المقاسات الجزئية الأولية المضادة

انعام محمد علي هادي قسم الرياضيات ،كلية التربية – ابن الهيثم ،جامعة بغداد

> استلم البحث في : 28، شباط، 2010 قبل البحث في : 25، نيسان، 2010

الخلاصة

لتكن R حلقة ابدالية ذو محايد وليكن M مقاساً احادياً على R. ليكن N مقاس جزئي فعلي من M. يقال عن r مقاساً جزئياً اولي مضاد اذا كان المقاس $\frac{M}{N}$ اولي مضاد، حيث ان المقاس $\frac{M}{N}$ يسمى اولي مضاد اذا كان لكل r مقاساً جزئياً اولي مضاد اذا كان المقاس $\frac{M}{N}$ اولي مضاد ، حيث ان المقاس $\frac{M}{N}$ يسمى اولي مضاد اذا كان لكل r

في هذا البحث درسنا المقاسات الجزئية الأولية المضادة واعطينا العديد من الخواص المتعلقة بهذا المفهوم. ا**لكلمات المفتاحية:** المقاسات الجزئية الاولية المضادة– المقاسات الجزئية الثانية المقاسات الثانية (المضادة الاولية)– المقاسات الثانوية.

Coprime Submodules

I. M. A. Hadi Department of Mathematics, Ibn-Al-Haitham, College of Education , University of Baghdad

Received in: 28, February, 2010 Accepted in: 25, April, 2010

Abstract

Let R be a commutative ring with unity and let M be a unitary R-module. Let N be a proper submodule of M, N is called a coprime submodule if $\frac{M}{N}$ is a coprime R-module,

where $\frac{M}{N}$ is a coprime R-module if for any $r \in R$, either $r \frac{M}{N} = O_{\frac{M}{N}}$ or $r \frac{M}{N} = \frac{M}{N}$.

In this paper we study coprime submodules and give many properties related with this concept.

Key words: Coprime submodules, second submodule, second (coprime) module, secondary module.

Introduction

Let R be a commutative ring with unity and let M be a unitary R-module. It is wellknown that a proper submodule N of an R-module M is called prime if whenever $r \in \mathbb{R}$, $x \in M$, $rx \in \mathbb{N}$ implies $x \in \mathbb{N}$ or $r \in [\mathbb{N}:M]$, where $[\mathbb{N}:M] = \{r \in \mathbb{R}: rM \subseteq \mathbb{N}\}$. M is called a prime module if $\underset{\mathbb{R}}{\operatorname{ann}} M = \underset{\mathbb{R}}{\operatorname{ann}} \mathbb{N}$ for all nonzero submodule N of M, equivalently M is a prime module iff (0) is a prime submodule.

S.Yassem in [7], introduced the notions of second submodules and second modules, where a submodule N of M is called second if for any $r \in \mathbb{R}$, the homothety $r^* \in \text{End } M$, is either zero or surjective, where $r^*(m) = r m$, $\forall m \in M$. It follows that N is a second submodule iff for each $r \in \mathbb{R}$, either rN = 0 or rN = N. M is called a second module if M is a second submodule of itself.

For an R-module M, the following statements are equivalent:

- (1) M is a second module.
- (2) For each $r \in \mathbb{R}$, either rM = 0 or rM = M.
- (3) ann M = ann $\frac{M}{N}$ for all proper submodules N of M.
- (4) ann M = ann $\frac{M}{N}$ for all fully invariant sub3
- (5) modules N of M.
- (6) ann M = W(M), where W(M)={ $r \in \mathbb{R}: r^* \in \mathbb{E}$ nd M, r^* is not surjective}.

Notice (1) \Leftrightarrow (2) is clear, (1) \Leftrightarrow (5) [7,lemma 1.2], (1) \Leftrightarrow (3) [3, theorem 2.1.6], (3) \Leftrightarrow (4) [6, theorem 1.3.2].

Notice that statement (3) and statement (4) are used to define coprime module by S. Annin in [2] and I.E Wijayart in [6], respectively.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (2) 2011

Moreover Rasha in [3] studied coprime modules and give some generalizations of these modules, (see [3]).

J.Abuhilail in [1], introduced the notion of coprime submodule, where a proper submodule N of M is called coprime if ann $\frac{M}{N} = W(\frac{M}{N})$; that is N is a coprime submodule if

 $\frac{M}{N}$ is a coprime R-module.

Our aim in this paper is to study coprime submodules, we give the basic properties about this concept. Also, we study coprime submodules in certain classes of modules.

1- Coprime Submodules

We give the basic properties related with coprime submodules. Also, we study their behaviour in certain classes of modules.

