# On Pairwise Semi-p-separation Axioms in Bitopological Spaces 

R. N.Majeed<br>Department of Mathematics,College of Education Ibn Al- Haitham, University of Baghdad<br>Received in : 10 October 2010<br>Accepted in : 13 March 2011


#### Abstract

In this paper, we define a new type of pairwise separation axioms called pairwise semi-pseparation axioms in bitop ological spaces, also we study some properties of these spaces and relationships of each one with the ordinary separation axioms in the bitopological spaces.


Keywords: Bitop ological space, pairwise semi-p- $\mathrm{T}_{0^{-}}$sp ace, pairwise semi-p $-\mathrm{T}_{1^{-}}$space, pairwise semi-p- $\mathrm{T}_{2}$ - space, pairwise semi-p-regular space, pairwise semi-pnormal space.

## 1-Introduction

The theory of bitopological spaces started with the paper of Kelly in [1]. A set equipped with two topologies is called a bitopological space. Since then several authors continued investigating such spaces. Furthermore, Kelly extended some of the standard results of separation axioms in a topological space to a bitopological space, such extensions are pairwise regular, pairwise Hausdorff and pairwise normal, concepts of pairwise $T_{\beth}$ and pairwise $T_{1}$ were introduced by Murdeshwar and Naimpally in [2].

The purpose of this paper is to introduce and investigate the notion of pairwise semi- p separation axioms in bitopological spaces and study some properties of these spaces and relationships of each one with the ordinary separation axioms in the bitopological spaces.

## 2- Preliminaries

In this section, we introduce some definitions and propositions, which is necessary for the paper.

## Definition 2.1[3]:

A subset $A$ of a topological space $(X, \tau)$ is called a pre-open set if $A \Xi \bar{A}$. The complement of pre-open set is called pre-closed set.

The family of all pre-open subsets of $X$ is denoted by $\operatorname{PO}(X)$. The family of all pre-closed subsets of $X$ is denoted by $\operatorname{PC}(X)$.

## Proposition 2.2 [4]:

Let $(X, \tau)$ be a topological space, then:
1 -Every open set is a pre-open set.
2-Every closed set is a pre-closed set.

But the converse of (1) and (2) is not true in general.

## Proposition 2.3 [4]:

The union of any family of pre-open sets is a pre-open set.

## Definition 2.4[3]:

The union of all per-open sets contained in $A$ is called the pre-interior of $A$, denoted by pre-int $A$.

The intersection of all pre-closed sets containing $A$ is called the per-closure of $A$, and is denoted by pre-cl $A$.

## Proposition 2.5 [4]:

Let $(X, \tau)$ be a topological space and $\mathrm{A}, \mathrm{B}$ be any two subsets of X , then:
pre-cl $A \cup$ pro-cl $B \subseteq$ pro- el $(A \cup B)$.

## Definition 2.6 [4]:

A subset $A$ of a topological space $(X, \tau)$ is said to be semi-p-open set if and only if there exists a pre-open set in X , say U , such that $U \sqsubset A \llbracket p r e-c l U$.

The family of all semi-p-open sets of $X$ is denoted by S-P(X).
The complement of semi-p-open set is called semi-p-closed set.
The family of all semi-p-closed sets of X is denoted by S-P-C(X).

## Proposition 2.7 [4]:

1- Every open (closed) set is semi-p-open (closed) set respectively.
2- Every pre-open (pre-closed) set is semi-p-open (semi-p-closed) set respectively. Also, the converse of (1) and (2) is not true in general.

## Proposition 2.8:

The union of any family of semi-p-open sets is semi-p-open set.

## Proof:

Let $\left[A_{\varepsilon}\right]_{1} x \in A$ be any family of semi-p-open sets in $X$, we must prove $U_{\varepsilon \in A} A_{\varepsilon}$ is a semi-p-open set, since $A_{\alpha}$ is semi-p-open set, for all $\alpha \in A$, which implies there exists a preopen set $U_{\alpha}$ such that $U_{\alpha} \subseteq A_{x} \subseteq$ pre $-\operatorname{cil}_{\alpha}$.

