Some Results on The Complete Arcs in Three Dimensional Projective Space Over Galois Field

A.SH. Al- Mukhtar Department of Mathematics, College of Education Ibn-Al-Haitham,University of Baghdad Received in : 11 May 2011 Accepted in : 16 June 2011

Abstract

The aim of this paper is to introduce the definition of projective 3-space over Galois field GF(q), $q = p^m$, for some prime number p and some integer m.

Also the definitions of (k,n)-arcs, complete arcs, n-secants, the index of the point and the projectively equivalent arcs are given.

Moreover some theorems about these notations are proved.

Keywords: arcs, index, plane.

Introduction: [1]

A projective 3 - space PG(3, K) over a field K is a 3 - dimensional projective space which consists of points, lines and planes with the incidence relation between them.

The projective 3 – space satisfies the following axioms:

- A. Any two distinct points are contained in a unique line.
- **B.** Any three distinct non-collinear points, also any line and point not on the line are contained in a unique plane.
- C. Any two distinct coplanar lines intersect in a unique point.
- **D.** Any line not on a given plane intersects the plane in a unique point.
- E. Any two distinct planes intersect in a unique line.

A projective space PG(3,q) over Galois field GF(q), $q = p^m$, for some prime number p and some integer m, is a 3 – dimensional projective space.

Now, some theorems on PG(3,q) proved in [1] and [2] are given in the following

Theorem 1:

Every line in PG(3,q) contains exactly q + 1 points.

Theorem 2:

Every point in PG(3,q) is on exactly q + 1 lines.

Theorem 3:

Every plane in PG(3,q) contains exactly $q^2 + q + 1$ points.

Theorem 4:

Every plane in PG(3,q) contains exactly $q^2 + q + 1$ lines.

Theorem 5:

Every point in PG(3,q) is on exactly $q^2 + q + 1$ planes.

Theorem 6:

There exist $q^3 + q^2 + q + 1$ points in PG(3,q).

Theorem 7:

There exist $q^3 + q^2 + q + 1$ planes in PG(3,q).

Theorem 8:

Any line in PG(3,q) is on exactly q + 1 planes.

Definition 1: [1]

A (k,n) – arc A in PG(3,q) is a set of k points such that at most n points of which lie in any plane, $n \ge 3$. n is called the degree of the (k,n) – arc.

Definition 2:

In PG(3,q), if A is any (k,n) – arc, then an (m-secant) of A is a plane ℓ such that $|\ell \cap A| = m$.

Definition 3: [1,2]

A point N not on a (k,n)-arc A has index i if there exists exactly i (n - secants) of A through N, one can denote the number of points N of index i by C_i.

Definition 4:

(k,n)-arc A is complete if it is not contained in any (k + 1,n)-arc.

From definitions 3 and 4, it is concluded that the (k,n)-arc is complete iff $C_0 = 0$. Thus the (k,n)-arc is complete iff every point of PG(3,q) lies on some *n*-secant of the (k,n)-arc.

Definition 5: [1,3]

Let T_i be the total number of the *i* – secants of a (k,n) – arc A, then the type of A denoted by $(T_n, T_{n-1}, ..., T_0)$.

Definition 6: [1]

Let (k_1,n) – arc A is of type $(T_n, T_{n-1}, ..., T_0)$ and (k_2,n) – arc B is of type $(S_n, S_{n-1}, ..., S_0)$, then A and B have the same type iff $T_i = S_i$, for all i, in this case they are projectively equivalent.

