Essentially Quasi-Invertible Submodules and Essentially Quasi-Dedekind Modules

I.M-A Hadi , Th. Y. Ghawi
Department of Mathematics, College of Education Ibn AL-Haitham University of Baghdad
Department of Mathematics, College of Education, University of ALQadisiya

Received in: 6 June 2011
Acceptedin: 8 February 2011

Abstract

Let R be a commutative ring with identity. In this paper we study the concepts of essentially quasi-invertible submodules and essentially quasi-Dedekind modules as a generalization of quasi-invertible submodules and quasi-Dedekind modules . Among the results that we obtain is the following: M is an essentially quasi-Dedekind module if and only if M is aK-nonsingular module, where a module M is K -nonsingular if, for each $f \in \operatorname{End}_{R}(M), \operatorname{Kerf} \leqslant{ }_{\mathrm{e}} \mathrm{M}$ implies $\mathrm{f}=0$.

Kew wor ds : Essentially quasi-invertible submodules, Essentially quasi-Dedekind Modules .

Introduction

The concepts of a quasi-invertible submodule of an R-module and quasi-Dedekind module were introduced in [5]. Where a submodule N of an R -module M is called quasiinvertible if $\operatorname{Hom}(M / N, M)=0$, and an R-module M is called quasi-Dedekind if each nonzero submodule of M is quasi-invertible. As a generalizations to these concepts we introduce the following concepts : We call a submodule N of M is essentially quasiinvertible if, $\mathrm{N} \leqslant \mathrm{e} \mathrm{M}$ and N is quasi-invertible. And an R -module M is called essentially quasi-Dedekind if every essential submodule N of M is quasi-invertible ; (i.e $\operatorname{Hom}(M / N, M)=0)$. This paper consists of two sections, \S_{1} is devoted to study essentially quasi-invertible submodules, in \S_{2} we study and give the basic properties of essentially quasi-Dedekind modules.

This paper represents a part of the M.Sc. thesis written by the second author under the supervision of the first author and was submitted to the college of education - Ibn ALHaitham, University of Baghdad, 2010.

1. Essentially Quasi-Invertible Submodules

In this section we introduce the concept of essentially quasi-invertible submodules. We develop basic properties of essentially quasi-invertible submodule .

We start with the following definition :

Definition (1.1)

Let M be an R -module and $\mathrm{N} \leqslant_{\mathrm{e}} \mathrm{M}$, then N is called an essentially quasi-invertible submodule of M if, $\operatorname{Hom}(M / N, M)=0$; that is N is essentially quasi-invertible if, $\mathrm{N} \leqslant_{\mathrm{e}} \mathrm{M}$ and N is quasi-invertible. An ideal J in a ring R is called an essentially quasi-invertible ideal of R if, J is an essentially quasi-invertible R -submodule of R .

Remarks and Examples (1.2)

1) It is clear that every essentially quasi-invertible submodule is quasi-invertible submodule .
Recall that an R-module M is called a semisimple if every submodule of M is a direct summand of M, [3, p.189].
2) If M is a semisimple R -module , then M is the only essentially quasi-invertible submodule of M .
3) Consider Z_{4} as a Z-module, $N=(\overline{2}) \leqslant_{\mathrm{e}} \mathrm{Z}_{4}$, but $\operatorname{Hom}\left(Z_{4} /(\overline{2}), Z_{4}\right) \cong Z_{2} \neq 0$, so $N=(\overline{2})$ is not essentially quasi-invertible submodule of Z_{4}, similarly in the Z -module $\mathrm{Z}_{20}, N=(\overline{2}) \leqslant_{\mathrm{e}} \mathrm{Z}_{20}$, but it is not quasi-invertible .
4) If N is an essentially quasi-invertible R -submodule of an R -module M , then $a n n_{R} M=a n n_{R} N$.
Proof: It is clear
The converse of (Rem.and.Ex. 1.2(4)) is not true in general, for example: Let $M=Z \oplus Z$, considered as a Z-module and let $N=Z \oplus(0) \leq M$, then it is clear that $a n n_{R} M=a n n_{R} N=(0)$, but N is not essentially quasi-invertible submodule of M , since $\mathrm{N} *_{\mathrm{e}} \mathrm{M}$ and also N is not quasi-invertible .
5) Let J be an ideal of a ring R. Then J is an essentially quasi- invertible if and only if $\operatorname{ann}_{R}(J)=0$.