Thus $U_{\varepsilon \in A} U_{\varepsilon} \subseteq U_{x=\Omega} A_{z} \subseteq U_{\varepsilon \in A} p r e-c l U_{z}$ and from (Proposition 2.3 and 2.5) we have a pre-open set $U_{s \in A} U_{\varepsilon}$ such that $U_{\Sigma \equiv \Omega} U_{z} \simeq U_{\varepsilon \in A} A_{\varepsilon} \simeq p r c-c l\left(U_{\alpha \in A} U_{\alpha}\right)$. Hence $\mathrm{U}_{\varepsilon \in A} A_{\varepsilon}$ is a semi- p-open set.
Definition 2.9 [4]:
Let $(X, \tau)$ be a topological space and let $A$ be any subset of $X$, then:
1- The union of all semi-p-open sets contained in $A$ is called the semi-p-interior of $\boldsymbol{A}$, denoted by semi-p-int $A$.
2- The intersection of all semi-p-closed sets containing $A$ is called the semi-p-closure of $\boldsymbol{A}$, and denoted by semi- $\mathrm{p}-\mathrm{cl} A$.

## Definition 2.10 [4]:

Let $(X, \tau)$ be a topological space and let $x \in X$. A subset $N$ of $X$ is said to be semi-pneighborhood of $x$ if and only if there exists a semi-p-open set $G$, such that $x \in G \subseteq N$. We shall use the symbol nbd. instead of the word neighborhood.

If $N$ is semi-p-open subset of $X$, then $N$ is a semi-p-open nbd of $x$.

## Proposition 2.11:

Let $(X, \tau)$ be a topological space, then every semi- $\mathrm{p}-\mathrm{nbd}$ is a semi-p-open set.

## Proof:

Let N be any semi-p-nbds for each of its points, that is means for each $x \in N$, there exists a semi-p- open set G such that $X \in G \subseteq N$. now we must prove N is a semi-p-open set, since $N-\mathrm{U}_{x \in N}\{x\}$ and since N is a semi-p-nbd for all $x \in N$.

Thus $N-\bigcup_{x \in C}\{G \in \operatorname{cosemi}-p-$ open set such thet $x \in G \subseteq N\}$, and from (Prop osition 2.8) we have N is a semi-p-open set.

Definition 2.12 [1]:
Let $X$ be a non-empty set, let $\tau_{1}, \tau_{2}$ be any two topologies on $X$, then $\left(X, \tau_{1}, \tau_{2}\right)$ is called a bitopological space.

## Note 2.13:

In the space $\left(X, \tau_{1}, \tau_{2}\right)$, we shall denote to the set of all semi-p- open sets in $\tau_{1}\left(\tau_{2}\right)$ by $\mathrm{S}-\mathrm{P}\left(\mathrm{X}, \tau_{-}\right)\left(\mathrm{S}-\mathrm{P}\left(\mathrm{X}, \tau_{2}\right)\right)$ respectively.
Definition 2.14 [2]:
A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be:
1- Pairwise $\mathbf{T}_{0}$ - space if for every pair of points $x$ and $y$ in $X$ such that $x \neq y_{n}$ there exists a $\tau_{1}$-open set containing x but not y or y but not x or a $\boldsymbol{\tau}_{2}$-open set containing y but not x or x but not y .
2- Pairwise $\boldsymbol{T}_{\mathbf{1}}$-space if for every pair of points $x$ and $y$ in $X$ such that $x \neq y_{n}$ there exists a $\tau_{1}$-open set U and a $\tau_{2}$-open set V such that $x \in U, y \in U$ and $y \in V, x \notin V$.

