Some Results on The Complete Arcs in Three Dimensional Projective Space Over Galois Field

A.SH. Al- Mukhtar
Department of Mathematics, College of Education Ibn-Al-Haitham,University of Baghdad
Receivedin : 11 May 2011
Acceptedin: 16 June 2011

Abstract

The aim of this paper is to introduce the definition of projective 3 -space over Galois field $\operatorname{GF}(\mathrm{q}), \mathrm{q}=p^{m}$, for some prime number p and some integer m.

Also the definitions of (k, n)-arcs, complete arcs, n -secants, the index of the point and the projectively equivalent arcs are given.

Moreover some theorems about these notations are proved.

Keywords: arcs, index, plane.

Introduction: [1]

A projective 3 - space $\operatorname{PG}(3, \mathrm{~K})$ over a field K is a 3 - dimensional projective space which consists of points, lines and planes with the incidence relation between them.

The projective 3 - space satisfies the following axioms:
A. Any two distinct points are contained in a unique line.
B. Any three distinct non-collinear points, also any line and point not on the line are contained in a unique plane.
C. Any two distinct coplanar lines intersect in a unique point.
D. Any line not on a given plane intersects the plane in a unique point.
E. Any two distinct planes intersect in a unique line.

A projective space $\operatorname{PG}(3, \mathrm{q})$ over Galois field $\mathrm{GF}(\mathrm{q}), \mathrm{q}=p^{m}$, for some prime number p and some integer m, is a 3 - dimensional projective space.

Now, some theorems on $\operatorname{PG}(3, q)$ proved in [1] and [2] are given in the following.

Theorem 1:

Every line in $\operatorname{PG}(3, q)$ contains exactly $q+1$ points.

Theorem 2:

Every point in $\operatorname{PG}(3, q)$ is on exactly $\mathrm{q}+1$ lines.

Theorem 3:

Every plane in $\operatorname{PG}(3, q)$ contains exactly $q^{2}+q+1$ points.

Theorem 4:

Every plane in $\operatorname{PG}(3, q)$ contains exactly $\mathrm{q}^{2}+\mathrm{q}+1$ lines.

Theorem 5:

Every point in $\operatorname{PG}(3, q)$ is on exactly $\mathrm{q}^{2}+\mathrm{q}+1$ planes.

Theorem 6:

There exist $\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1$ points in $\operatorname{PG}(3, q)$.

Theorem 7:

There exist $\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1$ planes in $\mathrm{PG}(3, \mathrm{q})$.

Theorem 8:

Any line in $\mathrm{PG}(3, \mathrm{q})$ is on exactly $\mathrm{q}+1$ planes.

Definition 1: [1]

$\mathrm{A}(k, n)-\operatorname{arc} \mathrm{A}$ in $\operatorname{PG}(3, \mathrm{q})$ is a set of k points such that at most n points of which lie in any plane, $n \geq 3$. n is called the degree of the $(k, n)-\operatorname{arc}$.

Definition 2:

In $\operatorname{PG}(3, q)$, if A is any $(k, n)-\operatorname{arc}$, then an (m-secant) of A is a plane ℓ such that $|\ell \cap \mathrm{A}|=\mathrm{m}$.

Definition 3: [1,2]

A point N not on a (k, n)-arc A has index i if there exists exactly $\mathrm{i}(\mathrm{n}-$ secants) of A through N , one can denote the number of points N of index i by C_{i}.

Definition 4:

$(k, n)-\operatorname{arc} \mathrm{A}$ is complete if it is not contained in any $(k+1, n)$-arc.
From definitions 3 and 4 , it is concluded that the (k, n)-arc is complete iff $\mathrm{C}_{0}=0$. Thus the (k, n)-arc is complete iff every point of $\mathrm{PG}(3, \mathrm{q})$ lies on some n-secant of the (k, n)-arc.

