المقاسات الجزئية الأولية (لمضادة

انعام محمد علي هادي

قسم الرياضيات ،كلية التربية - ابن الهيثم ججامعة بغداد

$$
\text { قبل البحث في : البحث في : 25، نيسان، } 2010 \text { 2010 } 2010
$$

الخلاصة

لنكن R حلقة ابدالية ذو محايد وليكن M مقاساً احادياً على R. ليكن N مقاس جزئي فعلي من M. يقال عن

$$
\cdot r \frac{\mathrm{M}}{\mathrm{~N}}=\frac{\mathrm{M}}{\mathrm{~N}} \quad r \frac{\mathrm{M}}{\mathrm{~N}}=\mathrm{O}_{\frac{\mathrm{M}}{\mathrm{~N}}} \text { أم } / \text { ا } ، \in \mathrm{R}
$$

في هذا البحث درسنا المقاسات الجزئية الأولية المضادة واعطينا العديد من الخواص المتطقة بهذا المفهوم. الكلمـات المفتاحية: المقاسـات الجزئيـة الاوليـة المضـادة- المقاسـات الجزئية الثانيـة المقاسات الثانيـة (اللضضادة الاولية)- الـقاسـات

Coprime Submodules

I. M. A. Hadi
 Department of Mathematics, Ibn-Al-Haitham, College of Education, University of Baghdad

Received in: 28, February, 2010
Accepted in: 25, April, 2010

Abstract

Let R be a commutative ring with unity and let M be a unitary R-module. Let N be a proper submodule of M, N is called a coprime submodule if $\frac{M}{N}$ is a coprime R-module, where $\frac{\mathrm{M}}{\mathrm{N}}$ is a coprime R-module if for any $r \in \mathrm{R}$, either $r \frac{\mathrm{M}}{\mathrm{N}}=\mathrm{O}_{\frac{\mathrm{M}}{\mathrm{N}}}$ or $r \frac{\mathrm{M}}{\mathrm{N}}=\frac{\mathrm{M}}{\mathrm{N}}$.

In this paper we study coprime submodules and give many properties related with this concept.

Key words: Coprime submodules, second submodule, second (coprime) module, secondary module.

Introduction

Let R be a commutative ring with unity and let M be a unitary R -module. It is wellknown that a proper submodule N of an R -module M is called prime if whenever $r \in \mathrm{R}, x \in \mathrm{M}$, $r x \in \mathrm{~N}$ implies $x \in \mathrm{~N}$ or $r \in[\mathrm{~N}: \mathrm{M}]$, where $[\mathrm{N}: \mathrm{M}]=\{r \in \mathrm{R}: r \mathrm{M} \subseteq \mathrm{N}\}$. M is called a prime module if $\operatorname{ann}_{R} M=\underset{R}{\operatorname{ann}} N$ for all nonzero submodule N of M, equivalently M is a prime module iff (0) is a prime submodule.
S. Yassem in [7], introduced the notions of second submodules and second modules, where a submodule N of M is called second if for any $r \in \mathrm{R}$, the homothety $r^{*} \in \operatorname{End} \mathrm{M}$, is either zero or surjective, where $r^{*}(m)=r m, \forall m \in \mathrm{M}$. It follows that N is a second submodule iff for each $r \in \mathrm{R}$, either $r \mathrm{~N}=0$ or $\quad r \mathrm{~N}=\mathrm{N}$. M is called a second module if M is a second submodule of itself.

For an R-module M, the following statements are equivalent:
(1) M is a second module.
(2) For each $r \in \mathrm{R}$, either $r \mathrm{M}=0$ or $r \mathrm{M}=\mathrm{M}$.
(3) ann $M=\operatorname{ann} \frac{M}{N}$ for all proper submodules N of M.
(4) ann $M=\operatorname{ann} \frac{M}{N}$ for all fully invariant sub3
(5) modules N of M .
(6) ann $\mathrm{M}=\mathrm{W}(\mathrm{M})$, where $\mathrm{W}(\mathrm{M})=\left\{r \in \mathrm{R}: r^{*} \in\right.$ End M, r^{*} is not surjective $\}$.