Proof: It is easy .
6) Let J be an ideal of a ring R. The following statements are equivalent:
a) J is an essentially quasi- invertible ideal of R .
b) J is a quasi-invertible ideal of R .
c) $a n n_{R}(J)=0$.

Proof :
$(a) \Leftrightarrow(c):$ It follows by (Rem.and.Ex. 1.2(5)) .
$(b) \Leftrightarrow(c):$ It follows by [5, prop. 2.2].
7) Let R be aring. The following statements are equivalent:
a) R is an integral domain.
b) R is quasi-Dedekind.

Proof : It follows by (Rem.and.Ex. 1.2(6)).
8) If $M=M_{1} \oplus M_{2}$ is an R-module, and K be an essentially quasi- invertible submodule in M_{i} for some $\mathrm{i}=1,2$, then it is not necessarily that K is an essentially quasi-invertible submodule of M , for example :
Let $M=Z \oplus Z_{2}$ as Z-module, then $\mathrm{K}=\mathrm{Z}_{2}$ is an essentially quasi- invertible submodule of Z_{2} as Z-module , but $Z_{2} \cong(0) \oplus Z_{2}$ which is not essentially quasi-invertible of $M=Z \oplus Z_{2}$, since $(0) \oplus Z_{2} \star_{\mathrm{e}} Z \oplus Z_{2}$.

Proposition (1.3)

Let M be an R-module, and let $\mathrm{N}_{1}, \mathrm{~N}_{2}$ be an essentially quasi- invertible Rsubmodules of M , then $N_{1} \cap N_{2}$ is an essentially quasi-invertible R-submodule of M .

Proof :

Since $\mathrm{N}_{1} \leqslant \mathrm{e} \quad \mathrm{M} \quad \mathrm{N}_{2} \leqslant \mathrm{e} \mathrm{M}$ then $\operatorname{Hom}\left(M / N_{1}, M\right)=0 \quad$ and $\operatorname{Hom}\left(M / N_{2}, M\right)=0$. Also $\mathrm{N}_{1} \leqslant_{\mathrm{e}} \mathrm{M}, \mathrm{N}_{2} \leqslant_{\mathrm{e}} \mathrm{M}$ imply $N_{1} \cap N_{2} \leqslant_{\mathrm{e}} \mathrm{M}$. But $\operatorname{Hom}\left(M / N_{1} \cap N_{2}, M\right) \subseteq \operatorname{Hom}\left(M / N_{1}, M\right)+\operatorname{Hom}\left(M / N_{2}, M\right)$.Hence
$\operatorname{Hom}\left(M / N_{1} \cap N_{2}, M\right)=0$ and so that $N_{1} \cap N_{2}$ is an essentially quasi- invertible Rsubmodule of M .

The following lemma is needed for the next proposition.

Lemma (1.4)

Let M be an R-module such that for each nonzero submodule K of $\mathrm{M}, 0_{p} \neq K_{P} \leq M_{P}$ for each maximal ideal P of R . If $\mathrm{N}_{\mathrm{P}} \leqslant_{\mathrm{e}} \mathrm{M}_{\mathrm{p}}$ implies $\mathrm{N} \leqslant_{\mathrm{e}} \mathrm{M}$.
Proof:
Suppose that there exists $0 \neq U \leq M$ such that $U \cap N=0$.Hence $(U \cap N)_{P}=0_{P}$ which implies that $U_{P} \cap N_{P}=0_{P}$, but $0_{p} \neq U_{P} \leq M_{P}$ by hypothesis, so that $\mathrm{N}_{\mathrm{P}} \star_{\mathrm{e}}$ M_{p} which is a contradiction.

Proposition (1.5)

Let M be an R-module, $\mathrm{N} \leqslant \mathrm{M}$. If N_{P} is an essentially quasi-invertible R_{P} submodule of R_{P}-module M_{P} (for each maximal ideal P of R), then N is an essentially quasi-invertible submodule of an R -module M .

