فضاءات الرص من النوع -L

سعاد جدعان

قسم الرياضيات ، كلية التربية – ابن الهيثم ، جامعة بغداد

استلم البحث في 25 ايار 2010

قبل البحث في 27 ايلول 2010

الخلاصة

الغرض من هذا البحث دراسة أنواع جديدة من التراص في الفضاءات التبلوجيه الثنائية، أذ سنقدم التراص من النوع- ال

L- compact Spaces

S. Gedaan

Department of Mathematics, Ibn-Al-Haitham College of Education, University of Baghdad

Received in May, 25, 2010

Accepted in Sept,27,2010

Abstract

The purpose of this paper is to study a new types of compactness in bitopological spaces. We shall introduce the concepts of L- compactness.

Introduction

The concept of bitopological space was initiated by Kelly[1]. A set X equipped with two

Topologies τ_1 and τ_2 is called a bitopological space denoted by $(X.\tau_1.\tau_2)$.

By a directed set we mean a pair (A, \ge) consisting of a non-empty set A and a binary relation \ge defined on A and satisfies the following conditions:

(1) $a \ge a$ for each $a \in A$.

(2) If $a \ge b$ and $b \ge c$, then $a \ge c$ for each a, b, and c in A.

(3) For each two members a and b of A, there exists a member $c \in A$ such that $c \ge a$ and $c \ge b$.

If (A, \ge) is a directed set and f is a function of A into a non-empty set X, then f is called a "net" in X and is denoted by (f, X, A, \ge) . The image of $a \in A$ under f is denoted by f_a and a net in X will be sometimes denoted by $\{f_a : a \in A\}$.[2]

A "filter" on a non-empty set X is a non-empty family F of subsets of X with the following properties:

(1) $\emptyset \notin F$.

(2) If $F \in F$ and $F \subseteq H$, then $H \in F$.

(3) If $F \in F$ and $H \in F$, then $F \cap H \in F$.

A filter on a non-empty set is said to be an ultrafilter if and only if it is not properly contained in any other filter on this set.[2]

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (1) 2011

L-open set was studied by Al-swid[2], asubset G of a bitopological space $(X.\tau_1.\tau_2)$ is said

to be "L -open" set if and only if there exists a **T**1-open set U such that $U \subseteq G \subseteq cl\tau_2(U)$, the family of all L-open subsets of X is denoted by L-O(X). The complement of an L-open set is called "L-closed" set, the family of all L-closed subsets of X is denoted by L-C(X). In a bitopological space **(X.T1.T2)** every **T**1-open set is an L-open set[3]. The union of any family of L-open subsets of X is an L-open set, but the intersection of any two L-open subsets of X need not be L-open set[2]. Al-Talkahny [3], introduced two new concepts "L- T_2 -spaces" and "L-continuous functions ". A bitopological space **(X.T1.T2)** is said to be "L- T_2 -space" if and only if for each pair of distinct points x and y in X, there exist two disjoint L-open subset G and H of X such that $x \in G$ and $y \in H$. Let $(X, \tau_1, \tau_2), (Y, \tau_1', \tau_2')$ be any bitopological spaces and let $f: X \to Y$ be any function, then f is said to be "L-continuous" function if and only if the inverse image of any L-open subset of X.

2- L-compactness

Definition(2.1)

Let (X, τ_1, τ_2) be a bitopological space and let A be a subset of X. By an "L-open cover of A" we mean a subcollection of the family L-O(X) which covers A.

Remark(2.2):

Every τ_1 -open cover in a bitopological space (X, τ_1, τ_2) is an L-open cover.

The converse of remark (2.2) is not true in general as the following example shows:

Example (2.3)

 $X = \{1, 2, 3, 4\}$ $\tau_{1} = \{X, \phi, \{1\}, \{2, 3\}, \{1, 2, 3\}\}$ $\tau_{2} = \{X, \phi, \{1\}\}$ $F_{2} = \{X, \phi, \{2, 3, 4\}\}$

 $L - O(X) = \{X, \phi, \{1\}, \{2,3\}, \{1,2,3\}, \{1,2,4\}, \{1,4\}, \{1,2\}, \{1,3,4\}, \{1,3\}, \{2,3,4\}\}_{L}$ et $C = \{\{1\}, \{2,3,4\}\}$, note that C is an L-open cover of X, but it is not **T**1-open cover.