Notice $(1) \Leftrightarrow(2)$ is clear, $(1) \Leftrightarrow(5)[7$, lemma 1.2], $(1) \Leftrightarrow(3)$ [3, theorem 2.1.6], $(3) \Leftrightarrow$ (4) [6, theorem 1.3.2].

Notice that statement (3) and statement (4) are used to define coprime module by S . Annin in [2] and I.E Wijayart in [6], respectively.

Moreover Rasha in [3] studied coprime modules and give some generalizations of these modules, (see [3]).
J.Abuhilail in [1], introduced the notion of coprime submodule, where a proper submodule N of M is called coprime if ann $\frac{M}{N}=W\left(\frac{M}{N}\right)$; that is N is a coprime submodule if $\frac{\mathrm{M}}{\mathrm{N}}$ is a coprime R-module.

Our aim in this paper is to study coprime submodules, we give the basic properties about this concept. Also, we study coprime submodules in certain classes of modules.

1- Coprime Submodules

We give the basic properties related with coprime submodules. Also, we study their behaviour in certain classes of modules.

Following J.Abuhilail in [1], a proper submodule N of an R -module M is called coprime if $\frac{\mathrm{M}}{\mathrm{N}}$ is a coprime R-module.

An ideal I of a ring R is called coprime ideal iff $\frac{R}{I}$ is a coprime R-module.

1.1 Remarks and Examples:

(1) N is coprime submodule iff for each $r \in \mathrm{R}$ either $r \frac{\mathrm{M}}{\mathrm{N}}=\mathrm{O}_{\frac{\mathrm{M}}{}}^{\mathrm{N}}=\mathrm{N}$ or $r \frac{\mathrm{M}}{\mathrm{N}}=\frac{\mathrm{M}}{\mathrm{N}}$, that is N is a coprime submodule if for each $r \in \mathrm{R}$, either $r \in[\mathrm{~N}: \mathrm{M}]$ or for any $\quad m \in \mathrm{M}$, there exists $m^{\prime} \in \mathrm{M}$ such that $m-r m^{\prime} \in \mathrm{N}$.
(2) Z is a coprime submodule of the Z -module Q , since $\frac{\mathrm{Q}}{\mathrm{Z}}$ is a coprime Z -module [4], [6]. Note that Z is not coprime Z -module, since when $r=2 \neq 0,2 \mathrm{Z} \neq \mathrm{Z}$.
(3) Every submodule N of the Z -module $\mathrm{Z}_{p^{\infty}}$ is a coprime submodule, since $\quad \mathrm{Z}_{p^{\infty}} / \mathrm{N} \cong$ $\mathrm{Z}_{p^{\infty}}$ and $\mathrm{Z}_{p^{\infty}}$ is a coprime Z -module, hence $\mathrm{Z}_{p^{\infty}} / \mathrm{N}$ is a coprime $\quad \mathrm{Z}$-module.
(4) Let M be a coprime R -module, then every proper submodule N of M is a coprime submodule.
proof: Since M is a coprime R-module, then by [3,cor. 2.1.12], $\frac{M}{N}$ is a coprime Rmodule, for all $\mathrm{N}<\mathrm{M}$. Hence N is a coprime submodule.
(5) If N is a maximal submodule of an R -module M , then N is a coprime submodule.
proof: Since N is maximal, $\frac{M}{N}$ is a simple R-module, hence $\frac{M}{N}$ is a coprime Rmodule. Thus N is a coprime submodule.
(6) The converse of (4) is not true in general for example, Z is a coprime submodule of the Z module Q (see 1.1 (2)) but Z is not a maximal submodule of Q .
(7) Let M be an R -module, let I be an ideal of R such that $\mathrm{I} \subseteq$ ann M , let $\mathrm{N}<\underset{\mathrm{M}}{ }$. Then $\underset{\sim}{\mathrm{N}}$ is a coprime R-submodule of $M \Leftrightarrow N$ is a coprime \bar{R}-submodule of M, where $\bar{R}=R / I$.
proof: (\Rightarrow) Let N be a coprime R-submodule. Then $\frac{\mathrm{M}}{\mathrm{N}}$ is a coprime R-module and hence by [3, cor. 2.1.9], $\frac{\mathrm{M}}{\mathrm{N}}$ is coprime $\overline{\mathrm{R}}$-module. Thus N is a coprime $\quad \overline{\mathrm{R}}$-module. (\Leftarrow) The proof is similarly.