Definition 5: [1,3]

Let T_{i} be the total number of the $i-$ secants of a $(k, n)-\operatorname{arc} \mathrm{A}$, then the type of A denoted by ($\mathrm{T}_{n}, \mathrm{~T}_{n-1}, \ldots, \mathrm{~T}_{0}$).

Definition 6: [1]

Let $\left(k_{1}, n\right)-\operatorname{arc} \mathrm{A}$ is of type $\left(\mathrm{T}_{n}, \mathrm{~T}_{n-1}, \ldots, \mathrm{~T}_{0}\right)$ and $\left(k_{2}, n\right)-\operatorname{arc} \mathrm{B}$ is of type $\left(\mathrm{S}_{n}, \mathrm{~S}_{n-1}, \ldots, \mathrm{~S}_{0}\right)$, then A and B have the same type iff $\mathrm{T}_{i}=\mathrm{S}_{i}$, for all i , in this case they are projectively equivalent.

Theorem 9:

Let $t(\mathrm{P})$ represents the number of 1 -secants (planes) through a point P of a $(k, n)-\operatorname{arc} \mathrm{A}$ and let T_{i} represent the numbers of i - secants (planes) for the arc A in $\operatorname{PG}(3, \mathrm{q})$, then:

1. $t=t(\mathrm{P})=\mathrm{q}^{2}+\mathrm{q}+2-k-\frac{(k-1)(k-2)}{2}-\cdots-\frac{(k-1)(k-2) \cdots(k-(n-1))}{(n-1)!}$
2. $\mathrm{T}_{1}=k t$
3. $\mathrm{T}_{2}=\frac{k(k-1)}{2}$
4. $\mathrm{T}_{3}=\frac{k(k-1)(k-2)}{3!}$
5. $\mathrm{T}_{n}=\frac{k(k-1) \cdots(k-n+1)}{n!}$
6. $\mathrm{T}_{0}=\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1-k t-\frac{k(k-1)}{2}-\frac{k(k-1)(k-2)}{3!}$
$\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!}$

Proof :

1. there exist $(k-1)$ 2-secants to A through P and there exist $\binom{k-1}{2}$ (3-secants) to A through P , and so there exist $\binom{k-1}{n-1} n$-secants to A through P , and since there exist exactly $\quad q^{2}+q+1$ planes through P, then the number of the 1-secants through P :

$$
\begin{aligned}
t(\mathrm{P}) & =\mathrm{q}^{2}+\mathrm{q}+1-(k-1)-\binom{k-1}{2}-\cdots-\binom{k-1}{n-1} \\
& =\mathrm{q}^{2}+\mathrm{q}+2-k-\frac{(k-1)(k-2)}{2}-\cdots-\frac{(k-1)(k-2) \cdots(k-n+1)}{(n-1)!}=t .
\end{aligned}
$$

2. $\mathrm{T}_{1}=$ the number of 1 -secants to A , since each point of A has t (1-secants) and the number of the points is k, then $\mathrm{T}_{1}=k t$.
3. $\mathrm{T}_{2}=$ the number of 2-secants to A , which is the number of planes passing through any two points of A. Hence $\mathrm{T}_{2}=\binom{k}{2}=\frac{k(k-1)}{2}$.
4. $\mathrm{T}_{3}=$ the number of 3 -secants of A , which is the number of planes passing through any three points of A. Hence $\mathrm{T}_{3}=\binom{k}{3}=\frac{k(k-1)(k-2)}{3!}$.
5. $\mathrm{T}_{n}=$ the number of $n-$ secants planes to $\mathrm{A}, \mathrm{T}_{n}=\binom{k}{n}=\frac{k(k-1) \cdots(k-n+1)}{n!}$.
6. $\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1$ represents the number of all planes, then in a $(k, n)-\operatorname{arc}$ of $\mathrm{PG}(3, \mathrm{q})$, $\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1=\mathrm{T}_{0}+\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\cdots+\mathrm{T}_{n}$ $\mathrm{T}_{0}=\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1-\mathrm{T}_{1}-\mathrm{T}_{2}-\mathrm{T}_{3}-\cdots-\mathrm{T}_{n}$
So
$\mathrm{T}_{0}=\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}^{+1}-k t-\frac{k(k-1)}{2}-\frac{k(k-1)(k-2)}{3!}-\cdots-\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!}$.

