On Pairwise Semi-p-separation Axioms in Bitopological Spaces

R. N.Majeed

Department of Mathematics, College of Education Ibn Al-Haitham, University of Baghdad

Received in: 10 October 2010 Accepted in: 13 March 2011

Abstract

In this paper, we define a new type of pairwise separation axioms called pairwise semi-p-separation axioms in bitopological spaces, also we study some properties of these spaces and relationships of each one with the ordinary separation axioms in the bitopological spaces.

Keywords: Bitopological space, pairwise semi-p-**T**₀- space, pairwise semi-p-**T**₁- space, pairwise semi-p-**T**₂- space, pairwise semi-p-regular space, pairwise semi-p-normal space.

1-Introduction

The theory of bitopological spaces started with the paper of Kelly in [1]. A set equipped with two topologies is called a bitopological space. Since then several authors continued investigating such spaces. Furthermore, Kelly extended some of the standard results of separation axioms in a topological space to a bitopological space, such extensions are pairwise regular, pairwise Hausdorff and pairwise normal, concepts of pairwise T_1 and pairwise T_2 were introduced by Murdeshwar and Naimpally in [2].

The purpose of this paper is to introduce and investigate the notion of pairwise semi-p-separation axioms in bitopological spaces and study some properties of these spaces and relationships of each one with the ordinary separation axioms in the bitopological spaces.

2- Preliminaries

In this section, we introduce some definitions and propositions, which is necessary for the paper.

Definition 2.1[3]:

A subset A of a topological space (X, τ) is called a *pre-open set* if $A \subseteq \overline{A}$. The complement of pre-open set is called *pre-closed set*.

The family of all pre-open subsets of X is denoted by PO(X). The family of all pre-closed subsets of X is denoted by PC(X).

Proposition 2.2 [4]:

Let (X, T) be a topological space, then:

1-Every open set is a pre-open set.

2-Every closed set is a pre-closed set.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

But the converse of (1) and (2) is not true in general.

Proposition 2.3 [4]:

The union of any family of pre-open sets is a pre-open set.

Definition 2.4[3]:

The union of all per-open sets contained in A is called the *pre-interior of* A, denoted by pre-int A.

The intersection of all pre-closed sets containing A is called the *per-closure of A*, and is denoted by pre-cl A.

Proposition 2.5 [4]:

Let (X, T) be a topological space and A, B be any two subsets of X, then:

pre-cl $A \cup pre - cl B \subseteq pre - cl (A \cup B)$.

Definition 2.6 [4]:

A subset A of a topological space (X, τ) is said to be *semi-p-open set* if and only if there exists a pre-open set in X, say U, such that $U \subseteq A \subseteq pre - cl U$.

The family of all semi-p-open sets of X is denoted by S-P(X).

The complement of semi-p-open set is called semi-p-closed set.

The family of all semi-p-closed sets of X is denoted by S-P-C(X).

Proposition 2.7 [4]:

- 1- Every open (closed) set is semi-p-open (closed) set respectively.
- 2- Every pre-open (pre-closed) set is semi-p-open (semi-p-closed) set respectively. Also, the converse of (1) and (2) is not true in general.

Proposition 2.8:

The union of any family of semi-p-open sets is semi-p-open set.

Proof:

Let $\{A_{\alpha}\}_{\alpha} \in \Lambda$ be any family of semi-p-open sets in X, we must prove $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is a semi-p-open set, since A_{α} is semi-p-open set, for all $\alpha \in \Lambda$, which implies there exists a preopen set U_{α} such that $U_{\alpha} \subseteq A_{\alpha} \subseteq pre - clU_{\alpha}$.

Thus $\bigcup_{\alpha \in A} U_{\alpha} \subseteq \bigcup_{\alpha \in A} A_{\alpha} \subseteq \bigcup_{\alpha \in A} prc - clU_{\alpha}$ and from (Proposition 2.3 and 2.5) we have a pre-open set $\bigcup_{\alpha \in A} U_{\alpha}$ such that $\bigcup_{\alpha \in A} U_{\alpha} \subseteq \bigcup_{\alpha \in A} A_{\alpha} \subseteq prc - cl(\bigcup_{\alpha \in A} U_{\alpha})$. Hence $\bigcup_{\alpha \in A} A_{\alpha}$ is a semi-p-open set. \blacksquare

Definition 2.9 [4]:

Let (X, τ) be a topological space and let A be any subset of X, then:

- 1- The union of all semi-p-open sets contained in A is called the *semi-p-interior of A*, denoted by semi-p-int A.
- 2- The intersection of all semi-p-closed sets containing A is called the *semi-p-closure of* A, and denoted by semi-p-cl A.