1.2 Proposition:

If N is a coprime submodule, then $[\mathrm{N}: \mathrm{M}]$ is a prime ideal.
proof: Since N is a coprime submodule, $\frac{M}{N}$ is coprime R-module. Hence ann $\frac{M}{N}$ is a prime ideal of $R\left[3\right.$, note 2.1]. But ann $\frac{M}{N}=[N: M]$, so $[N: M]$ is a prime ideal.

Recall that an R-module M is called secondary if for each $r \in \mathrm{R}$, either $\quad r m=0$ or $r^{n} \mathrm{M}=\mathrm{M}$, for some $n \in \mathrm{Z}_{+}$. [7].

We have the following:

1.3 Proposition:

Let M be a secondary R-module, let $\mathrm{N}<\mathrm{M}$. Then N is a coprime submodule iff $[\mathrm{N}: \mathrm{M}]$ is a prime ideal of R . proof: (\Rightarrow) It follows by prop. 1.2.
(\Leftarrow) Since M is a secondary R-module, then $\frac{M}{N}$ is a secondary R-module. But $[N: M]=$ $\operatorname{ann} \frac{\mathrm{M}}{\mathrm{N}}$ is a prime ideal, so by [3,prop.1.2.6], $\frac{\mathrm{M}}{\mathrm{N}}$ is a coprime R-module, hence N is a coprime submodule.

1.4 Proposition:

Let N be a proper submodule of an R -module M . Then N is a coprime submodule iff $[\mathrm{N}: \mathrm{M}]=[\mathrm{W}: \mathrm{M}]$ for all $\mathrm{W} \supset \mathrm{N}$.
proof: If N is a coprime submodule, then $\frac{M}{N}$ is a coprime R-module. Hence ann $\frac{M}{N}=a n n$ $\frac{\frac{M}{N}}{\frac{N}{N}}$ for all $W \supset N$. It follows that ann $\frac{M}{N}=\operatorname{ann} \frac{M}{W}$; that is $[N: M]=[W: M]$.
If $[N: M]=[W: M]$, for all $W \supset N$, then $\operatorname{ann} \frac{M}{N}=\operatorname{ann} \frac{M}{W}$. But $\frac{M}{W} \cong \frac{\frac{M}{N}}{\frac{N}{N}}$, so ann $\frac{M}{N}=\operatorname{ann} \frac{\frac{M}{N}}{\frac{N}{N}}$ and $\frac{M}{N}$ is a coprime R-module. Thus N is a coprime submodule.

1.5 Proposition:

Let W be a coprime submodule of M and let $\mathrm{N}<\mathrm{M}$ such that $\mathrm{N} \supset \mathrm{W}$. Then N is a coprime submodule of M and $\frac{N}{W}$ is a coprime submodule of $\frac{\neq}{W}$.
proof: Since W is a coprime submodule, then $\frac{M}{W}$ is a coprime R-module. Hence by [Rem and Ex. 1.1 (4)], $\frac{N}{W}$ is a coprime submodule of $\frac{M}{W}$. Also $\frac{M}{W}$ is a coprime R-module $\operatorname{implies}(\mathrm{M} / \mathrm{W}) /(\mathrm{N} / \mathrm{W})$ is a coprime R-module $\quad[3, \operatorname{cor}$. 2.1.12]. But $(\mathrm{M} / \mathrm{W}) /(\mathrm{N} / \mathrm{W}) \cong$ M / N, hence M / N is a coprime module by [3, Cor. 2.1.14]. Thus N is a coprime submodule of M.

1.6 Proposition:

Let M be an R-module, let N, W be proper submodules of $M, N \supseteq W$ such that $\frac{N}{W}$ is a coprime submodule of $\frac{\mathrm{M}}{\mathrm{W}}$. Then N is a coprime submodule of M .
proof: Since $\frac{N}{W}$ is a coprime submodule of $\frac{M}{W}$, we have $(M / W) /(N / W)$ is a coprime module. Thus M / N is a cop rime module and so N is a coprime submodule of M .