## Definition 2.15[1]:

A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be:
1- Pairwise $\boldsymbol{T}_{2}-$ space if every two distinct points in X can be separated by disjoint $\boldsymbol{\tau}_{1}$ open set and $\tau_{2}$-open sets.
2- Pairwise regular space, if for each point $x \in X$ and each $\tau_{i}$-closed set F not containing x , there exists a $\boldsymbol{\tau}_{\mathrm{i}}$-open set U and $\boldsymbol{\tau}_{j}$-open set V such that $x \in U, F \subset V$ and $U \cap V-\sigma_{1}$ where $t \neq j$ and $t, j-1,2$.
3- Pairwise normal space, if for each $\tau_{i}$-closed set A and $\boldsymbol{\tau}_{j}$-closed set B such that $A \cap B-\emptyset_{\text {, }}$ there exist sets $U$ and $V$ such that $U$ is $\tau_{j}$-open, $V$ is $\tau_{i}$-open, $A \subset U_{1} B-V$, and $U \cap V-\emptyset_{1}!i-1,2,!\neq j$.

## 3-Pairwise semi-p-separation axioms

We begin with the definition of pairwise semi-p- $T_{\Omega^{-}}$spaces.

## Definition 3.1:

A space $\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise semi-p- $\boldsymbol{T}_{0^{-}}$space if for any pair of distinct points x and y in X, there exists a $\tau_{1}$-semi-p-open set or $\tau_{2}$-semi-p-open set which contains one of them but not the other.

## Proposition 3.2:

If a space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $T_{2}$ - space, then $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p- $T_{2}$ - space.

## Proof:

For any $x, y \in X$ such that $x \neq y$, we must prove there exists a semi-p-open in $\tau_{1}$ or $\tau_{2}$ which contains one of them but not the other.
Now, let $X \neq y$ in X , since $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $T_{\mathrm{a}}$ - space, then there exists open set U in $\tau_{-}$or $\tau_{2}$ such that $x \in U$ and $y \in U$. But from (Proposition 2.7 part (1)) there exists semi-popen set U such that $\boldsymbol{x} \in \boldsymbol{U}$ and $y \in U$. Thus $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p- $T_{2}$ - space.

## Remark 3.3:

The converse of (Proposition 3.2 ) is not true in general, as the following example shows:

## Example 1:

Let $\mathrm{X}=\{1,2,3\}, \mathrm{r}_{\mathrm{I}}=\left\{0_{2}, x_{2}, 1\right\}, \tau_{2}=\left\{0_{2}, x,\{2,3\}, \mathrm{PO}\left(\mathrm{X}, \tau_{-}\right)=\mathrm{S}-\mathrm{P}\left(\mathrm{X}, \tau_{-}\right)=\right.$
$\left\{\{0, X,\{1\},\{1,2\},(1,3)\}, \mathrm{PO}\left(\mathrm{X}, \tau_{2}\right)=\mathrm{S}-\mathrm{P}\left(\mathrm{X}, \tau_{2}\right\}=\{\{0, X,\{2\},\{3\},\{1,2\},\{1,3\},(2,3)\}\right.$.
Then, clearly the space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p $-T_{a^{-}}$space, but not pairwise $T_{a^{-}}$space, since $2 \neq 3$ in $X$ but there is no open set $\mathrm{U} E \tau_{1}$ or $\mathrm{U} \in \tau_{2}$ such that $2 \in$ Uand $3 \in \mathrm{U}$.

## Theorem 3.4:

For a space $\left(X, \tau_{1}, \tau_{2}\right)$, the following are equivalent :
(1) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi $p-T_{\square}$-space .
(2) For every $x \in X, X f\}-\tau_{2}-\operatorname{sen} t-p-c\left|\{x\} \cap \tau_{2}-\operatorname{sem}-p-c\right|\{x\}$.
(3) For every $\mathrm{N} \in \mathrm{X}$ the intersection of all $\tau_{1}-s o m d-p-n c l g h b o u r h o o d s$ of $x$ and all $\tau_{2}-$ semil $-\mathrm{p}-$ nelghbourhoods of x is $\{\mathrm{x}\}$.