Definition 2.10 [4]:

Let (X, T) be a topological space and let $X \in X$. A subset N of X is said to be *semi-p-neighborhood of* X if and only if there exists a semi-p-open set X, such that $X \in X$. We shall use the symbol nbd. instead of the word neighborhood.

If N is semi-p-open subset of X, then N is a semi-p-open nbd of x.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

Proposition 2.11:

Let (X, τ) be a topological space, then every semi-p-nbd is a semi-p-open set.

Proof:

Let N be any semi-p-nbds for each of its points, that is means for each $x \in N$, there exists a semi-p- open set G such that $x \in G \subseteq N$, now we must prove N is a semi-p-open set, since $N = \bigcup_{x \in N} \{x\}$ and since N is a semi-p- nbd for all $x \in N$.

Thus $N = \bigcup_{x \in C} \{G: G \text{ is a semi} - p - open \text{ set such that } x \in G \subseteq N\}$, and from (Proposition 2.8) we have N is a semi-p-open set.

Definition 2.12 [1]:

Let X be a non-empty set, let τ_1 , τ_2 be any two topologies on X, then (X, τ_1, τ_2) is called a bitopological space.

Note 2.13:

In the space (X, τ_1, τ_2) , we shall denote to the set of all semi-p- open sets in $\tau_1(\tau_2)$ by S-P(X, τ_1)(S-P(X, τ_2)) respectively.

Definition 2.14 [2]:

A bitopological space (X, τ_1, τ_2) is said to be:

- 1- **Pairwise** T_0 **space** if for every pair of points x and y in X such that $x \neq y$, there exists a τ_1 -open set containing x but not y or y but not y or y but not y or y but not y.
- 2- **Pairwise** $T_1 space$ if for every pair of points x and y in X such that $x \neq y$, there exists a τ_1 -open set U and a τ_2 -open set V such that

$$x \in U, y \notin U$$
 and $y \in V, x \notin V$.

Definition 2.15[1]:

A bitopological space $(X_1\tau_1,\tau_2)$ is said to be:

- 1- **Pairwise** T_2 **space** if every two distinct points in X can be separated by disjoint τ_1 -open set and τ_2 -open sets.
- 2- Pairwise regular space, if for each point $x \in X$ and each τ_i -closed set F not containing x, there exists a τ_i -open set U and τ_j -open set V such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$, where $i \neq j$ and i, j = 1, 2.
- 3- Pairwise normal space, if for each τ_i -closed set A and τ_j -closed set B such that $A \cap B = \emptyset$, there exist sets U and V such that U is τ_j -open, V is τ_i -open, $A \subseteq U, B \subseteq V$, and $U \cap V = \emptyset$, $i, j = 1, 2, i \neq j$.

3-Pairwise semi-p-separation axioms

We begin with the definition of pairwise semi-p- $T_{\mathbb{I}}$ - spaces.

Definition 3.1:

A space (X, τ_1, τ_2) is called *pairwise semi-p-T*₀-space if for any pair of distinct points x and y in X, there exists a τ_1 -semi-p-open set or τ_2 -semi-p-open set which contains one of them but not the other.

Proposition 3.2:

If a space (X_1, τ_1, τ_2) is pairwise T_0 - space, then (X_1, τ_1, τ_2) is pairwise semi-p- T_0 - space.

Proof:

For any $x, y \in X$ such that $x \neq y$, we must prove there exists a semi-p-open in τ_1 or τ_2 which contains one of them but not the other.

Now, let $x \neq y$ in X, since (X, τ_1, τ_2) is pairwise T_0 -space, then there exists open set U in τ_1 or τ_2 such that $x \in U$ and $y \notin U$. But from (Proposition 2.7 part (1)) there exists semi-popen set U such that $x \in U$ and $y \notin U$. Thus (X, τ_1, τ_2) is pairwise semi-p- T_0 -space.

