Synthesis, Spectroscopic and Biological Studies of Some

Metal Complexes with 2,3,5,6- O,O,O,O-tetraacetic acid Lascorbic acid

J. S. Sultan, A. A. Mukhlus, F. H. Musa
Department of Chemistry, College of Education, Ibn Al- Haith am
,University of Baghdad

Received in : 11 August 2010

Acceptedin : 8 February 2011

Abstract

The reaction of L-ascorbic acid with the chloroacetic acid in presence of potassium hydroxide has been investigated.

The new product L (2,3,5,6-O,O,O,O-tetraacetic acid L-ascorbic acid) was isolated and characterized by elemental analysis(C.H), ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NM}$ R. Mass spectrum and Fourier transform infrared (FT-IR). The reaction of the ligand (L) (where $\mathrm{L}=\mathrm{H}_{4} \mathrm{~L}$), $\mathrm{M}^{+2}=(\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Cd}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{Ca}, \mathrm{Mg})$ has been investigated and was isolated and characterized by FT-IR, UV- visible, conductivity, Atomic absorption and molar ratio (Cd, Co) complexes.

Spectroscopic evidence showed that the binding of the M (II) ions are throughy the $\mathrm{O}-1$ Lacton, $\mathrm{O}-2-\mathrm{OCH}_{2} \mathrm{COOH}$ and $\mathrm{O}-6-\mathrm{OCH}_{2} \mathrm{COOH}$ resulting in a six- coordinated metal ion, $\alpha, K_{f}, \varepsilon_{\text {max }}$, for Co , Cd complexes, were estimated, β for Co, Ni, complexes were calculated too.

The study of biological activity of the ligand (L) and its complexes $\left(\mathrm{Cu}^{+2}, \mathrm{Cd}^{+2}, \mathrm{Ca}^{+2}\right)$ showed various activity toward staphylococcus aureu and Escherichia coli, except Cacomplex didn't show any effect.

Key word : Sy nthesis, Spectroscopic, Biological Studies

Introduction

Ascorbic acid has been reported to act in a number of ways. It acts as a biological hydrogen carier for redox enzy me sy stems in cell metabolism[1], as a food preservative by oxidative rancidity of fatty oily foods or to prevent discoloration of preserved fruits and vegetables[2,3]. Although ascorbic acid has a wide range of antimicrobial effects, some of its, oxidative products are toxic[4].

L-ascorbic acid molecule has four hydroxyl groups and all these groups are active for classical esterification[5,6] and formation Schiff base with amines complexes[7]. Some metal ions have been prepared and characterized[8]. In view of this, we have sy nthesized, and characterized, new ligand (L) and its complexes with M^{II} ions where $\mathrm{M}^{\mathrm{II}}=\left(\mathrm{Co}^{+2}, \mathrm{Ni}^{+2}, \mathrm{Cu}^{+2}\right.$, $\mathrm{Cd}^{+2}, \mathrm{~Pb}^{+2}, \mathrm{Hg}^{+2}, \mathrm{Ca}^{+}$and $\left.\mathrm{Mg}^{+2}\right)$ with biological studies of ligand and its complexes $\left(\mathrm{Cu}^{+2}\right.$, $\mathrm{Cd}^{+2}, \mathrm{Ca}^{+2}$).

Experimental
 Materials

All chemicals were purchased from BDH , and used without further purifications.

1. Infra-red spectra between ($400-4000 \mathrm{~cm}^{-1}$) 8300 (FT-IR) Shimadzu Spectrophotometer.
2. The electronic spectra were recorded on the UV-Visible spectrophotometer type (spectra 190-900) nm CECIL, England, using water as a solvent.
3. The melting point was recorded on "Gallen kamp Melting point Apparatus".
4. The Conductance Measurements were recorded on W. T. W. conductivity Meter.

5 The characterize of new ligand L is acheaved by:
A: Elemental analysis for carbon, hydrogen was using a Euro Vector EA 3000 A Elemental Analysis (Italy).
B: ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were recorded by using a bruker 300 MHZ (5witzerland). Chemical Shift of all ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded in δ (ppm) unit downfield from internal reference tetramethylsilane (TMS), using $\mathrm{D}_{2} \mathrm{O}$ solvent.
C: GCMS spectrum was performed GCMS solution/ Msc/ Msc-DI- unk, 9gm, company a Shimadzu model carried out QP 505 A, orgin: Japan.
D: All these analysis were done in at AL-al-Bayt University, Al- Mafrag, Jordan.
6. Thin lay er chromatography (TLC): The (TLC) was performed on aluminum plates coated with (0.25 mm) layer of silica gel F_{254} (Fluka), and were detected by iodine.

Synthesis

1. Synthesis of 2,3,5,6-O,O,O,O-tetraacetic acid L-ascorbic acid

To a solution of 0.176 gm (0.001 mole) of L-ascorbic acid in 20 ml aqueous ethanol $(15 \mathrm{ml}$ ethanol +5 ml water) were added a solution of $0.224 \mathrm{gm}(0.004$ mole $)$ of potassium hydroxide in 5 ml of ethanol, after which the mixture was stirred for 30 minutes. To this mixture was added solution of $0.380 \mathrm{gm}(0.004 \mathrm{~mole})$ of chloroacetic acid in 10 ml of ethanol. Then the solution was stirring for one hour. The solution was evaporated slowly to bring down the orange precipitate. The product was recrystallized from (ethanol + water) in the ratio (15:5). Thd analytical results showed the composition (L) of $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{14} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. EtOH. $4 \mathrm{KCl} . \mathrm{R}_{\mathrm{f}}(0.526)$ in ethanol benzene ($9: 1$).
2. Synthesis of $3,5-\mathrm{O}, \mathrm{O}$, -diacetic acid-2,6- O,O diacetato L - ascorbic acid aqua metal (II), $\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Cd}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{Ca}\right.$ and Mg)
All complexes were prepared as follows: To a solution of (1 m mole) of L in 20 ml ethanol was added a solution of (4 m mole) of potassium hydroxide in 5 ml of ethanol. The mixture was stirred at room temperature for half hour. To this mixture was added solution of (1 m mole) of metal chloride in 20 ml of ethanol. Then the solution was stirring for one hour. The solution was evaporated slowly to bring down the complex. The complex was recrystallized from ethanol. The physical properties for all synthesized ligand L and its complexes are shown in Table (1-1)

Results and Discussion

1. Synthesis of 2,3,5,6-O,O,O,O-tetea acetic acid L-ascorbic acid (L) In the present work of the ligand (L) was synthesized by reacting L-ascorbic acid with chloroacetic acid in presence of potassium hydroxide.