Definition(2.4)

A bitopological space $(X.\tau_1,\tau_2)$ is said to be "L-compact space" if and only if every L-open cover of X has a finit subcover.

Proposition (2.5)

If a bitopological space (X, τ_1, τ_2) is an L-compact space, then (X, τ_1) is a compact space.

Proof: follows from remark (2.2).

Remark (2.6)

The opposite direction of proposition (2.5) is not true in general, as the following example shows:

Let X = N and let $x_a \in N$

 $\tau_1 = \{ N, \phi, \{x_o\} \}$

 $\tau_2 = I =$ The indiscrete topology

 $L - O(X) = \{ U \subseteq \mathbf{N}; x_o \in U \text{ or } U = \phi \}$

Note that (N, τ_1) is compact but (N, τ_1, τ_2) is not L-compact.

Proposition (2.7)

An L-closed subset of an L-compact space is L-compact.

Proof:

Let A be an L-closed subset of an L-compact space (X, τ_1, τ_2) and let $\{G_{\alpha} : \alpha \in \Lambda\}$ be an L-open cover of A .Then $\{G_{\alpha} : \alpha \in \Lambda\} \cup A^c$ forms an L-open cover of X which is Lcompact space. So there are finitely many elements $\alpha_1, \alpha_2, ..., \alpha_n$ such that $X = \bigcup_{i=1}^n G_{\alpha_i} \cup A^c$, it follows that $A \subseteq \bigcup_{i=1}^n G_{\alpha_i}$. Hence A is an L-compact.

Corollary (2.8)

An L-closed subset of an L-compact space (X, τ_1, τ_2) is τ_1 -compact.

Proof:

Follows from proposition (2.7) and (2.5).

Corollary (2.9)

A τ_1 -closed subset of an L-compact space $(X.\tau_1.\tau_2)$ is L-compact.

Proof:

Since every **1**-closed set is an L-closed set and by proposition (2.7).

Corollary (2.10)

A τ_1 -closed subset of an L-compact space (**X**. τ_1 . τ_2) is τ_1 -compact.

Proof:

Follows from corollary(2.9) and proposition (2.5).

Proposition(2.11)

The L-continuous image of an L-compact space is an L-compact.

Proof:

Suppose that $\int (X, \tau_1, \tau_2) = (Y, \tau_1, \tau_2)$ is an L-continuous and onto function

and \mathcal{X} is an L-compact space. Let $\{G_{\mathbf{a}} : \mathcal{X} \in \Delta\}$ be an L-open cover of \mathcal{Y} ,

it follows that $\{f^{-1}(G_n): X \in \Delta\}$ is an L-open cover of X which is L-compact. So there are finitely many elements $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ such that $X = \bigcup_{i=1}^n f^{-1} (G_{\alpha_i}) = f^{-1} \left(\bigcup_{i=1}^n G_{\alpha_i} \right)$

.Therefore $Y = \bigcup_{i=1}^{N} G_{x_i}$, hence Y is an L-compact.

Corollary (2.12)

Let $\int :(X, \tau_1, \tau_2) \to (Y, \tau_1, \tau_2)$ be an L-continuous function, then $\int (A)$ is a compact subset of (Y, τ_1) for each L-compact subset A of \mathcal{X} .

Proof:

Follows from propositions (2.11) and (2.5).