Theorem 10:

Let T_{i} represents the total number of the i - secants for a $(k, n)-\operatorname{arc} \mathrm{A}$ in $\operatorname{PG}(3, \mathrm{q})$, then the following equations are satisfied:

1. $\sum_{i=0}^{n} \mathrm{~T}_{i}=\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1$
2. $\sum_{i=1}^{n} i!\mathrm{T}_{i}=k t+k(k-1)+k(k-1)(k-2)+\cdots+k(k-1) \cdots(k-n)$
3. $\sum_{i=2}^{n} i(i-1) \mathrm{T}_{i}=k(k-1)+k(k-1)(k-2)+\frac{1}{2} k(k-1)(k-2)(k-3)+\cdots+\frac{1}{(n-2)!}$ $k(k-1) \cdots(k-n)$.

Proof :

1. $\sum_{i=0}^{n} \mathrm{~T}_{i}$ represents the sum of numbers of all i - secants to A , which is the number of all planes in the space. Hence $\sum_{i=0}^{n} \mathrm{~T}_{i}=\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1$.
2. $\mathrm{T}_{1}=k t, t=\mathrm{q}^{2}+\mathrm{q}+2-k-\frac{(k-1)(k-2)}{2}-\cdots-\frac{(k-1) \cdots(k-n+1)}{(n-1)!}$,

$$
\begin{aligned}
& \mathrm{T}_{2}=\frac{k(k-1)}{2}, \quad \mathrm{~T}_{3}=\frac{k(k-1)(k-2)}{3!}, \quad \mathrm{T}_{4}=\frac{k(k-1)(k-2)(k-3)}{4!}, \cdots, \\
& \mathrm{T}_{n}=\frac{k(k-1) \cdots(k-n+1)}{n!} \\
& \sum_{i=1}^{n} i!\mathrm{T}_{i}=\mathrm{T}_{1}+2!\mathrm{T}_{2}+3!\mathrm{T}_{3}+\cdots+n!\mathrm{T}_{n} \\
& \quad=k t+k(k-1)+k(k-1)(k-2)+\cdots+k(k-1) \cdots(k-n+1)
\end{aligned}
$$

3. $\sum_{i=2}^{n} i(i-1) \mathrm{T}_{i}=2 \mathrm{~T}_{2}+6 \mathrm{~T}_{3}+12 \mathrm{~T}_{4}+\cdots+n(n-1) \mathrm{T}_{n}$

$$
=k(k-1)+k(k-1)(k-2)+\frac{1}{2} k(k-1)(k-2)(k-3)+\cdots+
$$

$$
\frac{1}{(n-2)!} k(k-1) \cdots(k-n+1)
$$

Theorem 11:

Let $\mathrm{R}_{i}=\mathrm{R}_{i}(\mathrm{P})$ represents the number of the i - secants (planes) through a point P of a $(k, n)-\operatorname{arc} \mathrm{A}$, in $\mathrm{PG}(3, \mathrm{q})$ then the following equations are satisfied:

1. $\sum_{i=1}^{n} \mathrm{R}_{i}=\mathrm{q}^{2}+\mathrm{q}+1$
2. $\sum_{i=2}^{n}(i-1)!\mathrm{R}_{i}=(k-1)+(k-1)(k-2)+\cdots+(k-1)(k-2) \cdot \cdot(k-n-1)$

$$
=\sum_{i=1}^{n-1}(k-1) \cdots(k-i)
$$

Proof :