Following J.Abuhilail in [1], a proper submodule N of an R-module M is called coprime if $\frac{M}{M}$ is a coprime R-module.

N

An ideal I of a ring R is called coprime ideal iff $\frac{R}{I}$ is a coprime R-module.

1.1 Remarks and Examples:

(1) N is coprime submodule iff for each $r \in \mathbb{R}$ either $r \frac{M}{N} = O_{\frac{M}{N}} = N$ or $r \frac{M}{N} = \frac{M}{N}$, that is N is

a coprime submodule if for each $r \in \mathbb{R}$, either $r \in [N:M]$ or for any $m \in M$, there exists $m' \in M$ such that $m - r m' \in \mathbb{N}$.

- (2) Z is a coprime submodule of the Z-module Q, since $\frac{Q}{Z}$ is a coprime Z-module [4], [6]. Note that Z is not coprime Z-module, since when $r = 2 \neq 0$, $2Z \neq Z$.
- (3) Every submodule N of the Z-module $Z_{p^{\infty}}$ is a coprime submodule, since $Z_{p^{\infty}}/N \cong$
 - $Z_{p^{\infty}}$ and $Z_{p^{\infty}}$ is a coprime Z-module, hence $Z_{p^{\infty}}/N$ is a coprime Z-module.
- (4) Let M be a coprime R-module, then every proper submodule N of M is a coprime submodule.

proof: Since M is a coprime R-module, then by [3,cor. 2.1.12], $\frac{M}{N}$ is a coprime R-module, for all N < M. Hence N is a coprime submodule.

(5) If N is a maximal submodule of an R-module M, then N is a coprime submodule.

proof: Since N is maximal, $\frac{M}{N}$ is a simple R-module, hence $\frac{M}{N}$ is a coprime R-module. R-module.

- (6) The converse of (4) is not true in general for example, Z is a coprime submodule of the Z-module Q (see 1.1 (2)) but Z is not a maximal submodule of Q.
- (7) Let M be an R-module, let I be an ideal of R such that $I \subseteq \text{ann } M$, let N < M. Then \underline{N} is a coprime R-submodule of M \Leftrightarrow N is a coprime \overline{R} -submodule of M, where $\overline{R} = R / I$.

proof: (\Rightarrow) Let N be a coprime R-submodule. Then $\frac{M}{N}$ is a coprime R-module and hence by [3, cor. 2.1.9], $\frac{M}{N}$ is coprime \overline{R} -module. Thus N is a coprime \overline{R} -module.

 (\Leftarrow) The proof is similarly.

1.2 Proposition:

If N is a coprime submodule, then [N:M] is a prime ideal.

proof: Since N is a coprime submodule, $\frac{M}{N}$ is coprime R-module. Hence $\operatorname{ann} \frac{M}{N}$ is a prime ideal of R [3, note 2.1]. But $\operatorname{ann} \frac{M}{N} = [N:M]$, so [N:M] is a prime ideal.

Recall that an R-module M is called secondary if for each $r \in R$, either r m = 0 or $r^n M = M$, for some $n \in Z_+$. [7].

We have the following:

1.3 Proposition:

Let M be a secondary R-module, let N < M. Then N is a coprime submodule iff [N:M] is a prime ideal of R.

proof: (\Rightarrow) It follows by prop. 1.2.

(\Leftarrow) Since M is a secondary R-module, then $\frac{M}{N}$ is a secondary R-module. But [N:M] = $\operatorname{ann} \frac{M}{N}$ is a prime ideal, so by [3,prop.1.2.6], $\frac{M}{N}$ is a coprime R-module, hence N is a coprime submodule.

1.4 Proposition:

Let N be a proper submodule of an R-module M. Then N is a coprime submodule iff [N:M]=[W:M] for all $W \supset N$.

proof: If N is a coprime submodule, then $\frac{M}{N}$ is a coprime R-module. Hence ann $\frac{M}{N}$ = ann $\frac{M}{N}$

$$\frac{\overline{N}}{\overline{W}}$$
 for all W \supset N. It follows that and $\frac{M}{N} = ann \frac{M}{W}$; that is [N:M]= [W:M].