Proof :

Since N_{P} is an essentially quasi-invertible R_{P}-submodule of M_{P},
$\operatorname{Hom}\left(M_{P} / N_{P}, M_{P}\right)=0$. But by [4, Ex.3, p.75],
$(\operatorname{Hom}(M / N, M))_{P} \subseteq \operatorname{Hom}\left(M_{P} / N_{P}, M_{P}\right)=0$, thus $(\operatorname{Hom}(M / N, M))_{P}=0$
and by [4, Prop.3.13, p.70], $\operatorname{Hom}(M / N, M)=0$; that is N is a quasi-invertible
submodule of M . Beside this, by (Lemma (1.4)), $\mathrm{N} \leqslant_{\mathrm{e}} \mathrm{M}$. Thus N is an essentially quasi-invertible submodule of M.

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI.

VOL. 24 (3) 2011
Recall that an R-submodule N of an R-module M is called a SQI-submodule if, for each $f \in \operatorname{Hom}(M / N, M), \mathrm{f}(\mathrm{M} / \mathrm{N})$ is a small submodule in $\mathrm{M},[6, \mathrm{p} .44]$. And an R -submodule N of an R -module M is called a small submodule of $\mathrm{M} \quad(\mathrm{N} \ll \mathrm{M}$, for short) if, for all $K \leqslant M$ with $N+K=M$ implies $K=M$, [3, P.106] .

Remark (1.6)

It is clear that every quasi-invertible submodule is an SQI-submodule and hence every essentially quasi-invertible submodule is an SQI-submodule .

The converse of (Remark 1.6) is not true in general, consider the following example.

Example (1.7)

Consider the Z -module $\mathrm{Z}_{4}, N=(\overline{2})$, then N is an SQI-submodule of Z_{4}, since for all $f \in \operatorname{Hom}\left(Z_{4} /(\overline{2}), Z_{4}\right)$, then $f\left(Z_{4} /(\overline{2}) \nsupseteq Z_{4}\right.$, and every proper submodule of Z_{4} is a small in Z_{4}, so $f\left(Z_{4} /(\overline{2}) \ll \mathrm{Z}_{4}\right.$, but it is known that $N=(\overline{2})$ is not essentially quasiinvertible in Z_{4}, (see Rem.and.Ex. 1.2(3)).

2. Essentially Quasi-Dedekind Modules

In this section we give the definition of essentially quasi-Dedekind module with some examples. We prove that essentially quasi-Dedekind module and K -nonsingular module which is introduced by [8] are equivalent .We give conditions under which submodule (resp. quotient module) of essentially quasi-Dedekind is essentially quasiDedekind.

Definition (2.1)

An R-module M is called essentially quasi-Dedekind if, $\operatorname{Hom}(M / N, M)=0$ for all $\mathrm{N} \leq_{\mathrm{e}} \mathrm{M}$. A ring R is essentially quasi-Dedekind if R is an essentially quasiDedekind R-module .

Remarks and Examples (2.2)

1) It is clear that every quasi-Dedekind module is an essentially quasi- Dedekind module, but the converse is not true in general, for example :
Each of $\mathrm{Z}_{10}, \mathrm{Z}_{15}$ are essentially quasi-Dedekind as a Z-module, but it is not quasi-Dedekind .
2) Every integral domain R is an essentially quasi-Dedekind R-module, by [5,Ex 1.4 , p.24] and (Rem.and.Ex 2.2(1)).
3) Z_{4} as a Z-module is not essentially quasi-Dedekind, since $(\overline{2}) \leq_{e} Z_{4}$, but $\operatorname{Hom}\left(Z_{4} /(\overline{2}), Z_{4}\right) \cong Z_{2} \neq 0$.
4) Let $\mathrm{M}=\mathrm{Z}_{\mathrm{p}}^{\infty}$ as a Z -module . Then M is not essentially quasi- Dedekind, but $E n d_{Z}(M)$ (is the ring of P -adic integers) is a commutative domain [see Ex 4.1.2,8] , so $\operatorname{End}_{Z}(M)$ is essentially quasi-Dedekind, by (Rem.and.Ex 2.2(2)) .
5) Let M be a uniform R-module. Then M is a quasi-Dedekind R-module if and only if M is an essentially quasi-Dedekind R -module .