1. $\sum_{i=1}^{n} \mathrm{R}_{i}=\mathrm{R}_{1}+\mathrm{R}_{2}+\ldots+\mathrm{R}_{n}, \sum_{i=1}^{n} \mathrm{R}_{i}$ represents the sum of numbers of all the $i-$ secants through a point P of the arc A , which is the number of the planes through P . Thus,

$$
\sum_{i=1}^{n} \mathrm{R}_{i}=\mathrm{q}^{2}+\mathrm{q}+1
$$

2. $\sum_{i=2}^{n}(i-1)!\mathrm{R}_{i}=\mathrm{R}_{2}+2!\mathrm{R}_{3}+3!\mathrm{R}_{4}+\cdots+(n-1)!\mathrm{R}_{n}$

From proof (1) of theorem 9, there exist $(k-1) 2$-secants to A through P , and there exist $\binom{k-1}{2}$ 3-secants to A through P , and so there exist $\binom{k-1}{n-1} \mathrm{n}$-secants to A through P .
Thus $\mathrm{R}_{2}=k-1, \mathrm{R}_{3}=\binom{k-1}{2}, \mathrm{R}_{4}=\binom{k-1}{3}, \ldots, \mathrm{R}_{n}=\binom{k-1}{n-1}$
$\mathrm{R}_{3}=\frac{(k-1)!}{2!(k-3)!}, \mathrm{R}_{4}=\frac{(k-1)!}{3!(k-4)!}, \ldots, \mathrm{R}_{n}=\frac{(k-1)!}{(n-1)!(k-n)!}$
$\mathrm{R}_{3}=\frac{(k-1)(k-2)}{2}, \mathrm{R}_{4}=\frac{(k-1)(k-2)(k-3)}{3!}, \ldots, \mathrm{R}_{n}=\frac{(k-1) \cdots(k-(n-1))}{(n-1)!}$
$\sum_{i=2}^{n}(i-1)!\mathrm{R}_{i}=k-1+\frac{2!(k-1)(k-2)}{2!}+\frac{3!(k-1)(k-2)(k-3)}{3!}+\cdots+$ $\frac{(n-1)!(k-1)(k-2) \cdots(k-(n-1))}{(n-1)!}$
$=(k-1)+(k-1)(k-2)+(k-1)(k-2)(k-3)+\cdots+(k-1)(k-2) \cdots(k-(n-1))$
$=\sum_{i=1}^{n-1}(k-1) \cdots(k-i)$

Theorem 12:

Let $\mathrm{S}_{i}=\mathrm{S}_{i}(\mathrm{Q})$ represent the numbers of the $i-$ secants (planes) of a $(k, n)-\operatorname{arc} \mathrm{A}$ through a point Q not in A , then the following equations are satisfied:

1. $\sum_{i=0}^{n} \mathrm{~S}_{i}=\mathrm{q}^{2}+\mathrm{q}+1$
2. $\sum_{i=1}^{n} i \mathrm{~S}_{i}=k$

Proof :

1. $\sum_{i=0}^{n} \mathrm{~S}_{i}$ represents the sum of the total numbers of all $i-$ secants to A through a point Q not in A , which is equal to the number of all planes through Q . Thus $\sum_{i=0}^{n} \mathrm{~S}_{i}=\mathrm{q}^{2}+\mathrm{q}+1$.
2. $\sum_{i=1}^{n} i \mathrm{~S}_{i}=\mathrm{S}_{1}+2 \mathrm{~S}_{2}+3 \mathrm{~S}_{3}+\cdots+n \mathrm{~S}_{n}$
$\mathrm{S}_{1}, \mathrm{~S}_{2}, \cdots, \mathrm{~S}_{n}$ represent the numbers of the $i-$ secants of the arc A through the point Q not in A.
S_{1} is the number of the 1-secants to A, each one passes through one point of A.
S_{2} is the number of the 2-secants to A, each one passes through two points of A.
S_{3} is the number of the 3-secants to A, each one passes through three points of A.
Also, S_{n} is the number of the $n-$ secants to A , each one passes through n points of A .
Since the number of points of the $(k, n)-\operatorname{arc} \mathrm{A}$ is k, then $\sum_{i=1}^{n} i \mathrm{~S}_{i}=k$.