The infrared spectrum of the (L) lacked absorptions caused by $\mathrm{v}\left(\mathrm{HO}-\mathrm{CH}_{2}\right)$ which appeared in the spectrum of L-ascorbic acid at 3525, 3410, 3313 and $3213 \mathrm{~cm}^{-1}$ Fig. (1) respectively[9]. This confirms the disp lacement of the $\mathrm{O}-\mathrm{H}$ hy drogen by mean of acetic group $\mathrm{O}-\mathrm{CH}_{2} \mathrm{COOH}$ Fig. (2) (L). In the same trend broad band centered at $3421 \mathrm{~cm}^{-1}$ and bands in the range 2700-2500 cm^{-1}, are related to carboxylic OH stretching. The band at $2954 \mathrm{~cm}^{-1}$ stretching is attributed to C-H aliphatic. The strong band at $1608,1404,941$ and $570 \mathrm{~cm}^{-1}$ are attributed to the $\mathrm{O}=\mathrm{C}-\mathrm{O}$ stretching vibration $[10,11]$. The carbonyl (lactone $\mathrm{C}-\mathrm{I}=\mathrm{O}$) stretching vibration appeared as band medium intensity at $1755 \mathrm{~cm}^{-1}$.

Another medium broad band observed at ca. $1380 \mathrm{~cm}^{-1}$ is assigned to $\mathrm{C}(3)-\mathrm{O}^{-}$and the peak at $1319 \mathrm{~cm}^{-1},(\mathrm{O}(2)-\mathrm{H})$ for free acid shifted from the spectrum of L at $1311 \mathrm{~cm}^{-1}$ which strongly indicates the binding of $\mathrm{OCH}_{2} \mathrm{COOH}$ with $\mathrm{C}-2$ and $\mathrm{C}-3$ in a new ligand (L)[12], Fig. (2).

The mass spectrum of the ligand (L) Fig. (3a) showed a highest Mass ${ }^{\mathrm{m}} / \mathrm{e}$ at 167 with signal intensity (3%), (relative to the base peak at ${ }^{\mathrm{m}} / \mathrm{e}$ (44)) which may due to $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{4}$. The detailed decomposition path ways are summarized in the reaction scheme;

Scheme (1): The fragmentation sequence of the ligand (L) with relative abundance

NMR spectrum for the ligand (L)

${ }^{1} \mathrm{H}-\mathrm{NMR}$. spectrum of the L in $\mathrm{D}_{2} \mathrm{O}$ exhibited (d) at $\delta 4.2 \mathrm{ppm}$ for (IH) Lactone ring and $\mathrm{O}-\mathrm{CH}_{2}-$ at 4.8 ppm . Carboxy lic acids usually absorbs in the region (8-9.5) ppm and this is out of scale. Evidence for the carboxylic of L has been observed from the ${ }^{13} \mathrm{C}$-NMR. spectra. The spectrum of L measured in $\mathrm{D}_{2} \mathrm{O}$ showed resonances typical for $\mathrm{C}=\mathrm{O}$ at 177 and peak at 43 ppm is due to $\mathrm{O}-\mathrm{CH}_{2}{ }^{[8,9]}$, as in Table (1-2), (1-3), Figs. (5a), (5b).

The prepared complexes

Reaction of the ligand (L) with metal salts $\mathrm{MX}_{n} \cdot \mathrm{YH}_{2} \mathrm{O}$, \{where $\left.\mathrm{Y}=\mathrm{H}_{2} \mathrm{O}\right\},\left(\mathrm{X}=\mathrm{Cl}, \mathrm{NO}_{3}\right.$ with lead only), were carried out in ethanol- water under stirring in presence of potassium hydroxide. All complexes are stable, the analytical and physical data, in Table (1-1) and spectral data, in Table (1-4). All complexes are dissolving in water, DMSO and DMF solvents.