It is known that every compact subset of any T_2 -space is closed. If we change the concepts of compact, T_2 and closed by the concepts L-compact- T_2 and L-closed, then this fact being invalid in general, as the following example shows:

Example (2.13)

$$X = \{1, 2, 3\}$$

$$\tau_{1} = \{X, \phi, \{1\}, \{2\}, \{1, 2\}\}$$

$$\tau_{2} = I$$

$$L - O(X) = \{X, \phi, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$$

$$L - C(X) = \{X, \phi, \{2, 3\}, \{1, 3\}, \{3\}, \{2\}, \{1\}\}\}$$

 $L-C(X) = \{X, \phi, \{2,3\}, \{1,3\}, \{3\}, \{2\}, \{1\}\}\}$. Clear that X is an L- T_2 -space. If $A = \{1, 2\}$, then A is an L-compact subset of X, but it is not L-closed.

Definition (2.14): [3]

Let (X, τ_1, τ_2) be a bitopological space and let A be a subset of X, $x \in X$. Then A is called an

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (1) 2011

L-neighborhood of x if and only if there is an L-open set G in X such that $x \in G \subseteq A$.

Definition (2.15) [3]

Let (X, τ_1, τ_2) be a bitopological space and let A be a subset of X. The intersection of all L-closed set containing A is called "L-closure of A"denoted by L-cl(A).

Theorem (2.16) [4]

L et (X, τ_1, τ_2) be a bitopological space and let A be a subset of X. A point x in X is an L-closure point of A if and only if every L-open neighborhood of x intersects A.

Definition (2.17) [4]

Let (X, τ_1, τ_2) be a bitop ological space and let (f, X, A, \geq) be a net in X, then f is said to be

"L-convergent "to a point x_o in X if and only if for each L-open neighborhood N of x_o , there exists an element $a_o \in A$ such that $f_a \in N$ for each $a \ge a_o$.

Definition (2.18) [4]

Let (X, τ_1, τ_2) be a bitopological space and let (f, X, A, \geq) be a net in X. A point x_o in X is

called an "L-cluster point of f" if and only if for each $a \in A$ and for each L-open neighborhood N of x_o , there exists an element $b \ge a$ in A such that $f_b \in N$.

Theorem (2.19) [4]

Let (X, τ_1, τ_2) be a bitopological space and let (f, X, A, \geq) be a net in X. For each $a \in A$ let $M_{\alpha} = \{f(x) : x \geq a \text{ in } A\}$, then a point p of X is an L-cluster point of f if and only if $p \in L - cl(M_{\alpha})$ for each $a \in A$.

Definition (2.20)

Let (X, τ_1, τ_2) be a bitopological space and let F be a filter on X. A point x in X is called an

"L-cluster point of F" if and only if each L-open neighborhood of x intersects every member of F.

Theorem (2.21)

Let (X, τ_1, τ_2) be a bitopological space and let F be a filter on X. A point p in X is an Lcluster point of F if and only if $p \in L-cl(F)$ for each $F \in F$.

Proof: the "first direction"

Suppose that p is an L-cluster point of F. then for each L-open neighborhood G of p, $G \cap F \neq \phi$

for each $F \in F$, it follows by theorem (2.16) that $p \in L-cl(F)$ for each $F \in F$.

The "second direction"

Assume that $p \in L-cl(F)$ for each $F \in F$, then by theorem (2.16) every L-open neighborhood of p intersects F for each $F \in F$. Hence p is an L-cluster point of F

Definition (2.22) [2]

A collection of sets is said to have the finite intersection property (FIP) if and only if the intersection of each finite subcollection of it is non empty.

Remark (2.23) [2]

Every filter in a non- empty set X has the FIP.

Theorem (2.24) [3]

Let A be a non empty collection of subsets of a set X such that A has the FIP. Then there exists an ultra filter F containing A.

Proposition (2.25) [4]

Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then A is an L-closed set if and only if

$$A = L - cl(A).$$

Theorem (2.26)

Let (X, τ_1, τ_2) be a bitopological space. Then the following statements are equivalent:

1- X is an L-compact space,

2- Every collection of L-closed subsets of X with the FIP has anon empty intersection, and

3- Every filter on X has an L-cluster point.