Theorem 9:

Let t(P) represents the number of 1-secants (planes) through a point P of a (k,n) – arc A and let T_i represent the numbers of *i* – secants (planes) for the arc A in PG(3,q), then:

1.
$$t = t(P) = q^2 + q + 2 - k - \frac{(k-1)(k-2)}{2} - \dots - \frac{(k-1)(k-2)\dots(k-(n-1))}{(n-1)!}$$

2. $T_1 = k t$
3. $T_2 = \frac{k (k-1)}{2}$
4. $T_3 = \frac{k (k-1)(k-2)}{3!}$

5.
$$T_n = \frac{k(k-1)\cdots(k-n+1)}{n!}$$

6. $T_0 = q^3 + q^2 + q + 1 - k t - \frac{k(k-1)}{2} - \frac{k(k-1)(k-2)}{3!} - \cdots - \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$

Proof:

1. there exist (k - 1) 2-secants to A through P and there exist $\binom{k-1}{2}$ (3-secants) to A through P, and so there exist $\binom{k-1}{n-1}$ n - secants to A through P, and since there exist exactly $q^2 + q + 1$ planes through P, then the number of the 1-secants through P: $t(P) = q^2 + q + 1 - (k-1) - \binom{k-1}{2} - \dots - \binom{k-1}{n-1}$ $= q^2 + q + 2 - k - \frac{(k-1)(k-2)}{2} - \dots - \frac{(k-1)(k-2)\cdots(k-n+1)}{(n-1)!} = t.$

- 2. T_1 = the number of 1-secants to A, since each point of A has t (1-secants) and the number of the points is k, then $T_1 = k t$.
- 3. T_2 = the number of 2-secants to A, which is the number of planes passing through any two points of A. Hence $T_2 = \binom{k}{2} = \frac{k(k-1)}{2}$.
- 4. T_3 = the number of 3-secants of A, which is the number of planes passing through any three points of A. Hence $T_3 = \binom{k}{3} = \frac{k(k-1)(k-2)}{3!}$.
- 5. $T_n =$ the number of n secants planes to A, $T_n = \binom{k}{n} = \frac{k(k-1)\cdots(k-n+1)}{n!}$.
- 6. $q^3 + q^2 + q + 1$ represents the number of all planes, then in a (k,n) arc of PG(3,q), $q^3 + q^2 + q + 1 = T_0 + T_1 + T_2 + T_3 + \dots + T_n$ $T_0 = q^3 + q^2 + q + 1 - T_1 - T_2 - T_3 - \dots - T_n$ So $T_0 = q^3 + q^2 + q + 1 - k t - \frac{k(k-1)}{2} - \frac{k(k-1)(k-2)}{3!} - \dots - \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$.

Theorem 10:

Let T_i represents the total number of the *i* – secants for a (*k*,*n*) – arc A in PG(3,q), then the following equations are satisfied:

1.
$$\sum_{i=0}^{n} T_{i} = q^{3} + q^{2} + q + 1$$

2. $\sum_{i=1}^{n} i! T_{i} = k t + k (k-1) + k (k-1)(k-2) + \dots + k (k-1) \dots (k-n)$

3.
$$\sum_{i=2}^{n} i(i-1) \operatorname{T}_{i} = k(k-1) + k(k-1)(k-2) + \frac{1}{2}k(k-1)(k-2)(k-3) + \dots + \frac{1}{(n-2)!} \\ k(k-1) \cdots (k-n).$$

Proof:

1. $\sum_{i=0}^{n} T_i$ represents the sum of numbers of all *i* – secants to A, which is the number of all

planes in the space. Hence $\sum_{i=0}^{n} T_i = q^3 + q^2 + q + 1$.

2.
$$T_1 = k \ t, \ t = q^2 + q + 2 - k - \frac{(k-1)(k-2)}{2} - \dots - \frac{(k-1)\dots(k-n+1)}{(n-1)!},$$

 $T_2 = \frac{k(k-1)}{2}, \quad T_3 = \frac{k(k-1)(k-2)}{3!}, \quad T_4 = \frac{k(k-1)(k-2)(k-3)}{4!}, \quad \dots,$
 $T_n = \frac{k(k-1)\dots(k-n+1)}{n!}$
 $\sum_{i=1}^n i! \ T_i = T_1 + 2! \ T_2 + 3! \ T_3 + \dots + n! \ T_n$
 $= k \ t + k \ (k-1) + k \ (k-1)(k-2) + \dots + k \ (k-1) \dots \ (k-n+1)$