Proof: (1) $\rightarrow$ (2)
Suppose $\mathrm{x} \neq \mathrm{y}$ in X , there exists a $\tau_{1}$-semi- p -open set U containing x but not y or a $\boldsymbol{\tau}_{2}$ -semi-p-open set V containing y but not x . That means mean either $x \neq \tau_{-}-\operatorname{scm} t-p-c l\{y t$ or $y ⿷ \tau_{2}-s o m i-p-c i l x j$.
Hence for a point $\mathrm{x}, \mathrm{y} \dot{f} \tau_{2}-\operatorname{scm} t-p-c\{x] \cap \tau_{2}-\operatorname{sen} t-p-c l\{x\}$.Thus $(2)^{\tau} \Rightarrow(3)-p-c\left[\{x) \cap \tau_{2}-s e m i-p-c\{x\}\right.$.
Suppose there exists $y$ 者 $x$ such that $y$ belongs to the intersection of all $\tau_{1}-\operatorname{semd}-p-q b d s$ of $x$ and all $\tau_{2}-\operatorname{semd}-p-n b d s$ of $x$. Hence $\left(X, \tau_{1}, \tau_{2}\right.$ is not contradiction, thus the intersection of all $\tau_{1}-\operatorname{som}-p-n b d s$ of $x$ and all $\tau_{2}-$ somd $-p-n b d s$ of $x t s$
(3) $\rightarrow$ (1)

Let $\mathrm{x} \neq \mathrm{y}$ in X , since $\{\mathrm{x}\}=$ the intersection of all $\tau_{1}-s o m d-p-n b d s$ of x and $\tau_{2}-s e m i-p-m b d s$ of $x$. Hence there exists either on $\tau_{1}-s o m i-p-w b d s o f y$ not containing x or a $\tau_{2}-s c m i-p-n b d s$ of $y$ not containing $x$.Therefore $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p $-T_{0}$-space.

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI. VOL. 24 (3) 2011

## Theorem 3.5:

The product of an arbitrary family of pairwise semi $-\mathrm{p}-\boldsymbol{T}_{0}$-spaces is pairwise semi- $\mathrm{p}-\boldsymbol{T}_{0}-$ space.

## Proof:

Let $\left(X, \tau_{1}, \tau_{2}\right)=\prod_{r=s},\left(X_{a}, \tau_{1_{2}}, \tau_{g_{2}}\right)$ be the product of an arbitrary family of pairwise semi -p- $T_{a}$-spaces, where $\tau_{1}$ and $\tau_{2}$ are the product topologies on X generated by $\tau_{\tau_{a}}, \tau_{z_{a}}$ respectively and $\mathrm{X}=\| \mathrm{I}_{a \equiv \mathrm{~A}} X_{\varepsilon}$.

Let $x$ and $y$ be two distinct points of $X$. Hence $x_{A} \neq y_{A}$ for some $\lambda \in A$. But $\left(r_{3}, \tau_{1}, \tau_{z_{n}}\right)$ is pairwise semi -p- $T_{0}$-space, therefore, there exists either a $\tau_{r_{A}}$-semi-p-open set $U_{A}$ containing $x_{A}$ but not $y_{A}$ or a $\tau_{2_{A}}$-semi-p-open set $V_{A}$ containing $y_{A}$ but not $x_{A}$. Define

 $\mathrm{p}-T_{\mathrm{a}}$-sp ace.

## Definition 3.6:

A space $\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise semi-p- $\mathbf{T}_{\mathbf{1}^{-}}$space, if for any pair of distinct points x and $y$ in $X$, there exists a $\tau_{1}$-semi-p-open set $U$ and $\tau_{2}$-semi-p-open set $V$ such that


## Proposition 3.7:

If a space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $-\mathrm{T}_{1}$ - space, then $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p $-\mathrm{T}_{1^{-}}$space.