If [N:M] = [W:M], for all $W \supset N$, then $\operatorname{ann} \frac{M}{N} = \operatorname{ann} \frac{M}{W}$. But $\frac{M}{W} \cong \frac{\frac{M}{N}}{\frac{W}{N}}$, so ann

$$\frac{M}{N} = \operatorname{ann} \frac{\frac{M}{N}}{\frac{W}{N}}$$
 and $\frac{M}{N}$ is a coprime R-module. Thus N is a coprime submodule

1.5 Proposition:

Let W be a coprime submodule of M and let N < M such that $N \supset W$. Then N is a coprime submodule of M and $\frac{N}{W}$ is a coprime submodule of $\frac{M}{W}$.

proof: Since W is a coprime submodule, then $\frac{M}{W}$ is a coprime R-module. Hence by [Rem

and Ex. 1.1 (4)], $\frac{N}{W}$ is a coprime submodule of $\frac{M}{W}$. Also $\frac{M}{W}$ is a coprime R-module implies (M/W) / (N/W) is a coprime R-module [3, cor. 2.1.12]. But (M/W) / (N/W) \cong M / N, hence M / N is a coprime module by [3, Cor. 2.1.14]. Thus N is a coprime submodule of M.

1.6 Proposition:

Let M be an R-module, let N, W be proper submodules of M, N \supseteq W such that $\frac{N}{W}$ is a

coprime submodule of $\frac{M}{W}$. Then N is a coprime submodule of M.

proof: Since $\frac{N}{W}$ is a coprime submodule of $\frac{M}{W}$, we have (M/W) / (N/W) is a coprime module. Thus M / N is a coprime module and so N is a coprime submodule of M.

The following results follow directly by proposition 1.5.

1.7 Corollary:

If N is a coprime submodule of an R-module M, I an ideal of R. Then [N : I] is a coprime submodule of M.

1.8 Corollary:

Let A, B be proper submodules of an R-module M. If A or B is a coprime submodule and $A + B \neq M$. Then A + B is a coprime submodule of M.

1.9 Proposition:

Let I be a proper ideal of a ring R. Then I is a coprime ideal iff I is a maximal ideal of R. **proof:** If I is a coprime ideal of R, then R/I is a coprime R-module. But R/I is a multiplication R-module, so by [3,Rem. And Ex. 2.1.3(5)] R/I is simple R-module. Thus I is a maximal ideal of R.

The converse follows by (Rem. And Ex. 1.1.(5)).

1.10 Corollary:

Let R be a ring. The following are equivalent:

- (1) (0) is a coprime submodule of R.
- (2) $R/(0) \sqcup R$ is a coprime ring (that is R is a field).
- (3) (0) is a maximal ideal of R.

1.11 Corollary:

Let R be a PID, let I be a nonzero proper ideal of R. Then the following are equivalent:

- (1) I is a coprime ideal of R.
- (2) I is a maximal ideal of R.
- (3) I is a prime ideal of R.

1.12 Note:

If N is a coprime submodule of an R-module M. Then it is not necessary that [N:M] is a coprime ideal of R, as the following example shows:

Z is a coprime submodule of the Z-module Q but [Z:Q] = (0) is not a maximal ideal of Z, that is (0) is not coprime ideal of Z.

1.13 Proposition:

Let M be a multiplication R-module, let N be a proper submodule of M. Then N is a coprime submodule iff [N:M] is a coprime ideal of R.

proof: If N is a coprime submodule of M, then $\frac{M}{N}$ is a coprime R-module. But M is a

multiplication R-module implies $\frac{M}{N}$ is a multiplication R-module. Hence by [3,Rem. and Ex.

2.1.3(5)] $\frac{M}{N}$ is a simple R-module. Thus N is a maximal submodule of M which implies that

[N:M] is a maximal ideal. Then by prop. 1.9, [N;M] is a coprime ideal.

Conversely, if [N:M] is a coprime ideal of R, then by prop. 1.9, [N:M] is a maximal ideal of R. Now M is a multiplication module and [N;M] is a maximal ideal of R implies that N=[N;M]M is a maximal submodule of M. Thus by Rem. and Ex. 1.1 (5), N is a coprime submodule of M.

1.14 Corollary:

Let M be a multiplication R-module and let N < M. The following are equivalent:

(1) N is a coprime submodule of M.

(2) [N:M] is a coprime ideal of R.

(3) [N:M] is a maximal ideal of R.

(4) N is a maximal submodule of M.

proof: (1) \Leftrightarrow (2) it follows by prop. 1.13.

(2) \Leftrightarrow (3) it follows by prop. 1.9.

 $(4) \Rightarrow (1)$ by Rem. and Ex. 1.1 (5).

(3) \Rightarrow (4) Since M is multiplication, and [N:M] is a maximal ideal, then N is a maximal submodule of M.

The following result shows that a homomorphic image of a coprime submodule is a coprime submodule.