IR spectra

The comparative IR spectral study of the ligand L Fig. (2), and its complexes Fig. (3) (Co- complex as example). reveals the interesting coordination of the ligand during complex formation. The important IR bands with their possible assignment are depicted in Table (1-4). In general upon metal ion interaction, the presence broad band is observed at $\cong 3400 \mathrm{~cm}^{-1}$, weaks bands in the range $2700-2500 \mathrm{~cm}^{-1}$ and band at $1605 \mathrm{~cm}^{-1}$ are related to H -bondedOH of acetic acid and carboxylic[23]. The carbonyl ($\mathrm{C}-\mathrm{I}=\mathrm{O}$) stretching vibration is shifted towards a lower frequency at $(1740-1730) \mathrm{cm}^{-1}$ due to coordinate metal ion with lacton (C $\mathrm{I}=\mathrm{O})$ and this band is assigned to $\mathrm{v}(\mathrm{O}-\mathrm{C}=\mathrm{O})$ of lacton ring strongly suggest that the ligand acid ring is not ruptured in the course of the complexation. For instance the I.R. spectrum of $\left[p t(d p p m) A s c-O^{2}, \mathrm{O}^{3}\right]$ diphosphine $\left(\mathrm{P}^{\cap} \mathrm{P}\right)$ the position of the $\mathrm{v}(\mathrm{C}=\mathrm{O})$ band of ascorbic acid at $1745 \mathrm{~cm}^{-1}$ shifts to lower frequency by between 30 and $50 \mathrm{~cm}^{-1}$ upon coordination to platinum[14]. This value compare favourably with that found for L -complexes. All complexes exhibits a broad absorption bands at $1593-1635 \mathrm{~cm}^{-1}$ due to the stretching vibration of $\mathrm{C}=\mathrm{C}$ and $v(\mathrm{COO})$. The ap pearance of new two bands in the $1495-1530 \mathrm{~cm}^{-1}$ range due to $v_{\mathrm{as}}\left(\mathrm{COO}^{-}\right)$and another one in the $1408-1427 \mathrm{~cm}^{-1}$ range assigned to $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$. Accordingly, The antisymmetric and symmetric stretching vibration modes $\mathrm{v}_{\text {as }}\left(\mathrm{COO}^{-}\right)$and $v_{s}\left(\mathrm{COO}^{-}\right)$of the group should help in elucidating the structure of our complexes[15]. The direction of the frequency shift of the $v_{\text {as }}\left(\mathrm{COO}^{-}\right)$and the $v_{s}(\mathrm{COO})$ bands with respect to those of the free ion depends on the coordination mode of the COO^{-}group with the metal ion. Nakamoto and Mc carthy [16,17] claimed that if the coordination is monodentate the $v_{a s}\left(\mathrm{COO}^{-}\right)$and $v_{s}\left(\mathrm{COO}^{-}\right)$will be shifted to higher and lower frequencies respectively. Whereas, if the coordination is chelating bidentate or bridging bidentate both $v_{\text {as }}\left(\mathrm{COO}^{7}\right)$ and $v_{s}\left(\mathrm{COO}^{-}\right)$frequencies will change in the same direction. This is because the bond orders of both $\mathrm{C}=\mathrm{O}$ bonds would change by the same amount. Based on these facts and comparing the $v_{a s}\left(\mathrm{COO}^{-}\right)$and $v_{s}\left(\mathrm{COO}^{-}\right)$frequencies of the L complexes by the $v_{a s}\left(\mathrm{COO}^{-}\right)$and $v_{s}\left(\mathrm{COO}^{-}\right)$ frequencies of $\mathrm{RuH}(\mathrm{ac})\left(\mathrm{PPh}_{3}\right)_{2}(1582,1449)[18]$, as shown in Table (1-4) and Fig. (3). One can say that all the prepared complexes are metal chelates, because both $v_{\text {as }}\left(\mathrm{COO}^{-}\right)$and $v_{s}\left(\mathrm{COO}^{-}\right)$frequencies changed in the same direction and the Δ^{-}values $\left[\mathrm{v}_{\mathrm{as}}\left(\mathrm{COO}^{-}\right)-\mathrm{v}_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)\right.$ $\cong(87-111) \mathrm{cm}^{-1}$ which are significantly less than ionic values indicates that L -complexes contains carboxylic and bidentate carboxylato group in a molecule. The two carboxylic group in 2, 6 are bidentate coordinate and at in 3,5 are carboxylic acid. Several other sharp absorption bands at 941 and $570 \mathrm{~cm}^{-1}$ of the free acid, which attributed to the COO^{-} stretching vibration exhibited considerable shift and splitting upon metal ion interaction. The band characteristic of coordinated water are seen in all complexes in the range $(825-763) \mathrm{cm}^{-}$ ${ }^{1}$. The sharp absorption bands observed around $400 \mathrm{~cm}^{-1}$ [23], have been assigned to $\mathrm{M}-\mathrm{O}$ stretch vibrational bands. These assignments are based on the fact that the $\mathrm{M}-\mathrm{O}$ stretch bands for the most metal complexes occur within this region[15,16].

Electronic Spectra

The electronic spectral data of free ligand and its complexes are summarized in Table (1-5). The peak at $246 \mathrm{~nm}\left(40650 \mathrm{~cm}^{-1}\right)$ in the electronic spectrum of free lignad L Fig. (6) was shifted to lower frequency with tail start at $300-400 \mathrm{~nm}$ indicated to charge transfer were noticed in the electronic spectra of $\mathrm{Pb}, \mathrm{Hg}, \mathrm{Cd}, \mathrm{Mg}$ and $\mathrm{Ca}[19]$.

LCu ; six coordinate complexes, the ground state in an octahedral field is ${ }^{2} \mathrm{Eg}$ it is subject to considerable Jahn- Teller distortion and in practice, the majority of copper (II) complexes which are usually green or blue are tetrgonally distorted. Such complexes give rise to one absorption band in the visible region near $13000 \mathrm{~cm}^{-1}[11,27]$. the spectrum of the green LCu complex is shown only a brood absorption band centered at $800 \mathrm{~nm}\left(12500 \mathrm{~cm}^{-1}\right)$ due to the transition
${ }^{2} \mathrm{Eg} \rightarrow{ }^{2} \mathrm{~T}_{2} \mathrm{~g}$.

LCo complex

The most octahedral Co (II) complexes[28-30] are pink or reddish while the most tetrahedral $\mathrm{Co}(\mathrm{II})$ complexes are blue or green. These colour may indicate to stereochemistry.

The LCo complex gives reddish colour and its UV-visible spectrum Fig. (7) is shown bands within range octahedral stereochemistry $[8,9,11,17]$ and as follows;

$$
\begin{aligned}
& v_{2}=680 \mathrm{~nm}\left(14706 \mathrm{~cm}^{-1}\right)^{4} \mathrm{~T}_{1} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~A}_{2} \mathrm{~g} \\
& v_{3}=590 \mathrm{~nm}\left(16949 \mathrm{~cm}^{-1}\right)^{4} \mathrm{~T}_{1} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}(\mathrm{p})
\end{aligned}
$$

The absorption within range $440 \mathrm{~nm}\left(22220 \mathrm{~cm}^{-1}\right)$ which is assigned to charge transfer $\mathrm{T}_{2} \mathrm{~g} \rightarrow \pi^{*}$. The transition $v_{1}, \mathrm{Dq}, \mathrm{B}$ and β are calculated theoretical limits, from the graphs Fig. a and Fig. b.

$$
\begin{aligned}
& \mathrm{v}_{2}=18 \mathrm{Dq} \therefore \mathrm{Dq}=\frac{14706}{18}=817 \mathrm{~cm}^{-1} \\
& 1470=18 \mathrm{Dq} \\
& \mathrm{v}_{1}=8 \mathrm{Dq}=8 \times 817=6536 \mathrm{~cm}^{-1} \\
& \mathrm{v}_{3}=6 \mathrm{Dq}+15 \mathrm{~B}^{-} \\
& 16949= 6 \times 817+15 \mathrm{~B}^{-} \\
&=4902+15 \mathrm{~B}^{-} \\
& 15 \mathrm{~B}^{-}=16949-4902 \\
& 15 \mathrm{~B}^{-}=12047 \\
& \mathrm{~B}^{-} \text {cmoplex }=\frac{12047}{15}=803 \\
& \beta=\frac{\mathrm{B}^{-} \text {complex }}{\mathrm{B} \text { free ion }}=\frac{803}{971}=0.827
\end{aligned}
$$

Fig. (a) Energy level diagram (Tanabe- Sugano) for d^{7} ions in an octahedral field ($\mathrm{C}=4.633 \mathrm{~B}$)