## Proof:

For any $x \neq y$ in $X$, since $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise - $\mathrm{T}_{1}$ - space, then there exists $\tau_{1}$-open set U and $\tau_{2}$-open set V such that $\boldsymbol{x} \in U_{\mathrm{r}} y \in U$ and $y \in V_{\mathrm{r}}, \dot{x} \notin V$. And since every open set is semi-p-open set ( by Proposition 2.7 part (1)), which implies $U$ is semi-p-open set in $\tau_{1}$ containing x but not y and V is semi-p-open set in $\tau_{2}$ containing $y$ but not x . Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p $-T_{1}-$ space.

## Remark 3.8:

The converse of (Proposition 3.7) is not true in general as the following example shows:
Consider Example 1, where:
$\mathrm{X}=\{1,2,3\}, \mathrm{r}_{-}=\left\{\omega_{z}, x_{,}(1\}\right\}, \sigma_{1}=\left\{p_{,},\{,\{2,3\}\right.$,
$\operatorname{PO}\left(\mathrm{X}, \tau_{-}\right)=\mathrm{S}-\mathrm{P}\left(\mathrm{X}, \tau_{-}\right)=\{\{0, X,\{1\},\{1,2\},[1,3)\}$,
$\operatorname{PO}\left(\mathrm{X}, \tau_{2}\right\}=\operatorname{S-P}\left(\mathrm{X}, \tau_{2}\right\}=\{\{0, K,\{2\},\{3\},\{1,2\},\{1,3\},(3,3)\}$. Then, clearly that the space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p $-T_{1^{-}}$space, but not pairwise $-T_{1^{-}}$space, since $2 \neq 3$ in $X$, but there is no $\tau_{1}$-open set containing 2 but not containing 3 and there is no $\tau_{2}$-open set containing 3 but not 2 .

## Theorem 3.9:

The product of an arbitrary family of pairwise semi $-\mathrm{p}-\boldsymbol{T}_{1}$-spaces is pairwise semi- $\mathrm{p}-\boldsymbol{T}_{1}$ space.
Proof: Similar to the proof of (Theorem 3.5).

Definition 3.10:

A space $\left(X, \tau_{1}, \tau_{2}\right)$ is called pairwise semi-p- $\mathbf{T}_{2}$-space, if for any pair of distinct points x and y in X , there exists a $\tau_{1}$-semi-p-open set U and $\tau_{2}$-semi-p-open set V such that $x \in U$ $y \in V$ and $U \cap V-\emptyset$.

## Proposition 3.11:

If a space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $-\mathrm{T}_{2}$ - space, then $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p $-\mathrm{T}_{2}$ - space.
Proof: similar of the proof of (Proposition 3.7).

## Remark 3.12:

The converse of (Proposition 3.11) is not true in general; consider example 1:

$$
\begin{aligned}
& \mathrm{X}=\{1,2,3\}, \tau_{2}=\left\{0, X,\{1\}, \tau_{2}=\left\{0_{,},,\{2,3\},\right.\right. \\
& \mathrm{PO}\left(\mathrm{X}, \tau_{2}\right)=\operatorname{S-P}\left(\mathrm{X}, \tau_{2}\right)=\{\{0, X,\{1\},\{1,2\},(1,3)\}, \\
& \mathrm{PO}\left(\mathrm{X}, \tau_{2}\right\}=\operatorname{S-P}\left(\mathrm{X}, \tau_{2}\right\}=\left\{\{0, X,\{2\},\{3\},\{1,2\},\{1,3\},(3,3)\}, \text { clearly }\left(X, \tau_{1}, \tau_{2}\right)\right. \text { is }
\end{aligned}
$$ pairwise semi-p-T $T_{2}$ - space, but not pairwise $-T_{2^{2}}$ - space, since $2 \neq 3$ in $X$, but there is no two disjoint open sets in $\tau_{1}$ and $\tau_{2}$, which contain 2 and 3 respectively.