Remark 3.3:

The converse of (Proposition 3.2) is not true in general, as the following example shows: **Example 1:**

Let
$$X = \{1, 2, 3\}, \tau_1 = \{\emptyset, X, \{1\}\}, \tau_2 = \{\emptyset, X, \{2,3\}\}, PO(X, \tau_1) = S - P(X, \tau_1) = \{\{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}\}, PO(X, \tau_2) = S - P(X, \tau_2) = \{\{\emptyset, X, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}\}.$$

Then, clearly the space (X, τ_1, τ_2) is pairwise semi-p- T_0 - space, but not pairwise T_0 - space, since $2 \neq 3$ in X but there is no open set $U \in \tau_1$ or $U \in \tau_2$ such that $2 \in U$ and $3 \notin U$.

Theorem 3.4:

For a space $(X_1 x_1 x_2)$, the following are equivalent :

- (1) $(\mathbf{X}_1, \mathbf{\tau}_1, \mathbf{\tau}_2)$ is pairwise semi-p- \mathbf{T}_0 -space.
- (2) For every $x \in X_1\{x\} = \tau_1 semi p cl\{x\} \cap \tau_2 semi p cl\{x\}$.
- (3) For every $x \in X$, the intersection of all $\tau_1 somt p notghbourhoods of x$ and all $\tau_2 somt p notghbourhoods of x is <math>\{x\}$.

Proof: $(1) \Rightarrow (2)$

Suppose $x \neq y$ in X, there exists a τ_1 -semi-p-open set U containing x but not y or a τ_2 -semi-p-open set V containing y but not x. That means mean either $x \notin \tau_1 - semi - p - cl\{y\}$ or $y \notin \tau_2 - semi - p - cl\{x\}$.

Hence for a point x $y \notin \tau_1 - seml - p - cl\{x\} \cap \tau_2 - seml - p - cl\{x\}$. Thus $\{x\} = \tau_1 - seml - p - cl\{x\} \cap \tau_2 - seml - p - cl\{x\}$.

Suppose there exists $y \neq x$ such that y belongs to the intersection of all $\tau_1 - semi - p - nbds$ of x and all $\tau_2 - semi - p - nbds$ of x. Hence (X, τ_1, τ_2) is not pairwise semi-p- T_3 -space, implies τ_1 -semi-pcl $\{x\}$ \cap $\tau_2 - semi - pcl\{x\} \neq [x]$ which is a contradiction, thus the intersection of $all \tau_1 - semi - p - nbds$ of x and all $\tau_2 - semi - p - nbds$ of x and all $\tau_2 - semi - p - nbds$ of x is $\{x\}$.

Let $x \neq y$ in X, since $\{x\}$ = the intersection of all $\tau_1 - seml - p - nbds$ of x and $\tau_2 - seml - p - nbds$ of x. Hence there exists either on $\tau_1 - seml - p - nbds$ of y not containing x or a $\tau_2 - seml - p - nbds$ of y not containing x. Therefore (X, τ_1, τ_2) is pairwise semi-p- T_1 -space.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

Theorem 3.5:

The product of an arbitrary family of pairwise semi-p- $T_{\mathbb{Q}}$ -spaces is pairwise semi-p- $T_{\mathbb{Q}}$ -space.

Proof:

Let $(X, \tau_1, \tau_2) = \prod_{n \in \Lambda} (X_n, \tau_{1_n}, \tau_{2_n})$ be the product of an arbitrary family of pairwise semi-p- T_0 -spaces, where τ_1 and τ_2 are the product topologies on X generated by τ_{1_n}, τ_{2_n} respectively and $X = \prod_{n \in \Lambda} X_n$.

Let x and y be two distinct points of X. Hence $x_A \neq y_A$ for some $\lambda \in A$. But $(X_A, \tau_{1_A}, \tau_{2_A})$ is pairwise semi-p- T_0 -space, therefore, there exists either a τ_{1_A} -semi-p-open set U_A containing x_A but not y_A or a τ_{2_A} -semi-p-open set V_A containing y_A but not x_A . Define $U = \bigcup_{x \neq A} X_x \times U_A$ and $V = \bigcup_{x \neq A} X_x \times V_A$. Then U is a τ_1 - semi-p-open set and V is τ_2 -semi-p-open set, also, U contains x but not y. Hence $\prod_{x \in A} (X_x, \tau_{1_A}, \tau_{2_A})$ is pairwise semi-p- T_0 -space.

Definition 3.6:

A space (X, τ_1, τ_2) is called *pairwise semi-p-T₁-space*, if for any pair of distinct points x and y in X, there exists a τ_1 -semi-p-open set U and τ_2 -semi-p-open set V such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Proposition 3.7:

If a space (X, τ_1, τ_2) is pairwise $-T_1$ - space, then (X, τ_1, τ_2) is pairwise semi-p- T_1 - space.

