\
& =W^{*} W+Z^{*} Z \\
& =\left[\begin{array}{l}
W \\
Z
\end{array}\right]^{*}\left[\begin{array}{c}
W \\
Z
\end{array}\right] \\
& =I
\end{aligned}
$$

When n is even, then
$A=W^{*} W W^{*} W W \ldots W^{*} W Z$, and set $\quad X=W^{*} W$, we then need to show that X (which is positive definite) is a solution to the operator equation (1) .we have.

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI. VOL24 (1) 2011

$$
\begin{aligned}
X+A^{*} X^{-n} A & =W^{*} W+\left(W^{*} W W^{*} W \ldots W^{*} W Z\right)^{*}\left(W^{*} W\right)^{-n}\left(W^{*} W W^{*} W \ldots W^{*} W Z\right) \\
& =W^{*} W+Z^{*} W^{*} W W^{*} W \ldots W^{*} W\left(W^{*} W\right)^{-1}\left(W^{*} W\right)^{-1} \ldots(W)^{-1}\left(W^{*} W W^{*} W \ldots W^{*} W Z\right) \\
& =W^{*} W+Z^{*} W^{*} W W^{*} W \ldots W^{*} W W^{-1} W^{-*} \ldots W^{-1} W^{-*}\left(W^{*} W W^{*} W \ldots W^{*} W Z\right) \\
& =W^{*} W+Z^{*} Z \\
& =\left[\begin{array}{c}
W \\
Z
\end{array}\right]^{*}\left[\begin{array}{c}
W \\
Z
\end{array}\right] \\
& =I
\end{aligned}
$$

which completes the proof of the theorem.

3- Relation between solution X and operator A :

In this section, we will study the relations between X and A in equation (1)
Theorem 3.1: If equation (1) has a solution X, then for all $n \in N$ the following hold:

$$
\begin{aligned}
& \text { (i) } r\left(X^{\frac{-n}{2}+\frac{1}{2}} A-A^{*} X^{\frac{-n}{2}+\frac{1}{2}}\right) \leq 1 \\
& \text { (ii) }(X)^{\frac{n}{2}}\left(X^{*}\right)^{\frac{n}{2}}>A A^{*}
\end{aligned}
$$

Proof:
(i) Using theorem (2.1), when n is even. We obtain:

$$
\begin{aligned}
r\left(X^{\frac{-n}{2}+\frac{1}{2}} A-A^{*} X^{\frac{-n}{2}+\frac{1}{2}}\right) & =r\left(\left(W^{*} W\right)^{\frac{-n}{2}+\frac{1}{2}}\left(W^{*} W\right)^{\frac{n}{2}} Z-Z^{*}\left(W^{*} W\right)^{\frac{n}{2}}\left(W^{*} W\right)^{\frac{-n}{2}+\frac{1}{2}}\right) \\
& =r\left(\left(W^{*} W\right)^{\frac{1}{2}} Z-Z^{*}\left(W^{*} W\right)^{\frac{1}{2}}\right)
\end{aligned}
$$

We set $M:=\left(W^{*} W\right)^{\frac{1}{2}}$; then applying lemma (1.1), we obtain:

$$
\begin{aligned}
r\left(X^{\frac{-n}{2}+\frac{1}{2}} A-A^{*} X^{\frac{-n}{2}+\frac{1}{2}}\right) & =r\left(M^{*} Z-Z^{*} M\right) \\
& \leq r\left(M^{*} M+Z^{*} Z\right) \\
& =r(I) \\
& =1
\end{aligned}
$$

Now, when n is odd; we obtain

$$
\begin{aligned}
r\left(X^{\frac{-n}{2}+\frac{1}{2}} A-A^{*} X^{\frac{-n}{2}+\frac{1}{2}}\right) & =r\left(\left(W^{*} W\right)^{\frac{-n}{2}+\frac{1}{2}}\left(W^{*} W\right)^{\frac{n-1}{2}} W^{*} Z-Z^{*} W\left(W^{*} W\right)^{\frac{n-1}{2}}\left(W^{*} W\right)^{\frac{-n}{2}+\frac{1}{2}}\right) \\
& =r\left(W^{*} Z-Z^{*} W\right)
\end{aligned}
$$

then applying lemma (1.1) we obtain:

$$
\begin{aligned}
r\left(X^{\frac{-n}{2}+\frac{1}{2}} A-A^{*} X^{\frac{-n}{2}+\frac{1}{2}}\right) & =r\left(W^{*} Z-Z^{*} W\right) \\
& \leq r\left(W^{*} W+Z^{*} Z\right) \\
& \leq r(I) \\
& \leq 1
\end{aligned}
$$