The following results follow directly by proposition 1.5 .

1.7 Corollary:

If N is a coprime submodule of an R-module M, I an ideal of R. Then $[N: I]$ is a coprime submodule of M .

1.8 Corollary:

Let A, B be proper submodules of an R -module M . If A or B is a coprime submodule and $A+B \neq M$. Then $A+B$ is a coprime submodule of M.

1.9 Proposition:

Let I be a proper ideal of a ring R. Then I is a coprime ideal iff I is a maximal ideal of R. proof: If I is a coprime ideal of R, then R / I is a coprime $R-$ module. But R / I is a multiplication R-module, so by [3,Rem. And Ex. 2.1.3(5)] R/I is simple R-module. Thus I is a maximal ideal of R.

The converse follows by (Rem. And Ex. 1.1.(5)).

1.10 Corollary:

Let R be a ring. The following are equivalent:
(1) (0) is a coprime submodule of R.
(2) $R /(0) \sqcup R$ is a coprime ring (that is R is a field).
(3) (0) is a maximal ideal of R.

1.11 Corollary:

Let R be a PID, let I be a nonzero proper ideal of R . Then the following are equivalent:
(1) I is a coprime ideal of R.
(2) I is a maximal ideal of R.
(3) I is a prime ideal of R.

1.12 Note:

If N is a coprime submodule of an R -module M . Then it is not necessary that $[\mathrm{N}: \mathrm{M}]$ is a coprime ideal of R, as the following example shows:

Z is a coprime submodule of the Z -module Q but $[\mathrm{Z}: \mathrm{Q}]=(0)$ is not a maximal ideal of Z , that is (0) is not coprime ideal of Z.

1.13 Proposition:

Let M be a multiplication R-module, let N be a proper submodule of M . Then N is a coprime submodule iff $[\mathrm{N}: \mathrm{M}]$ is a coprime ideal of R.
proof: If N is a coprime submodule of M, then $\frac{M}{N}$ is a coprime R-module. But M is a multiplication R-module implies $\frac{\mathrm{M}}{\mathrm{N}}$ is a multiplication R-module. Hence by [3,Rem. and Ex. 2.1.3(5)] $\frac{\mathrm{M}}{\mathrm{N}}$ is a simple R -module. Thus N is a maximal submodule of M which implies that $[\mathrm{N}: \mathrm{M}]$ is a maximal ideal. Then by prop. $1.9,[\mathrm{~N} ; \mathrm{M}]$ is a coprime ideal.

Conversely, if $[\mathrm{N}: \mathrm{M}]$ is a coprime ideal of R , then by prop. 1.9, $[\mathrm{N}: \mathrm{M}]$ is a maximal ideal of R. Now M is a multiplication module and $[\mathrm{N} ; \mathrm{M}]$ is a maximal ideal of R implies that $\mathrm{N}=[\mathrm{N} ; \mathrm{M}] \mathrm{M}$ is a maximal submodule of M . Thus by Rem. and Ex. 1.1 (5), N is a coprime submodule of M .

1.14 Corollary:

Let M be a multiplication R -module and let $\mathrm{N}<\mathrm{M}$. The following are equivalent:
(1) N is a coprime submodule of M .
(2) $[\mathrm{N}: \mathrm{M}]$ is a coprime ideal of R.
(3) $[N: M]$ is a maximal ideal of R.
(4) N is a maximal submodule of M .
proof: $(1) \Leftrightarrow(2)$ it follows by prop. 1.13.
$(2) \Leftrightarrow(3)$ it follows by prop. 1.9.
$(4) \Rightarrow(1)$ by Rem. and Ex. 1.1 (5).
(3) \Rightarrow (4) Since M is multiplication, and $[\mathrm{N}: \mathrm{M}]$ is a maximal ideal, then N is a maximal submodule of M .

The following result shows that a homomorphic image of a coprime submodule is a coprime submodule.