Proof: It is clear .
Roman C.S in [8] , introduce the following : " An R-module M is called K-nonsingular if , for each $f \in \operatorname{End}_{R}(M), \operatorname{Kerf} \leq{ }_{\mathrm{e}} \mathrm{M}$ implies $\mathrm{f}=0 \quad$. However we prove the following:

Theorem (2.3)

Let M be an R -module. Then M is an essentially quasi-Dedekind R -module if and only if M is a K -nonsingular R -module.
Proof: \Rightarrow) Let $f \in \operatorname{End}_{R}(M), f \neq 0$. Suppose that Kerf $\leq_{\mathrm{e}} \mathrm{M}$, defined $g: M / \operatorname{Kerf} \longrightarrow M$ by $\mathrm{g}(\mathrm{m}+\operatorname{Kerf})=\mathrm{f}(\mathrm{m})$ for all $m \in M$. It is easy to see that g is well-defined and g is a nonzero homomorphism. Thus $\operatorname{Hom}(M / \operatorname{Kerf}, M) \neq 0$ which is a contradiction, since M is an essentially quasi-Dedekind R-module .
$\Leftrightarrow \mathrm{N} \leq \mathrm{e} \mathrm{M}$. Suppose that there exists $f: M / N \longrightarrow M$ and $f \neq 0$. we have $M \xrightarrow{\pi} M / N \xrightarrow{f} M$, where π is the canonical projection .Let $\psi=f o \pi \in \operatorname{End}_{R}(M)$.
$N \subseteq \operatorname{Ker} \psi$ and $\mathrm{N} \leq{ }_{\mathrm{e}} \mathrm{M}$ implies $\operatorname{Ker} \psi \leq{ }_{\mathrm{e}} \mathrm{M}, \psi(M)=f o \pi(M)=f(M / N) \neq 0$ which is a contradiction with M is a K -nonsingular R-module . \square

Although the concepts of essentially quasi-Dedekind module and K-nonsingular module are equivalent, but we see that it is convenient to use the notion essentially quasiDedekind in this paper.

Proposition (2.4)

Every semisimple R-module is an essentially quasi-Dedekind R-module.
Proof :_ It is easy
The converse of (Prop 2.4) is not true in general, consider the following example .

Example (2.5)

It is known that Z as a Z -module is essentially quasi-Dedekind, but it is not semisimple .

Recall that an ideal I of a ring R is semiprime if, for all $r \in R$ with $r^{2} \in I$ implies $r \in I$ [or, for all ideal A of R with $A^{2} \subseteq I$ implies $A \subseteq I$]. And a ring R is called semiprime if (0) is a semiprime ideal of R ; i.e R does not contain nonzero nilpotent ideals, [2] .

Proposition (2.6)

Let R be aring. The following statements are equivalent :

1) R is an essentially quasi-Dedekind ring.
2) R is a semiprime ring.
3) $Z(R)=0$ (R is a nonsingular ring).

Proof :

$(2) \Leftrightarrow(3):$ It is follows by [2, Prop 1.27, p.35]
$(2) \Rightarrow(1):$ Let $f \in \operatorname{End}_{R}(R)$ such that $\operatorname{Kerf} \leq_{\mathrm{e}} \mathrm{R}$. To prove $\mathrm{f}=0$.
Suppose that $f \neq 0$, there exists $0 \neq r \in R$ such that $\mathrm{f}(\mathrm{a})=\mathrm{ra}$ for all $a \in R$. Since Kerf $\leq_{\mathrm{e}} \mathrm{R}$ and $0 \neq r \in R$, then there exists $0 \neq t \in R$ such that $0 \neq r t \in \operatorname{Kerf}$, hence $0=$
$f(r t)=r f(t)=r^{2} t$. This implies $(r t)^{2}=0$ and since R is semiprime, $r t=0$ which is a contradiction. Thus $\mathrm{f}=0$ and R is essentially quasi-Dedekind.

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI. VOL. 24 (3) 2011

(1) \Rightarrow (3) : Suppose that $Z(R) \neq 0$. Then there exists $0 \neq a \in Z(R)$ and hence $a n n_{R}(a) \leq_{\mathrm{e}} \mathrm{R}$, this implies $a n n_{R}(a)$ is a quasi-invertible ideal and so that by (5, Prop 2.2), $a n n_{R}\left(a n n_{R}(a)\right)=0$, but $(a) \subseteq a n n_{R}\left(a n n_{R}(a)\right)$, hence $a=0$ which is a contradiction.

Proposition (2.7)

Let R be a ring. Then R is essentially quasi-Dedekind if and only if $R[x]$ is essentially quasi-Dedekind, where $R[x]$ is the ring of polynomials with one indeterminate x.