Proof:

For any $x \neq y$ in X, since (X, τ_1, τ_2) is pairwise $-T_1$ - space, then there exists τ_1 -open set U and τ_2 -open set V such that $x \in U, y \notin U$ and $y \in V, x \notin V$. And since every open set is semi-p-open set (by Proposition 2.7 part (1)), which implies U is semi-p-open set in τ_1 containing x but not y and V is semi-p-open set in τ_2 containing y but not x. Hence (X, τ_1, τ_2) is pairwise semi-p- T_1 - space.

Remark 3.8:

The converse of (Proposition 3.7) is not true in general as the following example shows: Consider Example 1, where:

$$X=\{1,2,3\}, \ r_1=\{\emptyset,X,\{1\}\}, r_2=\{\emptyset,X,\{2,3\}\}, \ PO(X,\tau_1)=S-P(X,\tau_1)=\{\{\emptyset,X,\{1\},\{1,2\},\{1,3\}\}, \ \}\}$$

PO(X, τ_2) = S-P(X, τ_2)= { $\{\emptyset, X, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ }. Then, clearly that the space (X, τ_1, τ_2) is pairwise semi-p- T_1 - space, but not pairwise - T_1 - space, since $2 \neq 3$ in X, but there is no τ_1 -open set containing 2 but not containing 3 and there is no τ_2 -open set containing 3 but not 2.

Theorem 3.9:

The product of an arbitrary family of pairwise semi-p- T_1 -spaces is pairwise semi-p- T_1 -space.

Proof: Similar to the proof of (Theorem 3.5).

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

Definition 3.10:

A space (X, τ_1, τ_2) is called *pairwise semi-p-T*₂-space, if for any pair of distinct points x and y in X, there exists a τ_1 -semi-p-open set U and τ_2 -semi-p-open set V such that $x \in U$ $v \in V$ and $U \cap V = \emptyset$.

Proposition 3.11:

If a space (X_1, τ_1, τ_2) is pairwise $-T_2$ - space, then (X_1, τ_1, τ_2) is pairwise semi-p- T_2 - space.

Proof: similar of the proof of (Proposition 3.7). ■

Remark 3.12:

The converse of (Proposition 3.11) is not true in general; consider example 1:

$$X=\{1,2,3\}, r_1=\{\emptyset,X,\{1\}\}, r_2=\{\emptyset,X,\{2,3\}\},$$

$$PO(X, \tau_1) = S-P(X, \tau_1) = \{ \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\} \}, \}$$

PO(X, τ_2) = S-P(X, τ_2)= { { \emptyset , X, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}, clearly (X, τ_1 , τ_2) is pairwise semi-p- T_2 - space, but not pairwise - T_2 - space, since $2 \neq 3$ in X, but there is no two disjoint open sets in τ_1 and τ_2 , which contain 2 and 3 respectively.

Theorem 3.13:

For a space (X_1, τ_1, τ_2) , the following are equivalent:

- 1- $(\mathbf{X}, \tau_1, \tau_2)$ is pairwise semi-p- \mathbf{T}_2 space.
- 2- For each $x \in X$ and for each $y \in X$ such that $y \neq x$, there exists a τ_1 -semi-p-open set U containing x such that $y \notin \tau_2$ -semi-pclU.
- 3- For each $x \in X$, $\{x\} = \bigcap [\tau_2$ -semi-pclU: $x \in U$ and U is τ_1 -semi-p-open set $\}$.
- 4- The diagonal Δ^{-} $\{(x,x); x \in X\}$ is a semi-p-closed subset of $(X \times X, \tau_{X \times X})$.

Proof: $(1) \Rightarrow (2)$

Let $x \in X$, be given and consider $y \in X$ such that $y \neq x$, since (X, τ_1, τ_2) is pairwise semi-p- T_2 - space, there exists τ_1 -semi-p-open set U and τ_2 -semi-p-open set V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. Hence $y \notin \tau_2$ -semi-pclU, since we have a semi-p-open set V such that $y \in V$, but $U \cap V = \emptyset$.

$$(2) \Rightarrow (3)$$

Suppose that there exists $x \neq y$ in X, such that $y \in \cap \{\tau_2\text{-semi-pclU}; x \in U \text{ and U is } \tau_1\text{-semi-p-open set}\}$; implies $y \in \tau_2\text{-semi-pclU}; x \in U$ for all $\tau_1\text{-semi-p-open set U}$, which is a contradiction, thus for each $x \in X$, $\{x\} = \cap \{\tau_2\text{-semi-pclU}: x \in U \text{ and U is } \tau_1\text{-semi-p-open set}\}$.

$$(3)\supset (4)$$

To prove $\Delta^{-}((x,x);x \in X)$ is a semi-p-closed subset of $(X \times X, \tau_{X \times X})$, that is mean we must prove $X \times X \setminus \Delta$ is semi-p-open subset of $(X \times X, \tau_{X \times X})$.