3.
$$\sum_{i=2}^{n} i(i-1) T_{i} = 2 T_{2} + 6 T_{3} + 12 T_{4} + \dots + n(n-1) T_{n}$$
$$= k (k-1) + k (k-1)(k-2) + \frac{1}{2} k (k-1)(k-2)(k-3) + \dots + \frac{1}{(n-2)!} k (k-1) \dots (k-n+1)$$

Theorem 11:

Let $R_i = R_i(P)$ represents the number of the *i* – secants (planes) through a point P of a (k,n) – arc A, in PG(3,q) then the following equations are satisfied:

1.
$$\sum_{i=1}^{n} R_i = q^2 + q + 1$$

2. $\sum_{i=2}^{n} (i-1)! R_i = (k-1) + (k-1)(k-2) + \dots + (k-1)(k-2) \dots (k-n-1)$
 $= \sum_{i=1}^{n-1} (k-1) \dots (k-i)$

Proof:

1. $\sum_{i=1}^{n} R_i = R_1 + R_2 + \dots + R_n$, $\sum_{i=1}^{n} R_i$ represents the sum of numbers of all the *i* – secants through a point P of the arc A, which is the number of the planes through P. Thus,

$$\sum_{i=1}^{n} R_{i} = q^{2} + q + 1.$$

2.
$$\sum_{i=2}^{n} (i-1)! R_i = R_2 + 2! R_3 + 3! R_4 + \dots + (n-1)! R_n$$

From proof (1) of theorem 9, there exist $(k-1)$ 2-secants to A through P, and there exist $\binom{k-1}{2}$ 3-secants to A through P, and so there exist $\binom{k-1}{n-1}$ n-secants to A through P.
Thus $R_2 = k-1$, $R_3 = \binom{k-1}{2}$, $R_4 = \binom{k-1}{3}$, ..., $R_n = \binom{k-1}{n-1}$
 $R_3 = \frac{(k-1)!}{2!(k-3)!}$, $R_4 = \frac{(k-1)!}{3!(k-4)!}$, ..., $R_n = \frac{(k-1)!}{(n-1)!(k-n)!}$
 $R_3 = \frac{(k-1)(k-2)}{2}$, $R_4 = \frac{(k-1)(k-2)(k-3)}{3!}$, ..., $R_n = \frac{(k-1)\cdots(k-(n-1))}{(n-1)!}$
 $\sum_{i=2}^{n} (i-1)! R_i = k-1 + \frac{2!(k-1)(k-2)}{2!} + \frac{3!(k-1)(k-2)(k-3)}{3!} + \dots + \frac{(n-1)!(k-1)(k-2)\cdots(k-(n-1))}{(n-1)!}$
 $= (k-1) + (k-1)(k-2) + (k-1)(k-2)(k-3) + \dots + (k-1)(k-2)\cdots(k-(n-1)))$
 $= \sum_{i=1}^{n-1} (k-1)\cdots(k-i)$

Theorem 12:

Let $S_i = S_i(Q)$ represent the numbers of the *i* – secants (planes) of a (k,n) – arc A through a point Q not in A, then the following equations are satisfied:

1. $\sum_{i=0}^{n} S_i = q^2 + q + 1$

2.
$$\sum_{i=1}^{i} i S_i = k$$

Proof :

1. $\sum_{i=0}^{n} S_i$ represents the sum of the total numbers of all *i* – secants to A through a point Q

not in A, which is equal to the number of all planes through Q. Thus $\sum_{i=0}^{n} S_i = q^2 + q + 1$.

2. $\sum_{i=1}^{n} i S_i = S_1 + 2 S_2 + 3 S_3 + \dots + n S_n$

 S_1, S_2, \dots, S_n represent the numbers of the *i* – secants of the arc A through the point Q not in A.