Fig. (b) A_{2} and T_{1} ground states, transition energy ratios versus $E\left(v_{3}\right) / B$ (range 16-47). Note that the left-hand ordinate refers to $\mathrm{E}\left(\mathrm{v}_{3}\right) / \mathrm{B}(16-24.6)$ and the right-hand ordinate to $\mathrm{E}\left(\mathrm{v}_{3}\right) / \mathrm{B}(24.6-47) \mathrm{Co}$ and Ni complexes

LNi complex

Six coordinate complex nickel (II) complexes exhibit a simple spectrum involving three sp in allowed transitions to the ${ }^{3} \mathrm{~T}_{2} \mathrm{~g},{ }^{3} \mathrm{~T}_{1} \mathrm{~g}_{(\mathrm{F})}$ and ${ }^{3} \mathrm{~T}_{1} \mathrm{~g}_{(\mathrm{P})}$ levels[8,9,11,17]. These occur in range 7000-13.000, 11.000-20000 and $19000-27000 \mathrm{~cm}^{-1}$ regions respectively. In addition, two sp in forbidden bands to ${ }^{1} \mathrm{Eg}$ and to ${ }^{1} \mathrm{~T}_{2} \mathrm{~g}$ are frequently observed. When Dq / B is nearly unity the v_{2} transition ${ }^{3} \mathrm{~T}_{1} \mathrm{~g}_{(\mathrm{F})}$ appears as a well defined doublet- this may be consequence of the transition to the ${ }^{1}$ Eg level gaining intensity through configurational interaction with the $\left.{ }^{3} \mathrm{~T}_{1} \mathrm{~g}_{\mathrm{F}}\right)[24,25]$ although other authors prefer to interpret the structure in terms of spin- orbital coupling[26]. From the above the $\mathrm{L}_{1} \mathrm{Ni}$ complex appears as a well defined doublt due to ${ }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{3} \mathrm{~T}_{1} \mathrm{~g}_{\text {F) }} \mathrm{v}_{2} 776 \mathrm{~nm}\left(12987 \mathrm{~cm}^{-1}\right)$ and $660 \mathrm{~nm}\left(15151 \mathrm{~cm}^{-1}\right)$ due to ${ }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{1} \mathrm{Eg}$.

The third spin allowed transitions to the ${ }^{3} \mathrm{~T}_{1} \mathrm{~g}_{(\mathrm{p})} \quad \mathrm{v}_{3}$ at 22000 cm^{-1} from the graph Fig. b.
$B, \beta, 10 \Delta q$ may be calculated in the following ways;
from $=\frac{v_{3}}{v_{2}}=\frac{22000}{12987}=1.69$
hence $=\frac{\Delta \mathrm{q}}{\mathrm{B}}=0.89$ and $\mathrm{E}\left(v_{3}\right) / \mathrm{B}=28$
$\mathrm{B}=785.7 \mathrm{~cm}^{-1}$
$10 \Delta \mathrm{q}=6990 \mathrm{~cm}^{-1}=\mathrm{v}_{1}\left({ }^{3} \mathrm{~T}_{2} \mathrm{~g} \leftarrow{ }^{3} \mathrm{~A}_{2} \mathrm{~g}\right)$
$\beta=\frac{785.7}{1030}=0.76$
B for free ion $\mathrm{Ni}=1030$

Solutions chemistry

Molar ratio

The complexes of the ligand (L) with selected ions $\left(\mathrm{Co}^{+2}, \mathrm{Cd}^{+2}\right)$ were studied in solution using water as solvents, in order to determine ($\mathrm{M}: \mathrm{L}$) ratio in the prepared complexes, following molar ratio method[21]. A series of solutions were prepared having a constant concentration (C) $10^{-3} \mathrm{M}$ of the hydrated metal salts and the ligand (L). The ($\mathrm{M}: \mathrm{L}$) ratio was determined from the relationship between the absorption of the observed light and mole ratio ($\mathrm{M}: \mathrm{L}$) found to be ($1: 1$). The result of complexes formation in solution are shown in Table (6), Table (7) and Table (8), Fig. (8) and Fig (9).
M olar conductivity for the complexes of ligand (L)
The molar conductance of the complexes in (water), Table (9) lie in the $(90-177.6) \mathrm{S}_{\mathrm{cm}}{ }^{2}$ molar $^{-1}$ range, indicating their electrolytic nature with (1:1) ratio, except for the complexes, $\mathrm{Ni}, \mathrm{Cd}, \mathrm{Pb}$, and Mg which their molar conductance lie in the (6.6-42) $\mathrm{Scm}^{2} \mathrm{Molar}^{-1}$ range, indicating their non- electrolyte nature[20].

Biologeal effect of new ligand L and its complexes

Indicating that the new ligand and its complexes exhibited antibacterial activity against both gram positive and gram negative bacteria[31-34], except Ca-complex has no effect on both bacteria.
Table (10), Fig. (10) and Fig. (11).

Conclusion

A series of complexes of $\mathrm{Co}^{+2}, \mathrm{Ni}^{+2}, \mathrm{Cu}^{+2}, \mathrm{Cd}^{+2}, \mathrm{~Pb}^{+2}, \mathrm{Hg}^{+2}, \mathrm{Ca}^{+2}, \mathrm{Mg}^{+2}$ with $2,3,5,6-$ $\mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{O}-$ tetraacetic acid L -ascorbic have been prepared and characterized.

The ligand (L); two bidentate acetate 2,6 and $\mathrm{O}-1$ Lacton are binding to metal ions and one molecule water forming octahedral structure leaving two groups of acetic are uncoordinated as follow:

References

1. Gilula, N. B.; Epstein, M.L. and Beers, W.H. (1978), Cell- to-Cell-Communication and ovulation. A. Study of the cumulus- oocyte Complex-J-ce Biol. 78 (1): 58-75.
2. Pauling, L. (1972) "Vitamin C the Common cold and the Flu", Ed., W. H. Free man and company, San Francisco, PP. 33-46 .
3. Lewin, S. (1976), "Vitamin C Its molecular Biology and Medical Potential". Ed. A cademic press, London, New York, San Francisco, PP. 11-14.
4. Halli, B. (1996), Vitamine C: antioxidant or pro - oxidant in vitro; Free Rad. Res $\underline{25}$: 439-454.
5. Masuo, M. and Hidenori, I. (1970), Yamanouchi pharmacentical Co., Ltd., Japan.8031, 661 (C1. C07d, A61K, A23L).
6. Fodor, C. ;Arnold, R. and Mohacsi, T. (1983), A new role for L-ascorbic acid Michael donor to alpha, beta-unsaturated carbonyl compounds. Tetrahedron 39:2137-2145 .
7. Magdi, F. ;Iskander Mohamed, A.E.; Shaban, Susan M. El-Badry (2003), Carbohydrate Research, Sugar hy drazone- metal complexes, 338:2341-2347.
8. Tajmir- Riahi (1990), Coordination Chemistry of vitamin C. part I. Interaction of LAscorbic Acid with Alkaline Earth Metal Ions in the Crystalline Solid and Aqueous Solution, J. Inorg. Biochem; 40:181-188.
9. Tajmir- Riahi (1991), Coordination Chemistry of vitamin C. part (II). Interaction of LAscorbic Acid with $\mathrm{Zn}(\mathrm{II}), \mathrm{Cd}(\mathrm{II}), \mathrm{Hg}(\mathrm{II})$, and Mn (II) Ions in the solid state and in Aqueous solution, Int. J. Inorg. Biochem; 42:47-55.
10. John, R. Dy er, (1965), Ap plications of absorption spectroscopy of organic compounds, Englewood by prentic- Hali, Inc.
11. Kazvo Nakamoto (1986), John Wiley \& Sons, Inc., Infrared and Raman Spectra of Inorganic and Coordination Compounds Fourth edition.
12. Birgül Zümreogh-Karan, Ahmet $\mathrm{N}-\mathrm{Ay}$ and Canan Ünaleroglu, (2005), (structural and magnetic studies on mono-and polynuclear chromium ascorbate complexes. Transition Metal Chemistry, 30:451-459.
13. Parikh, V. M. (1985),"Absorption Spectroscopy of organic Molecules".
14. Malcolm, J.; Arendse, Gordonk- Anderson and Nigam, P. Rath,(1999), Synthesis and characterization of Platinum (II) Complexes of L- Ascorbic Acid, Inorg. Chem., 38:5864-5869.
15. Mesubi, M. A. (1982), "An infrared study of Zinc, Cadmium and lead salts of some fatty acids", Journal of Moleculular structure, Vol. 81:No. 1-2, PP. 61-71.
16. Washed, M. G. A.; Refat, M. S. and El Megharbel, S. M. (2009), "Synthesis spectroscopic and thermal characterization of some transition metal complexes of folic acid", Spectrochimia Acta A, Vol. 70(4): 916-922 .
17. Nakamato, K. and Mccarthy, P. J. (1968), John Wiley \& sons. New York, NY, USA, Spectroscopy and Structure of Metal Chelate Compounds.
18. John, R. Dyer, (1965), Inc Application of absorption spectroscopy of organic compound, prentic- Hall,
19. Williamkemp (1987), "Organic spectroscopy" $2^{\text {nd }}$, Edition.
20. Kettle, S. F. (1975), "Coordination compounds", Thomas Nelson and sons, London, P. 165.
21. Skoog D.A., Donald M. west (1974), Fundamentals of Analytical Chemistry Altoit London Edition.
22. Farrington Daniels and Robert Alberty, A. (1975), "Physical Chemistry" $4^{\text {th }}$, ed.
23. Clegg, D. E. and Hall ,R. J. (1969), Decomposition of Ascorbic Acid in the presence of cadmium ions leads to formation of a polymeric cadmium oxalate species with peruliar structural features, J. Organ metal chem., 17: 175.
24. Holmes, O. G. and Mc Clure, D. S. (1957), Synthesis and Characterization of some metal complexes of Vitamic c. Part 1,2 -Ascorbate Complexes of Mn (II), Fe(III) and Co(II), J. chem. Phys., 26.
25. Sutton, D. (1968), Electronic spectra of Transition Metal Complexes Mc GRAW-HILL., London.
26. Geary, W.J. (1970), "Coorination Chemistry Reviews" Elsevier publishing company Amsterdam.
27. Lever, A. B. P. (1968), Elsevier publisihing company "In organic electronic spectroscopy".
28. Rakesh, K. ;Sharma, Munirathnam Nethaji and Ashoka, G. Sumuleson, (2008), Asymmetric allylic alkylation by palladium - bisphosphinites, Tetrahedron; Asy mmetry, 19: 555-663.
29. Khen, F. and khanam, A. (2008), Study of Complexes of cadmium with some L- amino acids and Vitamin-C by Voltammetric technique, Ecl. Quim, Saopaulo, 33, numero 2:29-36.
30. Tahereh Rohani, Mohammed Ali Taher (2009), Talanta, Anew method for electrocataly tic oxidation of ascorbic acid at the $\mathrm{Cu}(\mathrm{II})$ Zeolite-Modified electrode, 78: 743 - 747.
31. Anacona, J. R. (2001), Syathesis and antibacterial activity of some metal complexes of β - Lactams antibiotics, J. coord. Chem., 54: 355-365.
32. Petra, D. ;Tetjana, Z. and Boris, P. et al., (2005), "Mixed- valence $\mathrm{Cu}(\mathrm{II}) / \mathrm{Cu}(\mathrm{I})$ complex of quinolone ciprofloxacin isolated by ahydrothermal reaction in the presence of L- histidine comparison a biological activities of various copper- ciprofloxacin comp ounds", Journal of inorganic biochemistry, 99(2): 432-442.
33. Tauber, S. C. and Nau,R. (2008), "Immunomodulatory properties of antibiotics", Current molecular pharmacology, Vol. 1, PP. 68-79.
34. Sultana, N. and Arayne, M. S. (2007), "In vitro activity of cefadroxil, cephalexin. Cefatrizine and cefpirome in presence of essential and trace elements", Pakistan Tournal of pharmaceutical sciences, $\underline{20(4): 305-310 . ~}$

Table (1) :The physical properties for synthesized ligand (L) and its complexes

No.	Compound	Colour	M.P ${ }^{\circ} \mathrm{C}$ or (D)	Yield \%	$\mathrm{C} \%$	$\mathrm{H} \%$	M\% Theo. Pract.	solubility
1	L							

$D=\operatorname{decomposition}$

Table (2): ${ }^{13} \mathrm{C}$-NMR chemical shifts for L-ascorbic acid, L (ppm in $\mathrm{D}_{2} \mathrm{O}$) practically and theoretically are comptable