Let $(x, y) \in X \times X \setminus \Delta$, which implies that $x \neq y$. In view of (3), there exists a τ_1 -semi-popen set U containing x and $y \notin \tau_2$ -semi-pclU.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

We know that $U \cap (X \setminus \tau_2\text{-semi-pclU}) = \emptyset$. Also, we have $y \in (X \setminus \tau_2\text{-semi-pclU})$. So $(x,y) \in U \times (X \setminus \tau_2\text{-semi-pclU}) \subseteq X \times X \setminus \Delta$. But $U \cap (X \setminus \tau_2\text{-semi-pclU})$ is a $\tau_{X \times X}$ -semi-popen set, so $X \times X \setminus \Delta$ is a $\tau_{X \times X}$ -semi-popen set. Thus Δ is $\tau_{X \times X}$ -semi-popen set.

$$(4) \supset (1)$$

Let $x \neq y$ in X, hence $(x, y) \in X \times X \setminus \Delta$. Since Δ is $\tau_{X \times X}$ -semi-p-closed set, $X \times X \setminus \Delta$ is a semi-p-nbd of each of it is points. Therefore, there exists a $\tau_{X \times X}$ -semi-p-open set $U \times V$ containing (x, y) and contained in $X \times X \setminus \Delta$, then U is τ_1 -semi-p-open set and V is τ_2 -semi-p-open set, also $x \in U$ and $y \in V$, since $U \times V \subseteq X \times X \setminus \Delta$, $U \cap V = \emptyset$. Thus (X, τ_1, τ_2) is pairwise semi-p- T_2 - space.

Definition 3.14:

A space $(X_1\tau_1,\tau_2)$ is said to be *pairwise semi-p-regular-space*, if for each τ_i -closed set F and for each point $x \notin F$, there exist τ_i - semi-p-open set U and τ_j - semi-p-open set V such that $x \in U_1F \subseteq V$ and $U \cap V = \emptyset$, where i, j=1, 2, $l \neq l$.

Proposition 3.15:

Every pairwise regular space (X, τ_1, τ_2) is pairwise semi-p-regular-space.

Proof:

Let F be any τ_i -closed set and let $x \in X$, such that $x \notin F$, since $(X_1\tau_1,\tau_2)$ is pairwise regular space, there exist τ_i -open set U and τ_j -open set V such that $x \in U_iF \subseteq V$ and $U \cap V = \emptyset$.

And from (Proposition 2.5 part (1)), we have τ_i - semi-p-open set U and τ_j - semi-p-open set V such that $x \in U$, F = V and $U \cap V = \emptyset$. Hence (X, τ_1, τ_2) is pairwise semi-p-regular-space.

Remark 3.16:

The converse of (Proposition 3.15) is not true in general, as the following example shows:

Let
$$X = \{1, 2, 3\}$$
, $\tau_1 = \{\emptyset, X, \{1,2\}\}, \tau_2 = \{\emptyset, X, \{1,3\}\}, \text{ then } S - P(X, \tau_1) = \{\{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\}\},$

S-P(X, τ_2)= { $\{\emptyset, X, \{1\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ }. Then X is pairwise semi-p-regular-space, but not pairwise regular space since $\{3\}$ is closed set in τ_1 and $1 \notin \{3\}$, but for any τ_1 -open set containing 1 and for any τ_2 -open set containing $\{3\}$, its intersection is not empty.

Theorem 3.17:

A space (X, τ_1, τ_2) is pairwise semi-p-regular-space if and only if for each point x in X and every τ_i -closed set F not containing x there is a τ_i -semi-p-open set U such that $x \in U$ and $(\tau_i \text{ semi-polit})$ if $F = \emptyset$.