 S_1 is the number of the 1-secants to A, each one passes through one point of A.

 S_2 is the number of the 2-secants to A, each one passes through two points of A.

 S_3 is the number of the 3-secants to A, each one passes through three points of A.

Also, S_n is the number of the n – secants to A, each one passes through n points of A.

Since the number of points of the (k,n) – arc A is k, then $\sum_{i=1}^{n} i S_i = k$.

Theorem 13:

Let C_i be the number of points of index *i* in S = PG(3,q) which are not on a complete (k,n) – arc A, then the constants C_i of A satisfy the following equations:

(i)
$$\sum_{\alpha}^{\beta} C_i = q^3 + q^2 + q + 1 - k$$

(ii) $\sum_{\alpha}^{\beta} i C_i = \frac{k(k-1)\cdots(k-n+1)}{n!} (q^2 + q + 1 - n)$

where α is the smallest *i* for which $C_i \neq 0$, β be the largest *i* for which $C_i \neq 0$. **Proof**:

The equations express in different ways the cardinality of the following sets

- (i) $\{Q \mid Q \in S \setminus A\}$
- (ii) $\{(Q,\pi) \mid Q \in \pi \setminus A, \pi \text{ an } n \text{secant of } A\}$

for in (i), $\sum_{\alpha}^{\beta} C_i$ represents all points in the space which are not in A, then

 $\sum_{\alpha}^{\beta} C_i = q^3 + q^2 + q + 1 - k$, and in (ii) $\sum_{\alpha}^{\beta} i C_i$ represents all points in the space not in A, which are on *n* - secants of A, that is, each *n* - secant contains $q^2 + q + 1 - n$ points, and the number of the *n* - secants is $\binom{k}{n}$, then

$$\sum_{\alpha}^{\beta} i C_{i} = \binom{k}{n} (q^{2} + q + 1 - n) = \frac{k(k-1)\cdots(k-n+1)}{n!} (q^{2} + q + 1 - n).$$

Theorem 14:

If P is a point of a (k,n)-arc A in PG(3,q), which lies on an m-secant (plane) of A, then the planes through P contain at most (n-1) q (q+1) + m points of A. **Proof :**

If P in A lies on an m – secant (plane), then every other plane through P contains at most n-1 points of A distinct from P. Hence the $q^2 + q + 1$ planes through P contain at most $(n-1)(q^2+q) + m$ points of A.

References

- 1. Al-Mukhtar, A.Sh., (2008) Complete Arcs and Surfaces in three Dimensional Projective Space Over Galois Field, Ph.D. Thesis, University of Technology, Iraq.
- Kirdar, M.S. and Al-Mukhtar, A. Sh., (2009), Engineering and Technology Journal, On Projective 3-Space, Vol.<u>27(8)</u>:
- 3. Hirschfeld, J. W. P., (1998), Projective Geometries Over Finite Fields, Second Edition, Oxford University Press.

بعض النتائج حول الاقواس الكاملة في فضاء اسقاطي ثلاثي الإبعاد حول حقل كالوا

آمال شهاب المختار قسم الرياضيات ،كلية التربية- ابن الهيثم ،جامعة بغداد

> استلم البحث في :11 آيار 2011 قبل البحث في : 16 حزيران 2011

الخلاصة

الهدف من هذا البحث هو تقديم تعريف الفضاء الثلاثي الاسقاطي حول حقل كالوا (q = p^m ، GF (q) بعض قيم و m اذان p عدد أولي و m عدد صحيح

كذلك أعطيت تعاريف الاقواس – (k,n) ، الاقواس الكاملة، القاطع – n، دليل النقطة، والاقواس المتكافئة اسقاطيا.

فضلا على نلك بر هذت بعض المبر هذات حول هذه المفاهيم.

الكلمات المفتاحية : الاقواس ، الدليل، المستوى