Compounds	$\mathbf{C - 1}$	$\mathbf{C - 3}$	$\mathbf{C - 2}$	$\mathbf{C}-\mathbf{4}$	$\mathbf{C - 5}$	$\mathbf{C - 6}$	$\mathbf{C}=\mathbf{O}$	$\mathbf{O - C H}_{\mathbf{2}}$
(Pract)L	173.74	156	118	76	69	62	177	42.8

Table (3) ${ }^{\mathbf{1}} \mathrm{H}$-NMR, chemical shifts for $\mathrm{L}\left(\mathrm{ppm}\right.$ in $\mathrm{D}_{2} \mathrm{O}$)

Compounds	$\mathbf{H - 4}$	$\mathbf{H - 5}$	$\mathbf{O}=\mathbf{C - O H}$
Practical (L)	$\delta 4.2 \mathrm{ppm}$	4.8	$8-9.5 \mathrm{ppm}$

Table (4): Characteristic vibrarational frequencies $\left(\mathrm{cm}^{-1}\right)$ Located in the FT-IR of the ascorbic acid, L, and its complexes

Compounds	$v(\mathbf{O}-\mathrm{H})$	v(C- H) aliph.	$\begin{gathered} v(C=0 \\) \end{gathered}$	$\begin{gathered} \Delta \\ \mathrm{cm}^{-1} \end{gathered}$	$\begin{gathered} v_{\text {asym. }} \\ v_{\$ \% \mathrm{~m} .} \\ \mathrm{COO}^{-} \end{gathered}$	$\begin{gathered} \Delta \\ \mathbf{c m}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{v}(\mathbf{M}- \\ \mathbf{O}) \end{gathered}$	Additional pea ks
L-ascorbic acid	$\begin{aligned} & \hline 3525(\mathrm{~s}) \\ & 3410(\mathrm{~s}) \\ & 3315(\mathrm{~s}) \\ & 3213(\mathrm{~s}) \\ & \hline \end{aligned}$	2916(s)	1755(s) Lacton e					$\begin{aligned} & 1319 \delta\left(\mathrm{O}_{2}-\mathrm{H}\right) \text { enolic } \\ & 1138(\mathrm{~s}), \quad 1118(\mathrm{~s}), \quad 1072(\mathrm{~s}), \\ & 1026(\mathrm{~s}) \\ & 987(\mathrm{~s})(\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{C}) \text { ring } \end{aligned}$
L	$\begin{gathered} \hline 3421(\mathrm{br}) \\ 2700- \\ 2500 \end{gathered}$	2954(w)	1755(s)					$\begin{aligned} & (1608) \mathrm{s} \mathrm{O}=\mathrm{C}-\mathrm{OH} \\ & 1149,1114,1080,1049,941 \\ & (\mathrm{C}-\mathrm{O}-\mathrm{C}),(\mathrm{C}-\mathrm{C}-\mathrm{C}) \\ & \delta(1404),(1400) \mathrm{m}(\mathrm{C}-3-\mathrm{O}) \\ & \hline \end{aligned}$
L complexes $\left[\mathrm{LCo} . \mathrm{H}_{2} \mathrm{O}\right] .3 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 3417(\mathrm{br}) \\ & 3383(\mathrm{br}) \end{aligned}$	2958(w)	1730	25	$\begin{aligned} & (1500) \mathrm{w} \\ & (1408) \mathrm{s} \end{aligned}$	92	455	(1600)s $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ coupling (867-740)s coordinated water
LNi. $\mathrm{H}_{2} \mathrm{O}$	3414(s)	2950	1730	25	$\begin{aligned} & 1515) \mathrm{w} \\ & (1408) \mathrm{s} \end{aligned}$	107	443	$(1608) \mathrm{s} \mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ $(867-702) \mathrm{s} \quad$ coordinated water
LCu. $\mathrm{H}_{2} \mathrm{O}$	3425(br)	2962	1732	23	$\begin{aligned} & 1530) \mathrm{w} \\ & (1419) \mathrm{s} \end{aligned}$	111	439	$\begin{aligned} & (1635) \mathrm{s} \mathrm{C}=\mathrm{O} \text { and } \mathrm{C}=\mathrm{C} \\ & (790-\quad 666) \mathrm{s} \quad \text { coordinated } \\ & \text { water } \end{aligned}$
LCd. $\mathrm{H}_{2} \mathrm{O}$	3431(br)	2929	1741	14	$\begin{aligned} & 1530) \mathrm{w} \\ & 1427) \mathrm{w} \end{aligned}$	103	453	$\begin{aligned} & \hline(1593) \mathrm{s} \mathrm{C}=\mathrm{O} \text { and } \mathrm{C}=\mathrm{C} \\ & (773-570) \quad \text { coordinated } \\ & \text { water } \\ & \hline \end{aligned}$
$\begin{aligned} & \hline\left[\mathrm{LPb} \cdot \mathrm{H}_{2} \mathrm{O}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O} .3 \mathrm{EtOH} .4 \mathrm{~K} \\ & \mathrm{Cl} \end{aligned}$	3441(br)	2920	1732	23	$\begin{aligned} & (1500) \mathrm{w} \\ & (1411) \mathrm{s} \end{aligned}$	89	420	$\begin{aligned} & (1593) \mathrm{s} \mathrm{C}=\mathrm{O} \text { and } \mathrm{C}=\mathrm{C} \\ & (825-702) \mathrm{s} \quad \text { coordinated } \\ & \text { water } \end{aligned}$
[LHg. $\left.\mathrm{H}_{2} \mathrm{O}\right] .9 \mathrm{H}_{2} \mathrm{O} .4 \mathrm{KCl}$	3422	2943	1743	12	$\begin{aligned} & 1520) \mathrm{w} \\ & 1425) \mathrm{w} \end{aligned}$	95	441	(1598) br $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ (763-675)s coordinated water
	3421	2958	1728	27	$\begin{array}{\|l} (1500) \mathrm{w} \\ (1408) \mathrm{s} \end{array}$	92	459	$\begin{aligned} & \hline(1597) \mathrm{s} \mathrm{C}=\mathrm{O} \text { and } \mathrm{C}=\mathrm{C} \\ & (937-694) \mathrm{s} \quad \text { coordinated } \\ & \text { water } \end{aligned}$
$\left.\mathrm{KLMg} . \mathrm{H}_{2} \mathrm{O}\right] .9 \mathrm{H}_{2} \mathrm{O} .5 \mathrm{EtOH} .4$ KCl	$\begin{aligned} & 3352 \\ & 3249 \end{aligned}$	2966	1720	35	$\begin{aligned} & (1495) \mathrm{w} \\ & (1408) \mathrm{s} \end{aligned}$	87	455	$(1600) \mathrm{s} \mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ $(775-638) \mathrm{s} \quad$ coordinated water