Proof:

Suppose $(X_1\tau_1,\tau_2)$ is pairwise semi-p-regular-space, let $x \in X$ and F is any τ_i -closed set such that $x \notin F$, implies $X \setminus F$ is τ_i -open set containing x and since $(X_1\tau_1,\tau_2)$ is pairwise

semi-p-regular- space, there is a τ_i - semi-p-open set U such that $x \in U \subset \tau_i$ semi-polit $x \in V \setminus F$. Hence $(\tau_i = \text{semi-polit}) \cap F = \emptyset$.

Conversely, let F be any τ_i - closed set and $x \notin F_i$ then there exists a τ_i - semi-p-open set U such that $x \in U$ and $(\tau_i - \text{semi} - \text{polit})$ in $F = \emptyset$.

Let $V=X\setminus (\tau_j)$ semi polit, then V is τ_j -semi-p-open set such that $F \subseteq V, x \in U$ and $U \cap V = \emptyset$, thus (X, τ_1, τ_2) is pairwise semi-p-regular-space.

Definition 3.18:

A space (X_1, τ_1, τ_2) is said to be *pairwise semi-p-normal-space*, if for each τ_i -closed set A and τ_j - closed set B disjoint from A, there exist τ_j - semi-p-open set U and τ_i - semi-p-open set V such that $A = U_1B = V$ and $U \cap V = \emptyset$, where i, j=1, 2, $l \neq l$.

Proposition 3.19:

Every pairwise normal space (X, τ_1, τ_2) is pairwise semi-p-normal-space.

Proof:

Let A, B be two closed disjoint sets in τ_i , τ_j , i, j = 1,2 (respectively), since X is pairwise normal space, there exist τ_j - open set U and τ_i - open set V such that A = U, B = V and $U \cap V = \emptyset$, but from (Proposition 2.4 part (1)) U, V semi-p-open sets which contains A and B respectively. Thus (X_1, τ_1, τ_2) is pairwise semi-p-normal-space.

Remark 3.20:

The converse of Proposition 3.19 is not true in general, as the following example shows: Consider example 2, where:

$$\begin{split} \mathbf{X} &= \{1,2,3\}, \ \mathbf{r}_1 = \{\emptyset,X,\{1,2\}\}, \ \mathbf{r}_2 = \{\emptyset,X,\{1,3\}\}, \\ \mathbf{S} &- \mathbf{P}(\mathbf{X},\tau_1) = \{\{\emptyset,X,\{1\},\{2\},\{1,2\},\{1,3\},\{2,3\}\}\}, \\ \mathbf{S} &- \mathbf{P}(\mathbf{X},\tau_2) = \{\{\emptyset,X,\{1\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}. \end{split}$$

Then (X, τ_1, τ_2) is pairwise semi-p-normal-space, but not pairwise normal space, since $\{3\}$ and $\{2\}$ are closed disjoint sets in τ_1 and τ_2 respectively but for any open set in τ_2 which containing $\{3\}$ and any open set in τ_1 which containing $\{2\}$, its intersection is not empty.

References

- 1. Kelly, J. C. (1963), Bitopological Spaces, Proc. London Math. Soc. 13: 71-89.
- 2. Murdeshwar, N. G. and Naimpally, S. A. (1966), Quasi-uniform Compact Spaces, P. Noordhoff, Groningen.
- 3. Nour, T. M. (1995), A note on Five Separation Axioms in Bitopological Spaces, Indian J. pure appl. Math., <u>26</u>(7): 669-674.
- 4. Al-Kazragi, R. B. (2004), On semi-p-open sets, M. Sc. Thesis, University of Baghdad, College of Education Ibn-Al- Haitham.

حول بديهيات الفصل شبه P - a على الفضاءات التبولوجية الثنائية

رشا ناصر مجيد

قسم الرياضيات، كلية التربية - ابن الهيثم، جامعة بغداد

استلم البحث في: 10 تشرين الاول 2010

قبل البحث في: 13 اذار 2011

الخلاصة

في هذا البحث قمنا بتعريف نوع جديد من بديهيات الفصل على الفضاءات التبولوجية الثنائية التي اسميناها بديهيات الفصل شبه - P ، كذلك درسنا بعض خواص هذه الفضاءات وعلاقات كل نوع مع بديهيات الفصل الاعتيادية في الفضاءات التبولوجية الثنائية.

- p- الفضاء T_1 - p- الفضاء شبه T_2 - p- الفضاء شبه T_1 - p- الفضاء شبه - - الفضاء شبه - الفضاء شبه - - الفضاء ألم الفضاء ا