## Theorem 3.13:

For a space $\left(X, \tau_{1}, \tau_{2}\right)$, the following are equivalent:
$1-\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p $-T_{2}$ - space.
2- For each $x \in X$ and for each $y \in X$ such that $y \neq x$, there exists a $\tau_{1}$-semi-p-open set U containing x such that $y ⿷ \tau_{2}$-semi-pclU.
3- For each $x \in X,\{x\}-\cap\left[\tau_{2}\right.$-semi-pclU: $x \in U$ and $U$ is $\tau_{1}$-semi-p-open set $\}$.
4- The diagonal $A^{-}((x, x), x \in X)$ is a semi-p-closed subset of $\left(X \times X, \tau_{X \times X}\right)$.
Proof: ( 1 ) $\rightarrow(2)$
Let $x \in X$, be grven and constder $y \in X$ such that $y \neq x$, since $\left(X, \tau_{1}, z_{2}\right)$ is pairwise semi-p $-T_{2^{-}}$space, there exists $\tau_{1}$-semi-p-open set $U$ and $\tau_{\Sigma^{2}}$-semi-p-open set $V$ such that $x \in U_{1} y \in V$ and $U \cap V-\emptyset$. Hence $y \in \tau_{2}$-semi-pclU, since we have a semi-p-open set $V$ such that $y \in V$, but $U \cap V-\emptyset$.
(2) $\rightarrow$ (3)

Suppose that there exists $x \neq y$ in X , such that $y \in \Pi\left[\tau_{2}\right.$-semi-pclU; $x \in U$ and $U$ is $\tau_{1}-$ semi-p-open set $\}$; implies $y \in \tau_{2}$-semi-pclU; $x \in U$ for all $\tau_{1}$-semi-p-open set U , which is a contradiction, thus for each $x \in X,\{x\}-\cap\left[\tau_{2}\right.$-semi-pclU: $x \in U$ and $U$ is $\tau_{1}$-semi-p-open set $\}$.
(3) $\rightarrow$ (1)

To prove $\Delta^{-}\left(\left\{x_{1} x\right)_{i} x \in X\right)$ is a semi-p-closed subset of $\left(X \times X_{1} \tau_{X \in X}\right)$, that is mean we must prove $X \times X \backslash \Delta$ is semi-p-open subset of $\left(X \times X, \tau_{M \times X}\right)$.

Let $(x, y) \in X X X, \Delta$, which implies that $x \neq y$. In view of (3), there exists a $\tau_{1}$-semi-popen set U containing x and $y$ \& $\tau_{2}$-semi-pclU.

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI. VOL. 24 (3) 2011

We know that $U \cap(X) \tau_{2}$-semi-pclU $)=0$. Also, we have $y \in\left(X \backslash \tau_{2}\right.$-semi-pclU $)$. So $\left(x_{1} y\right) \in U X\left(X, \tau_{2}\right.$-semi-pclU) - $X X X \backslash$. But $U \cap\left(X \backslash \tau_{2}\right.$-semi-pclU $)$ is a $\tau_{X K}$ - semi-popen set, so $X X X \backslash \Delta$ is a $\tau_{M \times N}$-semi-p-nbd of each of its points. Thus $\Delta$ is $\tau_{H \times N}$-semi-pclosed set.
(4) $\rightarrow$ (1)

Let $x \neq y$ in X , hence $\left(x_{1} y\right) \in X \times X \backslash A$. Since $A$ is $\tau_{X \times \sim}$-semi-p-closed set, $X \times X \backslash \Delta$ is a semi-p-nbd of each of it is points. Therefore, there exists a $\tau_{B K}$-semi-p-open set $U \times V$ containing $\left(x_{1} y\right)$ and contained in $X \times X \backslash \Delta$. then U is $\tau_{1}$-semi-p-open set and V is $\tau_{2}$-semi-popen set, also $x \in U$ and $y \in V$, since $V X V\left\llcorner X \times X \backslash \Delta, V \cap V-\emptyset\right.$. Thus $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p $-T_{2}$ - space.