Theorem 13:

Let C_{i} be the number of points of index i in $\mathrm{S}=\mathrm{PG}(3, \mathrm{q})$ which are not on a complete $(k, n)-\operatorname{arc} \mathrm{A}$, then the constants C_{i} of A satisfy the following equations:
(i) $\sum_{\alpha}^{\beta} \mathrm{C}_{i}=\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1-k$
(ii) $\sum_{\alpha}^{\beta} i \mathrm{C}_{\mathrm{i}}=\frac{k(k-1) \cdots(k-n+1)}{n!}\left(\mathrm{q}^{2}+\mathrm{q}+1-n\right)$
where α is the smallest i for which $\mathrm{C}_{\mathrm{i}} \neq 0, \beta$ be the largest i for which $\mathrm{C}_{\mathrm{i}} \neq 0$.
Proof:
The equations express in different ways the cardinality of the following sets
(i) $\{\mathrm{Q} \mid \mathrm{Q} \in \mathrm{S} \backslash \mathrm{A}\}$
(ii) $\{(\mathrm{Q}, \pi) \mid \mathrm{Q} \in \pi \backslash \mathrm{A}, \pi$ an $n-$ secant of A$\}$
for in (i), $\sum_{\alpha}^{\beta} C_{i}$ represents all points in the space which are not in A, then
$\sum_{\alpha}^{\beta} \mathrm{C}_{\mathrm{i}}=\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1-k$, and in (ii) $\sum_{\alpha}^{\beta} i \mathrm{C}_{\mathrm{i}}$ represents all points in the space not in A , which are on $n-$ secants of A, that is, each $n-$ secant contains $\mathrm{q}^{2}+\mathrm{q}+1-n$ points, and the number of the n-secants is $\binom{k}{n}$, then

$$
\sum_{\alpha}^{\beta} i \mathrm{C}_{\mathrm{i}}=\binom{k}{n}\left(\mathrm{q}^{2}+\mathrm{q}+1-n\right)=\frac{k(k-1) \cdots(k-n+1)}{n!}\left(\mathrm{q}^{2}+\mathrm{q}+1-n\right) .
$$

Theorem 14:

If P is a point of a (k, n)-arc A in $\mathrm{PG}(3, \mathrm{q})$, which lies on an m -secant (plane) of A , then the planes through P contain at most $(n-1) \mathrm{q}(\mathrm{q}+1)+m$ points of A .

Proof:

If P in A lies on an m-secant (plane), then every other plane through P contains at most $n-1$ points of A distinct from P. Hence the $q^{2}+q+1$ planes through P contain at most $(n-1)\left(q^{2}+q\right)+m$ points of A.

References

1. Al-Mukhtar, A.Sh., (2008) Complete Arcs and Surfaces in three Dimensional Projective Space Over Galois Field, Ph.D. Thesis, University of Technology, Iraq.
2. Kirdar,M.S. and Al-Mukhtar, A. Sh., (2009), Engineering and Technology Journal, On Projective 3-Space, Vol.27(8):
3. Hirschfeld, J. W. P., (1998), Projective Geometries Over Finite Fields, Second Edition, Oxford University Press.

بعض النتائج حول الاقواس الكاملة في فضاء اسقاطي ثلاثي الابعاد حول حقل كالو

آمال شهـاب (المختّار
قسم الرياضيات ،كلية التربية_ ابن الهيثم ،جامعة بغداد

استلم (البحث في :11 آيار 2011 حير

قبل البحث في : 16 حزيران 2011

الخلاصة

 p p p اذ اذ p ع عد أولي و m عدد صحيح.
كتلك أعطيت تعاريف الاقواس - (k,n) ، الاقواس الكاملة، القاطع - n، دليل النقطة، والاقواس المتكافئة
اسقاطيا.
فضلا على تلك بر هنت بعض المبر هنات حول هذه المفاهيم.

الكلمـات المفتاحية : الاقواس ، الدليل، المستوي.