Proof :

\Rightarrow) Suppose that R is essentially quasi-Dedekind, so by (Prop 2.6) R is a nonsingular ring, and hence by [2, Ex. 13, p.37], $R[x]$ is a nonsingular ring. Thus $R[x]$ is essentially quasi-Dedekind, by (Prop 2.6).
\Leftrightarrow Suppose that R is not essentially quasi-Dedekind, so by (Prop 2.6), R is not a semiprime ring ; that is there exists $a \in L(R)$ and $a \neq o$, where $L(R)=\left\{x \in R: x^{n}=0\right.$, for some $\left.n \in N\right\}$, then $\mathrm{a}^{\mathrm{n}}=0$, for some $n \in N$. Define $f(x)=a \neq 0$, so $f(x) \in R[x]$, and $\mathrm{R}[\mathrm{x}]$ is a semiprime ring, by (Prop 2.6). On the other hand $[\mathrm{f}(\mathrm{x})]^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}}=0$, implies $f(x) \in L(R[X])=0$. It follows that $\mathrm{f}=0$ which is a contradiction. Thus R is essentially quasi-Dedekind.

Proposition (2.8)

Let M be a faithful R-module. Then R is essentially quasi- Dedekind if and only if $N \oplus \frac{M}{N}$ is a faithful R-module, for all $N \leq M$.

Proof :

\Rightarrow) Suppose that R is essentially quasi-Dedekind, so by ((Prop 2.6), R is semiprime . Let $r \in \operatorname{ann}_{R}\left(N \oplus \frac{M}{N}\right)$, then $r \in \operatorname{ann}_{R}(N) \cap \operatorname{ann} n_{R}\left(\frac{M}{N}\right)$; that is $\mathrm{rN}=0$ and $r M \subseteq N$, so $r^{2} M \subseteq r N=0 \quad$ implies $r^{2} \in \operatorname{ann}_{R}(M)=0 \quad$ then $r^{2}=0$, thus $\mathrm{r}=0$, since R is a semiprime ring. Therefore $N \oplus \frac{M}{N}$ is a faithful R-module for all $N \leq M$. \Leftrightarrow Suppose that $N \oplus \frac{M}{N}$ is a faithful R-module, for all $N \leq M$. To prove that R is essentially quasi- Dedekind. We shall prove that R is a semiprime ring. Let $r \in R$ with $r^{2}=0$, suppose that $r \neq 0$, so $r \notin a n n_{R}(M)$, since M is a faithful R-module, then $r M \neq 0$. Let $N=r M \leq M$, hence $\mathrm{rN}=\mathrm{r}^{2} \mathrm{M}=0$, so $r \in \operatorname{ann}_{R}(N)$, but $r \in \operatorname{ann}_{R}\left(\frac{M}{N}\right)($ since $r M \subseteq r M=N)$, so
$r \in \operatorname{ann}_{R}(N) \cap \operatorname{ann}_{R}\left(\frac{M}{N}\right)=\operatorname{ann}_{R}\left(N \oplus \frac{M}{N}\right)=0$, thus $\mathrm{r}=0$ which is a contradiction. Hence R is essentially quasi-Dedekind.

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI.
VOL. 24 (3) 2011

Proposition (2.9)

Let M be an R-module and let $\bar{R}=R / J$, where J is an ideal of R such that $J \subseteq \operatorname{ann}_{R}(M)$. Then M is an essentially quasi-Dedekind R-module if and only if M is an essentially quasi-Dedekind \bar{R}-module.

Proof :

By [3, p.51], we have $\operatorname{Hom}_{R}(M / N, M)=\operatorname{Hom}_{\bar{R}}(M / N, M) \quad$ for all $N \leq M$. Suppose that M is an essentially quasi-Dedekind R-module, then $\operatorname{Hom}_{\bar{R}}(M / N, M)=\operatorname{Hom}_{R}(M / N, M)=0$ for all $\mathrm{N} \leq_{\mathrm{e}} \mathrm{M}$, implies M is an essentially quasi-Dedekind \bar{R}-module .

The converse follows similarly
Let R be an integral domain, and let M be an R -module. An element $x \in M$ is called a torsion element of M if, $a n n_{R}(x) \neq 0$. The set of all torsion elements of M denoted by $T(M)$ and it is a submodule of M. If $T(M)=0$ the R-module M is said to be torsion-free, [1, p.45].