1.15 Theorem:

Let $\psi: M \longrightarrow M'$ be an R-epimorphism, let N < M. If N is a coprime submodule of M, then $\psi(N)$ is a coprime submodule of M'.

proof: To prove $\psi(N)$ is a coprime submodule of M', we must prove $\frac{M'}{\psi(N)}$ is a coprime Rmodule, so we must show that $r \frac{M'}{\psi(N)} = \frac{M'}{\psi(N)}$ for all $r \notin ann \frac{M'}{\psi(N)}$. First $r \notin ann \frac{M'}{\psi(N)}$, means that $r \notin [\psi(N):M']$. It is easy to check that $[N:M] \subseteq [\psi(N):M']$. Hence $r \notin [N:M] = ann \frac{M}{N}$. On the other hand N is a coprime submodule, implies $\frac{M}{N}$ is a coprime R-module. Hence $r \frac{M}{N} = \frac{M}{N}$ since $r \notin ann \frac{M}{N} = [N:M]$. Now, let $y + \psi(N) \in \frac{M'}{\psi(N)}$, so y = $\psi(m)$ for some $m \in N$, since ψ is an epimorphism. Thus $y + \psi(N) = \psi(m) + \psi(N) = \psi(m + N)$. Hence there exists $m' \in M$ such that m + N = rm + N, so $y + \psi(N) = \psi(rm' + N) = r$

 $\psi(m') + N = r (\psi(m') + N) \in r \frac{M'}{N}$. Thus $r \frac{M'}{\psi(N)} = \frac{M'}{\psi(N)}$ and so $\frac{M'}{\psi(N)}$ is a coprime R-

module. Hence $\psi(N)$ is a coprime submodule of M'.

Now, we turn our attention to direct sum of coprime submodules.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (2) 2011

1.16 Theorem:

Let M₁, M₂ be R-modules, let N₁ < M₁, N₂ < M₂ such that $\operatorname{ann} \frac{M_1}{N_1} = \operatorname{ann} \frac{M_2}{N_2}$. Then N =

 $N_1 \oplus N_2$ is a coprime submodule of M iff N_1 is a coprime submodule of M_1 , N_2 is a coprime submodule of M_2 .

proof: (\Rightarrow) Let $p_1:M_1 \oplus M_2 \longrightarrow M_1$, $p_2:M_1 \oplus M_2 \longrightarrow M_2$ be the natural projection. Hence $p_1(N_1 \oplus N_2) = N_1$, $p_2(N_1 \oplus N_2) = N_2$ and so by theorem 1.15, N_1 is a coprime submodule of M_1 , N_2 is a coprime submodule of M_2 .

Conversely, to prove $N_1 \oplus N_2$ is a coprime submodule of $M_1 \oplus M_2$. Since N_1 , N_2 are coprime submodules of M_1 , M_2 respectively, then $\frac{M_1}{N_1}$ and $\frac{M_2}{N_2}$ are coprime R-module and

since $\operatorname{ann} \frac{M_1}{N_1} = \operatorname{ann} \frac{M_2}{N_2}$ it follows that $\frac{M_1}{N_1} \oplus \frac{M_2}{N_2}$ is a coprime R-module (see [7], [3,prop.

2.3.3). But it is easy to check that $\frac{M_1 \oplus M_2}{N_1 \oplus N_2} \Box \frac{M_1}{N_1} \oplus \frac{M_2}{N_2}$. Hence by [3,cor. 2.1.14],

 $\frac{M_1 \oplus M_2}{N_1 \oplus N_2}$ is a coprime R-module. Thus $N_1 \oplus N_2$ is a coprime submodule of $M_1 \oplus M_2$.

1.17 Remark:

The condition $ann \frac{M_1}{N_1} = ann \frac{M_2}{N_2}$ is necessary condition in Th. 14, as the following

example shows:

Consider the Z-module Z. Let $N_1 = 2Z$, $N_2 = 3Z$, N_1 , N_2 are maximal submodules of Z, so N_1 , N_2 are coprime submodules of Z (see Rem. 1.1(5)). Let $N = N_1 \oplus N_2 = 2Z \oplus 3Z$ $< Z \oplus Z$. It is clear that $\operatorname{ann} \frac{Z}{N_1} \neq \operatorname{ann} \frac{Z}{N_2}$. Now $\frac{Z \oplus Z}{N_1 \oplus N_2} \cong \frac{Z}{N_1} \oplus \frac{Z}{N_2} \square Z_2 \oplus Z_3 \square Z_6$. But Z_6 is not a coprime Z-module, so $\frac{Z \oplus Z}{N_1 \oplus N_2}$ is not a coprime Z-module. Thus $N_1 \oplus N_2$ is

not a coprime submodule of $Z \oplus Z$.

The following property explains the behaviour of coprime submodules under localization.