## Definition 3.14:

A space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be pairwise semi-p-regular-space, if for each $\boldsymbol{\tau}_{i}$-closed set F and for each point $X \notin F$, there exist $\tau_{i}$ - semi-p-open set U and $\tau_{j}$ - semi-p-open set V such that $x \in U, F\llcorner V$ and $U \cap V-\emptyset$, where $\mathrm{i}, \mathrm{j}=1,2, t \neq j$.

## Proposition 3.15:

Every pairwise regular space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p-regular- space.

## Proof:

Let F be any $\boldsymbol{\tau}_{i}$-closed set and let $x \in X$, such that $x \notin F$, since $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise regular space, there exist $\boldsymbol{\tau}_{i}$ - open set U and $\boldsymbol{\tau}_{-}$- open set V such that $x \in U_{i} F \in V$ and $U \cap V-\emptyset$.
And from (Proposition 2.5 part (1)), we have $\boldsymbol{\tau}_{i}$ - semi-p-open set U and $\boldsymbol{\tau}_{j}$ - semi-p-open set V such that $X \in U_{1} F\left\llcorner V\right.$ and $U \cap V-\emptyset$. Hence $\left(K, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p-regular- space.

## Remark 3.16:

The converse of (Proposition 3.15) is not true in general, as the following example shows:

Let $\mathrm{X}=\{1,2,3\}, \mathrm{r}_{-}=\{0, X,\{1 ; 2\}\} \mathrm{r}_{2}=\{0, K,\{1 ; 3\}$, then
$\mathrm{S}-\mathrm{P}\left(\mathrm{X}, \tau_{-}\right)=\left\{\left\{, X_{1},\{1\},\{2\},\{1,2\},\{1,3\},[2,3)\right\}\right.$,
$\mathrm{S}-\mathrm{P}\left(\mathrm{X}, \tau_{2}\right\}=\{\{0, K,\{1\},\{3\},\{1,2\},\{1,3\},\{2,3)\}$. Then X is pairwise semi-p-regularspace, but not pairwise regular space since $\{3\}$ is closed set in $\tau_{1}$ and $1 \&\{3\}$, but for any $\tau_{1}$ open set containing 1 and for any $\boldsymbol{\tau}_{\boldsymbol{2}}$-open set containing $\{3\}$, its intersection is not empty.

## Theorem 3.17:

A space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p-regular- space if and only if for each point x in X and every $\boldsymbol{\tau}_{i}$ - closed set F not containing x there is a $\boldsymbol{\tau}_{i}$ - semi-p-open set U such that $\mathrm{X} \in \mathrm{U}$


## Proof:

Suppose $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p-regular- space, let $X \in X$ and $F$ is any $\tau_{i}$ - closed set such that $X \notin F$, implies $X \backslash \vec{F}$ is $\boldsymbol{\tau}_{i}$-open set containing x and since $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise
semi-p-regular- space, there is a $\boldsymbol{\tau}_{\boldsymbol{i}}{ }^{-}$semi-p-open set $U$ such that


Conversely, let F be any $\boldsymbol{\tau}_{i}$ - closed set and $\boldsymbol{x} \boldsymbol{\pm} \overline{\boldsymbol{F}}_{\mathrm{i}}$ then there exists a $\boldsymbol{\tau}_{i}$ - semi-p-open set U such that $x \in U$ and $\left(\pi_{j}\right.$ semi $\quad$ polir) ${ }_{11} F=\emptyset$.
Let $\mathrm{V}=\boldsymbol{X} \backslash\left(\tau_{j}\right.$ semi prll $)$, then V is $\tau_{j}$-semi-p-open set such that $F-V, X \in U$ and $U \cap V-\emptyset$, thus $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p-regular- space.