1.15 Theorem:

Let $\psi: \mathrm{M} \longrightarrow \mathrm{M}^{\prime}$ be an R -epimorphism, let $\mathrm{N}<\mathrm{M}$. If N is a coprime submodule of M , then $\psi(\mathrm{N})$ is a coprime submodule of M^{\prime}.
proof: To prove $\psi(N)$ is a coprime submodule of M^{\prime}, we must prove $\frac{M^{\prime}}{\psi(N)}$ is a coprime Rmodule, so we must show that $r \frac{\mathrm{M}^{\prime}}{\psi(\mathrm{N})}=\frac{\mathrm{M}^{\prime}}{\psi(\mathrm{N})}$ for all $r \notin$ ann $\frac{\mathrm{M}^{\prime}}{\psi(\mathrm{N})}$. First $r \notin$ ann $\frac{\mathrm{M}^{\prime}}{\psi(\mathrm{N})}$, means that $r \notin\left[\psi(\mathrm{~N}): \mathrm{M}^{\prime}\right]$. It is easy to check that $[\mathrm{N}: \mathrm{M}] \subseteq\left[\psi(\mathrm{N}): \mathrm{M}^{\prime}\right]$. Hence $r \notin[\mathrm{~N}: \mathrm{M}]=\operatorname{ann} \frac{\mathrm{M}}{\mathrm{N}}$. On the other hand N is a coprime submodule, implies $\frac{\mathrm{M}}{\mathrm{N}}$ is a coprime R-module. Hence $r \frac{\mathrm{M}}{\mathrm{N}}=\frac{\mathrm{M}}{\mathrm{N}}$ since $r \notin \operatorname{ann} \frac{\mathrm{M}}{\mathrm{N}}=[\mathrm{N}: \mathrm{M}]$. Now, let $y+\psi(\mathrm{N}) \in \frac{\mathrm{M}^{\prime}}{\psi(\mathrm{N})}$, so $y=$ $\psi(m)$ for some $m \in \mathrm{~N}$, since ψ is an epimorphism. Thus $y+\psi(\mathrm{N})=\psi(m)+\psi(\mathrm{N})=\psi(m+$ $\mathrm{N})$. Hence there exists $m^{\prime} \in \mathrm{M}$ such that. $m+\mathrm{N}=r m+\mathrm{N}$, so $y+\psi(\mathrm{N})=\psi\left(r m^{\prime}+\mathrm{N}\right)=\quad r$ $\psi\left(m^{\prime}\right)+\mathrm{N}=r\left(\psi\left(m^{\prime}\right)+\mathrm{N}\right) \in r \frac{\mathrm{M}^{\prime}}{\mathrm{N}}$. Thus $r \frac{\mathrm{M}^{\prime}}{\psi(\mathrm{N})}=\frac{\mathrm{M}^{\prime}}{\psi(\mathrm{N})}$ and so $\frac{\mathrm{M}^{\prime}}{\psi(\mathrm{N})}$ is a coprime Rmodule. Hence $\psi(N)$ is a coprime submodule of M^{\prime}.

Now, we turn our attention to direct sum of coprime submodules.

1.16 Theorem:

Let M_{1}, M_{2} be R-modules, let $N_{1}<M_{1}, N_{2}<M_{2}$ such that ann $\frac{M_{1}}{N_{1}}=$ ann $\frac{M_{2}}{N_{2}}$. Then $N=$ $N_{1} \oplus N_{2}$ is a coprime submodule of M iff N_{1} is a coprime submodule of M_{1}, N_{2} is a coprime submodule of M_{2}.
proof: (\Rightarrow) Let $p_{1}: \mathrm{M}_{1} \oplus \mathrm{M}_{2} \longrightarrow \mathrm{M}_{1}, \mathrm{p}_{2}: \mathrm{M}_{1} \oplus \mathrm{M}_{2} \longrightarrow \mathrm{M}_{2}$ be the natural projection. Hence $\mathrm{p}_{1}\left(\mathrm{~N}_{1} \oplus \mathrm{~N}_{2}\right)=\mathrm{N}_{1}, \mathrm{p}_{2}\left(\mathrm{~N}_{1} \oplus \mathrm{~N}_{2}\right)=\mathrm{N}_{2}$ and so by theorem 1.15, N_{1} is a coprime submodule of M_{1}, N_{2} is a coprime submodule of M_{2}.