1.18 Proposition:

Let S be a multiplicative subset of a ring R. Let N be a proper submodule of an R-module M such that $S^{-1}N \neq S^{-1}M$. If N is a coprime submodule of M, then $S^{-1}N$ is coprime submodule of $S^{-1}M$.

proof: N is a coprime submodule of M implies $\frac{M}{N}$ is a coprime R-module, then by

[3,prop.2.1.38],
$$S^{-1}\left(\frac{M}{N}\right)$$
 is a coprime $S^{-1}R$ -module. But [5,lemma 9.12,p.173],

 $S^{-1}\left(\frac{M}{N}\right) \cong \frac{S^{-1}M}{S^{-1}N}$, so $\frac{S^{-1}M}{S^{-1}N}$ is a coprime $S^{-1}R$ -module. Hence $S^{-1}N$ is a coprime

submodule of $S^{-1}M$.

Recall that an R-module M is antihop fian if M = M/N for all $N \leq M_{\neq}$ (4).

Hence we get the following result directly.

1.19 Remark:

Let M be an antihop fian R-module. Then every submodule of M is coprime submodule.

proof: Since $M \square \frac{M}{N}$, ann $M = ann \frac{M}{N}$, that is M is coprime R-module. Then by (Rem. and Ex. 1.1(4)) every proper submodule is coprime submodule.

1.20 Proposition:

Let M be a finitely generated R-module, let N<M. If N is a coprime submodule, then N is prime.

proof: Since N is a coprime submodule, M/N is a coprime R-module. But M is a finitely generated R-module, so M / N is finitely generated. Hence by [3,Th. 2.4.8], M/N is a prime R-

module and hence $O_{M/N} = N$ is a prime submodule of $\frac{M}{N}$. It follows that N is a prime

submodule of M.

1.21 Remark:

The condition M is finitely generated in prop. 2.1 is necessary condition, as the following example shows.

Z is a coprime submodule of the Z-module Q and Q is not finitely generated. Also Z is not a prime submodule of Q.

1.22 Corollary:

Let M be a Noetherian coprime R-module, then every proper submodule of M is prime. **proof:** It follows directly by prop. 1.20.

1.23 Proposition:

Let M be an R-module such that $rM \cap N = rN$ for all $r \in R$ and for all N < M. Then every prime submodule is a coprime submodule.

proof: Let N be a prime submodule of M. Let $W \supset N$. We shall prove that:

 $r\frac{M}{N} \cap \frac{W}{N} = r\frac{W}{N}$ as follows: let $x \in r\frac{M}{N} \cap \frac{W}{N}$, so x = w + N = r(m + N) for some $w \in W$, $m \in M$. M. Hence $rm - w \in N \subset W$. Thus $rm \in W$, which implies that $rm \in rM \cap W = rW$ and hence rm = ry for some $y \in W$. Then rm + N = ry + N, that is $r(m + N) = r(y + N) \in r\frac{W}{M}$. Thus

$$r \frac{M}{N} \cap \frac{W}{N} = r \frac{W}{N}$$
. On the other hand, N is a prime submodule of M implies $\frac{M}{N}$ is a prime R-

module. Then by [3,prop. 2.4.1,p.54] $\frac{M}{N}$ is a coprime R-module and hence N is a coprime submodule.

1.24 Corollary:

Let R be a regular ring (in sence of Von Neumann), let M be an R-module. Then every prime submodule of M is a coprime submodule of M.

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (2) 2011

proof: Since R is a regular ring, implies $rM \cap N=rN$ for all $r \in R$ and for all N < M, then the result is obtained by prop.1.23.

References

- 1. Abuihlail, J. (2007), Zariski-Like Topologies for Modules Over Commutative Ring, accepted (ar X iv, math.RA), pp.1-19.
- 2. Annin, S. (2002) Associated and Attached Primes Over Non Commutative Rings, Ph.D. Thesis University of Berkeley.
- 3. Khalaf, R. I. (2009), Dual Notions of Prime Submodules and Prime Modules, M.Sc. Thesis, University of Baghdad.
- 4. Hirano, Y.and Mogami, I. (1987), Modules Whose Proper Submodules are Non-Hopf Kernels", Communications in Algebra, <u>15</u>:1549-1567.
- 5. Sharp, R.Y. (1990), Steps in Commutative Algebra, Cambridge University Press.
- 6. Wijayanti, I. E. (2006), Coprime Modules and Comodules, Ph.D. Thesis, Heinrich-Heine Universität, Düsseldorf.
- 7. Yassemi, S.M. (2001), The Dual Notion of Prime Submodules, Arch. Math. (Bron), <u>37</u>: 273-278.