The following result shows that essentially quasi-Dedekind preserves under isomorphism .

Proposition (2.10)

Let $\mathrm{M}_{1}, \mathrm{M}_{2}$ be R-modules such that $M_{1} \cong M_{2}$. Then M_{1} is an essentially quasiDedekind R -module if and only if M_{2} is an essentially quasi-Dedekind R -module .

Proof :

\Rightarrow) Suppose that M_{1} is an essentially quasi-Dedekind R -module . Let $\phi: M_{1} \longrightarrow M_{2}, \phi \quad$ is an isomorphism . To prove that M_{2} is an essentially quasiDedekind R-module . Let $f \in \operatorname{End}_{R}\left(M_{2}\right), f \neq 0$. We have $M_{1} \xrightarrow{\phi} M_{2} \xrightarrow{f} M_{2} \xrightarrow{\phi^{-1}} M_{1}$, let $h=\phi^{-1} o f o \phi \in \operatorname{End}_{R}\left(M_{1}\right)$, and hence $h \neq 0$, then Kerh $*_{\mathrm{e}} \mathrm{M}_{1}$. To prove Kerf $\star_{\mathrm{e}} \mathrm{M}_{2}$, we cliam that $\operatorname{Kerf}=\left\{y \in M_{2}: \phi^{-1}(y) \in \operatorname{Kerh}\right\}$, to prove our a sseration. Let $y \in \operatorname{Kerf}, f(y)=0$, $h\left(\phi^{-1}(y)\right)=\left(\phi^{-1} \circ f \circ \phi\right)\left(\phi^{-1}(y)\right)=\left(\phi^{-1} \circ f\right)(y)=\phi^{-1}(f(y))=\phi^{-1}(0)=0 \quad$.Then \quad for all $y \in \operatorname{Kerf}, \phi^{-1}(y) \in \operatorname{Kerh}$, so $\phi^{-1}(\operatorname{Kerf}) \subseteq \operatorname{Kerh} \star_{\mathrm{e}} \mathrm{M}_{1}$ which implies $\phi^{-1}(\operatorname{Kerf}) \star_{\mathrm{e}} \mathrm{M}_{1}$, so Kerf $*_{\mathrm{e}} \mathrm{M}_{2}$. Thus M_{2} is an essentially quasi-Dedekind R-module .
$\Leftrightarrow)$ The proof is similarly
Remark (2.11)
Let M be an R-module and let $N \leq M$. If M / N is an essentially quasi- Dedekind R -module. Then M is not necessarily an essentially quasi-Dedekind R -module, as we can see by the following example.

Example (2.12)

Let $\mathrm{M}=\mathrm{Z}_{4}$ as a Z-module , and $N=(\overline{2}) \leq \mathrm{Z}_{4}$, then $Z_{4} /(\overline{2}) \cong Z_{2}$ is an essentially quasi-Dedekind Z -module, but $\mathrm{M}=\mathrm{Z}_{4}$ is not an essentially quasi-Dedekind Z -module .
Now, we turn our attention to a submodule of essentially quasi-Dedekind. First consider the following remark:

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI. VOL. 24 (3) 2011

Remark (2.13)

Let M be an essentially quasi- Dedekind R-module , $N \leq M$. Then it is not necessarily that N be an essentially quasi-Dedekind R -module. To show this, consider the following example which appeared in [7].
Let $\quad M=Q \oplus Z_{2}$ as a Z-module is essentially quasi-Dedekind .
Take $N=Z \oplus Z_{2} \leq Q \oplus Z_{2}$ as a Z-module , then N is not essentially quasiDedekind as a Z-module , since if $f: N \longrightarrow N$ define by $f(x, \bar{y})=(0, \bar{x})$, $x \in Z, \quad \bar{y} \in Z_{2}$, then $f \neq 0$ and
$\operatorname{Kerf}=\{(x, \bar{y}) \in N: f(x, \bar{y})=(0, \overline{0})\}=\{(x, \bar{y}) \in N: \bar{x}=\overline{0}\}=2 Z \oplus Z_{2}$. Hence Kerf $\leq_{\mathrm{e}} \mathrm{N}$. Thus $N=Z \oplus Z_{2}$ is not an essentially quasi-Dedekind as a Z-module.