Recorder as KBr disk $\quad \mathbf{b r}=$ broad, $\quad \mathbf{s}=\mathbf{s t r o n g}, \quad \mathbf{w}=\mathbf{w e a k}, \quad \mathbf{m}=\operatorname{medium}, \quad \delta=$ bending, aliph. $=$ Aliphatic, $v_{\text {asym. }}=$ vasymmetric, $v_{\text {sym }}=$ vsymmetric

Table (5) Electronic spectral data of ligand (L) and its metal complexes

Compounds	$\lambda \mathrm{nm}$	$\begin{aligned} & 0 \text { wave number } \\ & \mathrm{cm}^{-1} \end{aligned}$	$\begin{gathered} \varepsilon_{\text {mex }} \text { molor } \\ \mathrm{cm}^{-1} \end{gathered}$	Assignment bands	Proposed structure
L	246	40650	1175	$\pi \rightarrow \pi$	
[LCo. $\left.\mathrm{H}_{2} \mathrm{O}\right] .3 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 440 \\ & 590 \\ & 680 \end{aligned}$	$\begin{aligned} & \hline 22220 \\ & 16949 \\ & 14706 \end{aligned}$	$\begin{aligned} & 110 \\ & 650 \\ & 600 \end{aligned}$	$\begin{gathered} \mathrm{T}_{2} \mathrm{~g} \rightarrow \pi^{*} \\ { }^{4} \mathrm{~T}_{1} \mathrm{~g} \rightarrow \mathrm{~T}_{1} \mathrm{~g}(\mathrm{p}) \\ { }^{4} \mathrm{~T}_{1} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~A}_{2} \mathrm{~g} \end{gathered}$	octahedral
$\mathrm{LN}_{1} \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 656 . \\ 5 \\ 776 \end{gathered}$	$\begin{aligned} & 15232 \\ & 12987 \end{aligned}$	$\begin{gathered} 100 \\ 90 \end{gathered}$	$\begin{gathered} \mathrm{A}_{2} \mathrm{~g} \rightarrow \mathrm{~T} \mathrm{Eg} \\ { }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{3} \mathrm{~T}_{1} \mathrm{~g}(\mathrm{f}) \end{gathered}$	octahedral
LCu. $\mathrm{H}_{2} \mathrm{O}$	808	12376	662	${ }^{2} \mathrm{Eg} \rightarrow \mathrm{T}_{2} \mathrm{~g}$	octahedral
LCd. $\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 33333 \\ & 25000 \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \end{aligned}$	L.F.C.T	octahedral
[LPb. $\left.\mathrm{H}_{2} \mathrm{O}\right] .9 \mathrm{H}_{2} \mathrm{O} .5 \mathrm{EtOH} .4$ KCl	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 33333 \\ & 25000 \end{aligned}$	$\begin{aligned} & 700 \\ & 150 \end{aligned}$	L.F.C.T	octahedral
[LHg. $\left.\mathrm{H}_{2} \mathrm{O}\right] .9 \mathrm{H}_{2} \mathrm{O} .4 \mathrm{KCl}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & \hline 33333 \\ & 25000 \end{aligned}$	$\begin{gathered} 1300 \\ 750 \end{gathered}$	L.F.C.T	octahedral
[LCa. $\left.\mathrm{H}_{2} \mathrm{O}\right] .9 \mathrm{H}_{2} \mathrm{O} .5 \mathrm{EtOH} .4$ KCl	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 33333 \\ & 25000 \end{aligned}$	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	L.F.C.T	octahedral
$\begin{aligned} & {\left[\mathrm{LMg} \cdot \mathrm{H}_{2} \mathrm{O}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O} .5 \mathrm{EtOH} .3} \\ & \mathrm{KCl} \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & \hline 33333 \\ & 25000 \end{aligned}$	$\begin{gathered} 1500 \\ 250 \end{gathered}$	L.F.C.T	octahedral

L.F.C.T = Ligand Field Charge Transfer

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI.
VOL. 24 (2) 2011
Table (6): VM, VL and Absorption of ligand (L), VM = volume of
metal in $\mathrm{ml}, \mathrm{VL}=$ volume of ligand in ml

$\left[\mathrm{L}-\mathrm{Cd} . \mathrm{H}_{2} \mathrm{O}\right]$			$\left[\mathrm{L}-\mathrm{Co} . \mathrm{H}_{2} \mathrm{O}\right] .3 \mathrm{H}_{2} \mathrm{O}$		
VM	VL	Abs	VM	VL	Abs
1 ml	0.25	1.315	1 ml	0.25	1.320
1	0.50	1.330	1	0.50	1.340
1	0.75	1.354	1	0.75	1.397
1	1	1.352	1	1	1.383
1	1.25	1.374	1	1.25	1.386
1	1.50	1.382	1	1.50	1.386
1	1.75	1.375	1	1.75	1.386
1	2	1.377	1	2.0	1.392
1	2.25	1.406	1	2.25	1.381
1	2.50	1.395	1	2.50	1.367
1	2.75	1.404	1	2.75	1.410
1	3	1.400	1	3.0	1.400
1	3.25	1.422	1	3.25	1.414
1	3.50	1.401	1	3.50	1.406
1	3.75	1.384	1	3.75	1.410
1	4	1.412	1	4	1.408

$\mathrm{K}=\mathrm{ML} /[\mathrm{M}][\mathrm{L}]$
(1)
$\alpha=(\mathrm{Am}-\mathrm{As}) / \mathrm{Am}$
$\mathrm{K}=$ The equation (1) is written to mol ratio (1:1) as the following
$\mathrm{K}_{\mathrm{F}}=(1-\alpha) / \alpha^{2} \mathrm{C}$
(3)
$\Lambda=\varepsilon_{\text {max }}$.b.c
$\mathrm{K}_{\mathrm{F}}=$ stability constant
$\alpha=$ Decomposition Degree
$\mathrm{M}=$ Metal ion
$\mathrm{L}=$ The ligand
[] = concentration
As $=$ The absorption at the equivalent point of mole ratio
$\mathrm{Am}=$ The maximum absorption of the mole ratio
$\mathrm{C}=$ The complex concentration (mole. L^{-1})
$\Delta \mathrm{G}=-2.303$ RT $\log K^{[22]}$
$\mathrm{R}=8.303$
$\mathrm{T}=273+25=298$