Conversely, to prove $\mathrm{N}_{1} \oplus \mathrm{~N}_{2}$ is a coprime submodule of $\mathrm{M}_{1} \oplus \mathrm{M}_{2}$. Since $\mathrm{N}_{1}, \mathrm{~N}_{2}$ are coprime submodules of M_{1}, M_{2} respectively, then $\frac{M_{1}}{N_{1}}$ and $\frac{M_{2}}{N_{2}}$ are coprime R-module and since $\operatorname{ann} \frac{M_{1}}{N_{1}}=\operatorname{ann} \frac{M_{2}}{N_{2}}$ it follows that $\frac{M_{1}}{N_{1}} \oplus \frac{M_{2}}{N_{2}}$ is a coprime R-module (see [7], [3,prop. 2.3.3). But it is easy to check that $\frac{M_{1} \oplus M_{2}}{N_{1} \oplus N_{2}} \square \frac{M_{1}}{N_{1}} \oplus \frac{M_{2}}{N_{2}}$. Hence by [3,cor. 2.1.14], $\frac{M_{1} \oplus M_{2}}{N_{1} \oplus N_{2}}$ is a coprime R-module. Thus $\mathrm{N}_{1} \oplus \mathrm{~N}_{2}$ is a coprime submodule of $\mathrm{M}_{1} \oplus \mathrm{M}_{2}$.

1.17 Remark:

The condition ann $\frac{M_{1}}{N_{1}}=$ ann $\frac{M_{2}}{N_{2}}$ is necessary condition in Th. 14, as the following example shows:

Consider the Z-module Z. Let $\mathrm{N}_{1}=2 \mathrm{Z}, \mathrm{N}_{2}=3 \mathrm{Z}, \mathrm{N}_{1}, \mathrm{~N}_{2}$ are maximal submodules of Z , so N_{1}, N_{2} are coprime submodules of Z (see Rem. 1.1(5)). Let $\quad N=N_{1} \oplus N_{2}=2 Z \oplus 3 Z$ $<Z \oplus Z$. It is clear that ann $\frac{Z}{N_{1}} \neq$ ann $\frac{Z}{N_{2}}$. Now $\frac{Z \oplus Z}{N_{1} \oplus N_{2}} \cong \frac{Z}{N_{1}} \oplus \frac{Z}{N_{2}} \square Z_{2} \oplus Z_{3} \square Z_{6}$. But Z_{6} is not a coprime Z-module, so $\frac{Z \oplus Z}{N_{1} \oplus N_{2}}$ is not a coprime Z-module. Thus $N_{1} \oplus N_{2}$ is not a coprime submodule of $\mathrm{Z} \oplus \mathrm{Z}$.

The following property explains the behaviour of coprime submodules under localization.

1.18 Proposition:

Let S be a multiplicative subset of a ring R . Let N be a proper submodule of an $\mathrm{R}-$ module M such that $S^{-1} N \neq S^{-1} M$. If N is a coprime submodule of M, then $S^{-1} N$ is coprime sbmodule of $\mathrm{S}^{-1} \mathrm{M}$.
proof: N is a coprime submodule of M implies $\frac{M}{N}$ is a coprime R-module, then by [3,prop.2.1.38], $S^{-1}\left(\frac{M}{N}\right)$ is a coprime $S^{-1} R$-module. But [5,lemma 9.12,p.173],
$S^{-1}\left(\frac{M}{N}\right) \cong \frac{S^{-1} M}{S^{-1} N}$, so $\frac{S^{-1} M}{S^{-1} N}$ is a coprime $S^{-1} R$-module. Hence $S^{-1} N$ is a coprime submodule of $\mathrm{S}^{-1} \mathrm{M}$.

Recall that an R-module M is antihopfian if $M=M / N$ for all $N \neq M$ (4).
Hence we get the following result directly.

1.19 Remark:

Let M be an antihopfian R-module. Then every submodule of M is coprime submodule.
proof: Since $M \square \frac{M}{N}$, ann $M=\operatorname{ann} \frac{M}{N}$, that is M is coprime R-module. Then by (Rem. and Ex. 1.1(4)) every proper submodule is coprime submodule.