(ii) If n is even, then from theorem (2.1), we have

$$
\begin{aligned}
(X)^{\frac{n}{2}}\left(X^{*}\right)^{\frac{n}{2}}-A A^{*} & =\left(W^{*} W\right)^{\frac{n}{2}}\left(W^{*} W\right)^{\frac{n}{2}}-\left(W^{*} W\right)^{\frac{n}{2}} Z Z^{*}\left(W^{*} W\right)^{\frac{n}{2}} \\
& =\left(W^{*} W\right)^{\frac{n}{2}}\left(I-Z Z^{*}\right)\left(W^{*} W\right)^{\frac{n}{2}}
\end{aligned}
$$

Since $W^{*} W+Z^{*} Z=I, \quad \operatorname{spec}\left(Z Z^{*}\right)=\operatorname{spec}\left(Z^{*} Z\right) \quad$ and, $I-Z^{*} Z>0, \quad$ therefore, $\left(W^{*} W\right)^{\frac{n}{2}}\left(I-Z Z^{*}\right)\left(W^{*} W\right)^{\frac{n}{2}}>0$.
If n is odd, then. From theorem (2.1), we have

$$
\begin{aligned}
(X)^{\frac{n}{2}}\left(X^{*}\right)^{\frac{n}{2}}-A A^{*} & =\left(W^{*} W\right)^{\frac{n}{2}}\left(W^{*} W\right)^{\frac{n}{2}}-\left(W^{*} W\right)^{\frac{n-1}{2}} W^{*} Z Z^{*} W\left(W^{*} W\right)^{\frac{n-1}{2}} \\
& =\left(W^{*} W\right)^{\frac{n-1}{2}}\left(\left(W^{*} W\right)^{\frac{1}{2}}\left(W^{*} W\right)^{\frac{1}{2}}-W^{*} Z Z^{*} W\right)\left(W^{*} W\right)^{\frac{n-1}{2}} \\
& =\left(W^{*} W\right)^{\frac{n-1}{2}}\left[W^{*} W-W^{*} Z Z^{*} W\right]\left(W^{*} W\right)^{\frac{n-1}{2}} \\
& =\left(W^{*} W\right)^{\frac{n-1}{2}} W^{*}\left[I-Z Z^{*}\right]\left(W^{*} W\right)^{\frac{n-1}{2}} W
\end{aligned}
$$

Since $W^{*} W+Z^{*} Z=I$ and $\operatorname{spec}\left(Z Z^{*}\right)=\operatorname{spec}\left(Z^{*} Z\right), I-Z^{*} Z=W^{*} W>0$, and thus,, $I-Z^{*} Z>0$, therefore,, $\left(W^{*} W\right)^{\frac{n}{2}}\left(I-Z Z^{*}\right)\left(W^{*} W\right)^{\frac{n}{2}}>0$

References

1. Ahmed, B.A. and Hilal ,M.M., (2008), On Solvability of an Operator Equation, Proceeding of the 3rd conference on Mathematical science in united Arab Emirates university, in the icm,
2. Feintuch, A. (1998), Robust Control Theory in Hilbert space, Springer-Verlag, New York, Inc.
3. Ramadan, M. A. (2007),Necessary and Sufficient Conditions for the Existence of Positive Definite Solution of the Matrix Equation, Nanyang University of Technology.
4. Halmos ,P. R. (1982), A Hilbert Space Problem Book, Springer-Verlag New York, Heidelberg, New York, Berlin,.
5. Conway, J.B. (1985), A course in functional analysis, Springer- Verlage, Berlin Heidelberg, New York.