Compounds	As	Am	α	K	$\log \mathrm{K}$	$1 / \mathrm{K}$	$\Delta \mathrm{G}$
$\left[\mathrm{LCd} . \mathrm{H}_{2} \mathrm{O}\right]$	1.352	1.377	0.018	3×10^{9}	9.5	0.11	-54.2
$\left[\mathrm{LCo} . \mathrm{H}_{2} \mathrm{O}\right] .3 \mathrm{H}_{2} \mathrm{O}$	1.383	1.392	0.0065	2×10^{9}	9.3	0.11	-53

$\left[\mathrm{LCd} . \mathrm{H}_{2} \mathrm{O}\right] \cong\left[\mathrm{LCo} . \mathrm{H}_{2} \mathrm{O}\right] .3 \mathrm{H}_{2} \mathrm{O}$

Table (7) :The absorbance values against mole- ratio values of complex [LCd. $\mathrm{H}_{2} \mathrm{O}$] in solution $\left(1 \times 10^{-3}\right.$ mole. $\left.^{-1}\right)$ in water at ($\lambda 271 \mathrm{~nm}$)

No.	L:M	Absorbance
1	$0.5: 1$	1.330
2	$1: 1$	1.352
3	$2: 1$	1.377
4	$3: 1$	1.400
5	$4: 1$	1.412

Table (8) :The absorbance values against mole- ratio values of complex [LCo. $\left.\mathbf{H}_{2} \mathrm{O}\right] 3 \mathbf{H}_{2} \mathrm{O}$ in solution (1×10^{-3} mole. L^{-1}) in water at ($\lambda 263 \mathrm{~nm}$)

No.	L:M	Absorbance
1	$0.5: 1$	1.330
2	$1: 1$	1.383
3	$2: 1$	1.392
4	$3: 1$	1.400
5	$4: 1$	1.408

Table (9) The molar conductance of the complexes

Compound fragment ions	$\Lambda_{\mathbf{m}}$ S. $\mathbf{c m}^{2}$ molar $^{-1}$	Ratio
$\left[\right.$ LCo. $\left.\mathrm{H}_{2} \mathrm{O}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	141	$1: 1$
LNi. $\mathrm{H}_{2} \mathrm{O}$	24	Neutral
LCu. $\mathrm{H}_{2} \mathrm{O}$	113.5	$1: 1$
LCd. $\mathrm{H}_{2} \mathrm{O}$	6.6	Neutral
$\left[\mathrm{LPb} \cdot \mathrm{H}_{2} \mathrm{O}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O} .5 \mathrm{EtOH} .4 \mathrm{KCl}$	7	Neutral

Table (10): Effect of ligand and its complexes on staphylococcus aureu a exherichia coli

Compound $100 \mathrm{mg} / \mathrm{ml}$	Diameter of inhibition zone (mm) at concentration $1 \mathrm{mg} / \mathrm{ml}$	
	Staphylococcus	Escherichia coli
L	27	26
L Cd	25	22
L Cu	24	24
L Ca	0	0

Fig. (1): The IR of L-ascorbic acid

Fig. (2): The IR of the ligand (L) 2,3,5,6-O,O,O,O-tetraacetic acid L-ascorbic acid

Fig. (3) The IR of LCo

Fig. (3a): The mass spectrum of (L)

Fig. (4) suggested structure of ($\mathbf{L M}^{+2}$)

Fig. (5a): ${ }^{1} H-N M R$ for the ligand L

Fig. (5b): ${ }^{13}$ C-NMR for the ligand L

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI. VOL. 24 (2) 2011

Fig. (6) The U.V of the ligand (L)
Fig. (7) The U.V of LCo

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI.

Fig. (8): The mole ratio curve of complex [LCd. $\mathrm{H}_{2} \mathrm{O}$] in solution

$$
\left(1 \times 10^{-3} \mathrm{mole.}^{-1}\right) \text { at }(\lambda=271 \mathrm{~nm})
$$

Fig. (9) :The mole ratio curve of complex [$\left.\mathbf{L C o} \cdot \mathrm{H}_{2} \mathrm{O}\right] \cdot \mathbf{3} \mathrm{H}_{\mathbf{2}} \mathrm{O}$ in solution

$$
\left(1 \times 10^{-3} \text { mole. } \mathrm{L}^{-1}\right) \text { at }(\lambda=263 \mathrm{~nm})
$$

Fig. (10): Effect of staphylococcus gram positive

Fig. (11): Effect of Escherichia coli gram negative

تحضير ودراسة طيفية ويايولوجية لبعض المعقدات الفلزيـة مـع

2,3,5,6-0,0,0,0

جاسم شهاب سلطان،عب الجبار عب القادر مظلص، فالح حسن موسى
قسم الكيمياء، كلية التربية -ابن الهيثّ،جامعة بغذاد
استلم البحث في : 11 آب 2010
قبل البحث في : 8 شباط 2011

الخلاصة
L درس تغاعل حامض L- اسكوربك مع كلورو حامض لظليك بوجود هيروركسيد البوتاسيوم معطياً ليكاندا جديدا
(2,3,5,6-0,0,0,0 O,
 البروتون H ولكاربون الم
 .(Mg ،Ca ،Hg
استتعطت تقنيــات طيف الأثــعة تحـت الحمـراء، والأثــعة فوق البنفسـجية- المرئــة، النوصـيلية الكهربائيـة، و الامتصاصية الذرية، والنسبة المولية لمعقات الكادميوم والكوبلت، واستتتج من التحاليل ان تتاسق ايون الفلز الثـائي النكافؤ مـع اللكاند من خـلد C-1=O (لاكتون)، O-6-O-CH2 COOH ، $\mathrm{O}-2-\mathrm{O}-\mathrm{CH}_{2} \mathrm{COOH}$ (ل)
 الفعالية البايولوجية للكاند L ومعقاته (النحاس، الكادميوم، الكالسيوم)، وقد أظهرت النتائج امتلاكها فعاليـة متباينة تجاه Sscherichia coli و Staphylococcus aureu مـا عـدا معقد الكالسيوم الذي لـم يظهر أي فعاليـة تجاه البكتريـا المذكررة أعلاه.