1.20 Proposition:

Let M be a finitely generated R-module, let $\mathrm{N}<\mathrm{M}$. If N is a coprime submodule, then N is prime.
proof: Since N is a coprime submodule, M / N is a coprime R -module. But M is a finitely generated R-module, so M / N is finitely generated. Hence by [3,Th. 2.4.8], M / N is a prime Rmodule and hence $\mathrm{O}_{\mathrm{M} / \mathrm{N}}=\mathrm{N}$ is a prime submodule of $\frac{\mathrm{M}}{\mathrm{N}}$. It follows that N is a prime submodule of M.

1.21 Remark:

The condition M is finitely generated in prop. 2.1 is necessary condition, as the following example shows.

Z is a coprime submodule of the Z -module Q and Q is not finitely generated. Also Z is not a prime submodule of Q .

1.22 Corollary:

Let M be a Noetherian coprime R-module, then every proper submodule of M is prime. proof: It follows directly by prop. 1.20.

1.23 Proposition:

Let M be an R -module such that $r \mathrm{M} \cap \mathrm{N}=r \mathrm{~N}$ for all $r \in \mathrm{R}$ and for all

$$
\mathrm{N}<\mathrm{M} .
$$

Then every prime submodule is a coprime submodule.
proof: Let N be a prime submodule of M . Let $\mathrm{W} \supset \mathrm{N}$. We shall prove that:
$r \frac{\mathrm{M}}{\mathrm{N}} \cap \frac{\mathrm{W}}{\mathrm{N}}=r \frac{\mathrm{~W}}{\mathrm{~N}}$ as follows: let $x \in r \frac{\mathrm{M}}{\mathrm{N}} \cap \frac{\mathrm{W}}{\mathrm{N}}$, so $x=w+\mathrm{N}=r(m+\mathrm{N})$ for some $w \in \mathrm{~W}, m \in$ M . Hence $r m-w \in \mathrm{~N} \subset \mathrm{~W}$. Thus $r m \in \mathrm{~W}$, which implies that $r m \in r \mathrm{M} \cap \mathrm{W}=r \mathrm{~W}$ and hence r $m=r y$ for some $y \in \mathrm{~W}$. Then $r m+\mathrm{N}=r y+\mathrm{N}$, that is $r(m+\mathrm{N})=r(y+\mathrm{N}) \in r \frac{\mathrm{~W}}{\mathrm{~N}}$. Thus $r \frac{\mathrm{M}}{\mathrm{N}} \cap \frac{\mathrm{W}}{\mathrm{N}}=r \frac{\mathrm{~W}}{\mathrm{~N}}$. On the other hand, N is a prime submodule of M implies $\frac{\mathrm{M}}{\mathrm{N}}$ is a prime Rmodule. Then by [3,prop. 2.4.1,p.54] $\frac{\mathrm{M}}{\mathrm{N}}$ is a coprime R-module and hence N is a coprime submodule.

1.24 Corollary:

Let R be a regular ring (in sence of Von Neumann), let M be an R-module. Then every prime submodule of M is a coprime submodule of M.
proof: Since R is a regular ring, implies $r \mathrm{M} \cap \mathrm{N}=r \mathrm{~N}$ for all $r \in \mathrm{R}$ and for all $\mathrm{N}<\mathrm{M}$, then the result is obtained by prop.1.23.

References

1. Abuihlail, J. (2007), Zariski-Like Topologies for Modules Over Commutative Ring, accepted (ar X iv, math.RA), pp.1-19.
2. Annin, S. (2002) Associated and Attached Primes Over Non Commutative Rings, Ph.D. Thesis University of Berkeley.
3. Khalaf, R. I. (2009), Dual Notions of Prime Submodules and Prime Modules, M.Sc. Thesis, University of Baghdad.
4. Hirano,Y.and Mogami, I. (1987), Modules Whose Proper Submodules are Non-Hopf Kernels", Communications in Algebra, 15:1549-1567.
5. Sharp, R.Y. (1990), Steps in Commutative Algebra, Cambridge University Press.
6. Wijayanti, I. E. (2006), Coprime Modules and Comodules, Ph.D. Thesis, Heinrich-Heine Universität, Düsseldorf.
7. Yassemi, S.M. (2001), The Dual Notion of Prime Submodules, Arch. Math. (Bron), 37: 273-278.