Proof:

 $1 \rightarrow 2$

Let $\{F_{\alpha}: \alpha \in \Lambda\}$ be a collection of L-closed subset of X with the FIP. suppose that $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$,

it follows by De-Morgan Laws that $\bigcup_{\alpha \in \Lambda} F_{\alpha}^{c} = X$ therefore $\left\{ F_{\alpha}^{c} : \alpha \in \Lambda \right\}$ forms an L-open cover for X which is an L-compact space, then there exists finitely many elements $\alpha_{1}, \alpha_{2}, ..., \alpha_{n}$ such that $\bigcup_{i=1}^{n} F_{\alpha_{i}}^{c} = X$. Again by De-Morgan Laws we have that $\bigcap_{i=1}^{n} F_{\alpha_{i}} = \phi$ which is a contradiction since $\left\{ F_{\alpha} : \alpha \in \Lambda \right\}$ has the FIP. Hence $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi$

 $2 \rightarrow 3$

Let F be a filter on X, then by remark (2.23) F has the FIP, it follows that the collection $\{L-cl(F): F \in F\}$ of L-closed subsets of X also has the FIP, so by (2) there exists at least one point $x \in \bigcap \{L-cl(F): F \in F\}$ then by theorem (2.21) x is an L-cluster point of F. Thus every filter on X has an L-cluster point.

3→1

Assume that every filter on X has an L-cluster point and let \Im be an L-open cover of X. suppose, if possible, \Im has no finite sub cover the collection $\{X - G : G \in Y\}$ has the FIP, for if there is a finite sub collection $\{X - G_i : 1 \le i \le n\}$ of such that $\bigcap \{X - G_i : 1 \le i \le n\} = \phi$ this implies that $\bigcup \{G_i : 1 \le i \le n\} = X$ which contradicts our supposition that \Im has no finite sub cover, thus must have the FIP, it follows by theorem (2.24)that there exists an ultra filter F on X containing .by (3) F has an L-cluster point $x \in X$, then by theorem (2.21) $x \in L - cl(F)$ for each $F \in F$, in particular $x \in L - cl(X - G)$ for each $G \in \Im$. But X-G is an L-closed subset of X for each $G \in \Im$, therefore by proposition (2.25) L - cl(X - G) = X - G for every $G \in \Im$. This implies $x \in \bigcap \{X - G : G \in \Im\}$, so by De-Morgen Laws $x \in X - \bigcup \{G : G \in \Im\}$, that is, $x \notin \bigcup \{G : G \in \Im\}$, which is a contradiction with the fact that \Im is an L-open cover of X, hence \Im must have a finite sub cover and consequently X is an L-compact space.

Proposition (2.27):

Let $(X.\tau_1, \tau_2)$ be a bitopological space. If X is an L-compact space, then every net in X has an L-cluster point.

Proof:

let (f, X, A, \leq) be a net in X. for each $a \in A$ let $K_a = \{f_x : x \geq a \text{ in } A\}$. Since A is directed by \geq , so the collection $\{K_a : a \in A\}$ has the FIP. Hence $\{L - cl(K_a) : a \in A\}$ also has the FIP, it follows by theorem (2.26) $\bigcap_{a \in A} L - cl(K_a) \neq \phi$ let $p \in \bigcap_{a \in A} L - cl(K_a)$, then $p \in L - cl(K_a)$ for each $a \in A$, so by theorem (2.19) p is an L-cluster point of f.

Refrences

- 1. Kelly, J. C. (1963)" Bitopological spaces", Proc.London Math.Soc.13, p.p.71-89.
- 2. Sharma, L.J.N. (2000)"Topology", Krishna Prakashan Media (P) Ltd, India, Twenty Fifth Edition.
- 3. AL-Talkhany, Y.K. (2001)"Separation Axioms in Bitopological spaces", Research submitted to college of Education Babylon University as apartial Fulfillment of the Requirement for Degree of master of science in Math.,.
- 4. AL-Khafaji, A.H. (2005) "On L-Proper Actions", M.Sc. Thesis, University of AL-Mustansiriyah.