## Definition 3.18:

A space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be pairwise semi-p-normal- space, if for each $\tau_{i}$-closed set A and $\boldsymbol{\tau}_{j}$ - closed set B disjoint from A, there exist $\boldsymbol{\tau}_{j}$ - semi-p-open set U and $\boldsymbol{\tau}_{i}$ - semi-p-open set V such that $A-U_{1} B\llcorner V$ and $U \cap V-\emptyset$, where $\mathrm{i}, \mathrm{j}=1,2, \ell \neq j$.

## Proposition 3.19:

Every pairwise normal space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p-normal- space.

## Proof:

Let A, B be two closed disjoint sets in $\tau_{i}, \tau_{j} ; i_{i j}=1, \eta$ (respectively), since X is pairwise normal space, there exist $\tau_{j}$ - open set U and $\tau_{i}$ - open set V such that $A-V_{i} B\llcorner V$ and $U \cap V-\dot{\phi}_{\text {, }}$, but from (Proposition 2.4 part (1)) U, V semi-p-open sets which contains A and B respectively. Thus $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p-normal- space.

## Remark 3.20:

The converse of Proposition 3.19 is not true in general, as the following example shows: Consider example 2, where:

$$
\begin{aligned}
& \mathrm{X}=\{1,2,3\}, \mathrm{r}_{2}=\left\{0, X,\{1,2\}, \tau_{2}=\{0, X,\{1,3\},\right. \\
& \mathrm{S}-\mathrm{P}\left(\mathrm{X}, \tau_{-}\right)=\left\{\left\{\mathcal{C}_{1},\{,\{1\},\{2\},\{1,2,\{1,3\},(2,3)\},\right.\right. \\
& \mathrm{S}-\mathrm{P}\left(\mathrm{X}, \tau_{2}\right\}=\{\{0, X,\{1\},\{3\},\{1,2\},\{1,3\},(3,3)\} .
\end{aligned}
$$

Then $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise semi-p-normal- space, but not pairwise normal space, since $\{3\}$ and $\{2\}$ are closed disjoint sets in $\tau_{2}$ and $\tau_{2}$ respectively but for any open set in $\tau_{2}$ which containing $\{3\}$ and any open set in $\tau_{1}$ which containing $\{2\}$, its intersection is not empty.

## References

1. Kelly, J. C. (1963), Bitop ological Spaces, Proc. London Math. Soc. 13: 71-89.
2. Murdeshwar, N. G. and Naimpally, S. A. (1966), Quasi-uniform Compact Spaces, P. Noordhoff, Groningen.
3. Nour, T.M. (1995), A note on Five Separation Axioms in Bitop ological Spaces, Indian J. pure appl. Math., 26(7): 669-674.
4. Al-Kazragi, R. B. (2004), On semi-p-open sets, M. Sc. Thesis, University of Baghdad, College of Education Ibn-Al- Haitham.

## حول بديهيات الفصل شبه - P - على (الفضاءات التبولوجية الثظائية

رشا ناصر مجيد
قسم الرياضيا ت، كلية التربية - ابن الهيثم، جامعة بغداد استلم البحث في : 10 تشرين الاول 2010 قبل البحث في : 13 اذار 2011 الخلاصة

في هنا البحث قمنا بتعريف نوع جديد من بديهيات الفصل على الفضاءات التنولوجية الثنائية التي اسميناها بديهيات الفصل شبه - P ، كذلك درسنا بعض خواص هذه الفضاءات وعلاقات كل نوع مع بديهيات الفصل الاعتيادية في الفضاءات التنولوجية الثنائية.

- p- الكلمات المفتاحية: الفضاء التبولوجي الثنائي، الفضاء شبه -