Now, in the next proposition we give a condition which makes R -submodule of an essentially quasi-Dedekind R-module is essentially quasi-Dedekind .

Proposition (2.14)

Let M be an essentially quasi-Dedekind R-module, and M is quasi-injective. If $\mathrm{N} \leq{ }_{\mathrm{e}} \mathrm{M}$ then N is an essentially quasi-Dedekind R -module.

Proof :

Let $f \in \operatorname{End}_{R}(N), f \neq 0$, to prove that $\operatorname{Kerf} *_{\mathrm{e}} \mathrm{N}$. Assume that Kerf \leq_{e} N . Since M is quasi-injective, then there exists $g \in \operatorname{End}_{R}(M)$ such that goi= iof,$($ where i is the inclusion mapping).

It follows that $g \neq 0$, and this implies $\operatorname{Kerg} *_{\mathrm{e}} \mathrm{M}$, since M is essentially quasiDedekind. But $\operatorname{Kerf} \subseteq \operatorname{Kerg}$, so Kerf $*_{\mathrm{e}} \mathrm{M}$. On the other hand $\mathrm{N} \leq_{\mathrm{e}} \mathrm{M}$ and by assumption Kerf $\leq_{\mathrm{e}} \mathrm{N}$ imply Kerf $\leq_{\mathrm{e}} \mathrm{M}$. To show this, since $\mathrm{N} \leq_{\mathrm{e}} \mathrm{M}$ then for all $U \leq M, U \neq 0$ then $N \cap U \neq 0$ and $N \cap U \leq N$.But Kerf $\leq{ }_{\mathrm{e}} \mathrm{N}$, hence $\operatorname{Kerf} \cap(N \cap U) \neq 0$; that \quad is $\quad(\operatorname{Kerf} \cap U) \cap N \neq 0 \quad$ which implies that $\operatorname{Kerf} \cap U \neq 0$ which is a contradiction. Thus Kerf $*_{\mathrm{e}} \mathrm{N}$ and hence N is an essentially quasi-Dedekind R-module.

Corollary (2.15)

Let M be an R-module. If \bar{M} is an essentially quasi-Dedekind R-module then M is an essentially quasi-Dedekind R-module.
Proof : Suppose that \bar{M} is an essentially quasi-Dedekind R-module, and since \bar{M} is a quasi-injective R-module and $\mathrm{M} \leq_{\mathrm{e}} \bar{M}$, so by (Prop 2.14), M is an essentially quasiDedekind R-module .

Corollary (2.16)

Let M be an R-module. If $E(M)$ is an essentially quasi-Dedekind R-module then M is an essentially quasi-Dedekind R -module.

Proof: It is clear .
The converse of (Coro2.16) is not true in general, consider the following example .

Example (2.17)

Let $\mathrm{M}=\mathrm{Z}_{2}$ as a Z -module. M is an essentially quasi-Dedekind Z -module. But $\mathrm{E}\left(\mathrm{Z}_{2}\right)=$ $\mathrm{Z}_{2}{ }^{\infty}$ is not an essentially quasi-Dedekind Z -module , (see Rem.and.Ex 2.2(4)) .

Now we prove the following proposition:

Proposition (2.18)

Let M be an R -module such that, for each $f \in \operatorname{Hom}(M, E(M)), \quad f \neq 0$ implies Kerf $\star_{\mathrm{e}} \mathrm{M}$. Then M is essentially quasi-Dedekind.
Proof: Let $g \in \operatorname{End}_{R}(M), g \neq 0$. Then $\operatorname{iog} \in \operatorname{Hom}(M, E(M))$, and $\operatorname{iog} \neq 0$, where i is the inclusion mapping. Hence $\operatorname{Ker}(\operatorname{iog}) *_{\mathrm{e}} \mathrm{M}$. But $\operatorname{Kerg}=\operatorname{Ker}(\mathrm{iog})$. Thus Kerg $\star_{\mathrm{e}} \mathrm{M}$ and M is essentially quasi-Dedekind

Next we study the behavior of the quotient module of essentially quasi-Dedekind module. First we have the following.

Remark (2.19)

Let M be an R -module, $N \leq M$. If M is an essentially quasi- Dedekind R-module , then M / N is not necessarily essentially quasi- Dedekind R -module, consider the following example .

Example(2.20)

It is well-known that Z as a Z -module is essentially quasi- Dedekind.
Let $N=(4) \leq Z, Z / N=Z /(4) \cong Z_{4}$ is not essentially quasi-Dedekind as a Z-module , (see Rem.and.Ex 2.2(3)) .

We need to recall that an R-module P is projective if and only if, for any R modules A, B and for any epimorphism $f: A \longrightarrow B$ and for any homomorphism $g: P \longrightarrow B$, there exists a homomorphism $h: P \longrightarrow A$ such that foh $=\mathrm{g}$ (i.e the following diagram is a commutative), [3, p.117].

IBN AL- HAITHAM J. FOR PURE \& APPL. SCI. VOL. 24 (3) 2011

Now, in the next proposition we give a condition under which the (Remark 2.19) is true.

Proposition (2.21)

Let M be an R -module such that M / K is a projective R -module for all $\mathrm{K} \leq_{\mathrm{e}} \mathrm{M}$. If M is an essentially quasi-Dedekind R -module, then M / N is an essentially quasi-Dedekind R-module for all $N \leq M$ proof :

Let $U / N \leq{ }_{\mathrm{e}} M / N$. Then $\mathrm{U} \leq{ }_{\mathrm{e}} \mathrm{M}$ and hence by hypothesis M / U is a projective R-module. Suppose that there exists $f \in \operatorname{Hom}\left(\frac{M / N}{U / N}, \frac{M}{N}\right), \quad f \neq 0$. But $\operatorname{Hom}\left(\frac{M / N}{U / N}, \frac{M}{N}\right) \cong \operatorname{Hom}\left(\frac{M}{U}, \frac{M}{N}\right)$ and since M / U is projective, so there exists $g: \frac{M}{U} \longrightarrow M$ such that $\pi \mathrm{og}=\mathrm{f}$, where π is the canonical projection mapping.

Since $f \neq 0$ then $g \neq 0$, thus $\operatorname{Hom}\left(\frac{M}{U}, M\right) \neq 0, \mathrm{U} \leq{ }_{\mathrm{e}} \mathrm{M}$; that is M is not an essentially quasi-Dedekind R-module, which is a contradiction. Thus M / N is an essentially quasi-Dedekind R-module for all $N \leq M$.

References

1. Atiyah, M .F. and Macdonald, I.G. (1969) " Introduction to commutative algebra " , University of Oxford .
2. Goodearl, K.R. (1976) " Ring theory " Maracel Dekker, Newy ork .
3. Kasch, F. (1982)" Modules and rings ", Academic press, London
4. Larsen, M .D. and Mc Carthy, P. J. (1971) " Multiplication theory of Ideals ", Academic press Newyork and London
5. Mijbass, A .S. (1997) " Quasi -Dedekind Modules " , Ph. D.Thesis, College of Science University of Baghdad .
6. Naoum, A .G. and Hadi, I. M-A .(2002) " SQI Submodules and SQD Modules ", Iraqi J. Sci, 1.43.D (2): 43 - 54 .
7. Rizvi , S.T. and Roman, C.S. (2007) " On K- Nonsingular Modules and applications ", Comm. In Algebra, No. 35: 2960-2982.
8. Roman, C. S.(2004)" Baer and Quasi-Baer Modules ", Ph.D.Thesis, Graduate, School of Ohio, State University

المقاسات الجزئية شبهه حمعكوسة الواسعة
 و المقاسات شبه - ديديكاندية الواسععة

أنعام محمد علي ، ثائر يونس غاوي

قسم الرّياضيات ، كلية التربيـة ، جامعة القادسية

$$
\text { قبل البحث في : البحث في : } 6 \text { شباط } 20112011
$$

الخلاصة

لنكن R حلقة أبداليـة ذا عنصر محايد . في هذا البحث درسنا مفهومي المقاسـات الجزئيـة شبه-معكوسـة الواسـعة
والمقاسات شبه - ديديكاندية الواسععة أعمام إلى المقاسـات الجزئية شبه-معكوسـة و المقاسات شبه - ديديكانديـة. ومن بين
النتائج التي حصلنا عليها النتجة الاتية "M M مقاس شبه- ديديكاندي واسع اذا كان M مقاس غير منفرد من النمط -
 . $\mathrm{f}=0$ بحيث Kerf $\leqslant_{\mathrm{e}} \mathrm{M}$ بؤدي إلى أنر

