## Essentially Quasi-Invertible Submodules and Essentially Quasi-Dedekind Modules

I.M-A Hadi , Th. Y. Ghawi Department of Mathematics, College of Education Ibn AL-Haitham University of Baghdad Department of Mathematics, College of Education, University of AL-Qadisiya

Received in : 6 June 2011 Accepted in : 8 February 2011

### Abstract

Let R be a commutative ring with identity. In this paper we study the concepts of essentially quasi-invertible submodules and essentially quasi-Dedekind modules as a generalization of quasi-invertible submodules and quasi-Dedekind modules. Among the results that we obtain is the following: M is an essentially quasi-Dedekind module if and only if M is aK-nonsingular module, where a module M is K-nonsingular if, for each  $f \in End_{\mathbb{P}}(M)$ , Kerf  $\leq_{\mathbb{P}} M$  implies f=0.

Kew words : Essentially quasi-invertible submodules , Essentially quasi-Dedekind Modules .

## Introduction

The concepts of a quasi-invertible submodule of an R-module and quasi-Dedekind module were introduced in [5]. Where a submodule N of an R-module M is called quasi-invertible if Hom(M/N, M) = 0, and an R-module M is called quasi-Dedekind if each nonzero submodule of M is quasi-invertible. As a generalizations to these concepts we introduce the following concepts : We call a submodule N of M is essentially quasi-invertible if , N  $\leq_e M$  and N is quasi-invertible. And an R-module M is called essentially quasi-Dedekind if every essential submodule N of M is quasi-invertible ; (i.e. Hom(M/N, M) = 0). This paper consists of two sections,  $\S_1$  is devoted to study essentially quasi-invertible submodules, in  $\S_2$  we study and give the basic properties of essentially quasi-Dedekind modules.

This paper represents a part of the M . Sc. thesis written by the second author under the supervision of the first author and was submitted to the college of education – Ibn AL-Haitham , University of Baghdad , 2010 .

#### 1. Essentially Quasi-Invertible Submodules

In this section we introduce the concept of essentially quasi-invertible submodules. We develop basic properties of essentially quasi-invertible submodule .

We start with the following definition :

#### **Definition (1.1)**

Let M be an R-module and  $N \leq_e M$ , then N is called an essentially quasi-invertible submodule of M if, Hom(M/N, M) = 0; that is N is essentially quasi-invertible if,  $N \leq_e M$  and N is quasi-invertible. An ideal J in a ring R is called an essentially quasi-invertible ideal of R if, J is an essentially quasi-invertible R-submodule of R.

#### **Remarks and Examples (1.2)**

1) It is clear that every essentially quasi-invertible submodule is quasi-invertible submodule .

Recall that an R-module M is called a semisimple if every submodule of M is a direct summand of M, [3, p.189].

2) If M is a semisimple R-module , then M is the only essentially quasi-invertible submodule of M .

3) Consider  $Z_4$  as a Z-module,  $N = (\overline{2}) \leq_e Z_4$ , but  $Hom(Z_4/(\overline{2}), Z_4) \cong Z_2 \neq 0$ , so  $N = (\overline{2})$  is not essentially quasi-invertible submodule of  $Z_4$ , similarly in the Z-module  $Z_{20}$ ,  $N = (\overline{2}) \leq_e Z_{20}$ , but it is not quasi-invertible.

4) If N is an essentially quasi-invertible R-submodule of an R-module M, then  $ann_{P}M = ann_{P}N$ .

#### **Proof :** It is clear $\Box$

The converse of (Rem.and.Ex. 1.2(4)) is not true in general, for example: Let  $M = Z \oplus Z$ , considered as a Z-module and let  $N = Z \oplus (0) \le M$ , then it is clear that  $ann_R M = ann_R N = (0)$ , but N is not essentially quasi-invertible submodule of M, since N  $\leq_e$  M and also N is not quasi-invertible.

5) Let J be an ideal of a ring R. Then J is an essentially quasi-invertible if and only if  $ann_{R}(J) = 0$ .

Proof: It is easy .

- 6) Let J be an ideal of a ring R. The following statements are equivalent:
- a) J is an essentially quasi-invertible ideal of R.
- b) J is a quasi-invertible ideal of R.

c)  $ann_R(J) = 0$ .

#### **Proof**:

 $(a) \Leftrightarrow (c)$ : It follows by (Rem.and.Ex. 1.2(5)).

- $(b) \Leftrightarrow (c)$  : It follows by [5, prop. 2.2].  $\Box$
- 7) Let R be a ring. The following statements are equivalent:

- a) R is an integral domain.
- b) R is quasi-Dedekind.

#### **Proof** : It follows by (Rem.and.Ex. 1.2(6)) . $\Box$

8) If  $M = M_1 \oplus M_2$  is an R-module, and K be an essentially quasi-invertible submodule in  $M_i$  for some i = 1, 2, then it is not necessarily that K is an essentially quasi-invertible submodule of M, for example:

Let  $M = Z \oplus Z_2$  as Z-module, then  $K = Z_2$  is an essentially quasi-invertible submodule of  $Z_2$  as Z-module, but  $Z_2 \cong (0) \oplus Z_2$  which is not essentially quasi-invertible of  $M = Z \oplus Z_2$ , since  $(0) \oplus Z_2 \leqslant_e Z \oplus Z_2$ .

#### **Proposition (1.3)**

Let M be an R-module , and let  $N_1$ ,  $N_2$  be an essentially quasi-invertible R-submodules of M , then  $N_1 \cap N_2$  is an essentially quasi-invertible R-submodule of M.

#### **Proof**:

Since  $N_1 \leq_e M$ ,  $N_2 \leq_e M$  then  $Hom(M/N_1, M) = 0$  and  $Hom(M/N_2, M) = 0$ . Also  $N_1 \leq_e M$ ,  $N_2 \leq_e M$  imply  $N_1 \cap N_2 \leq_e M$ . But  $Hom(M/N_1 \cap N_2, M) \subseteq Hom(M/N_1, M) + Hom(M/N_2, M)$ . Hence

 $Hom(M/N_1 \cap N_2, M) = 0$  and so that  $N_1 \cap N_2$  is an essentially quasi-invertible R-submodule of M .  $\Box$ 

The following lemma is needed for the next proposition.

#### Lemma (1.4)

Let M be an R-module such that for each nonzero submodule K of M ,  $0_p \neq K_p \leq M_p$ for each maximal ideal P of R. If  $N_P \leq_e M_p$  implies  $N \leq_e M$ . **Proof :** 

Suppose that there exists  $0 \neq U \leq M$  such that  $U \cap N = 0$ . Hence  $(U \cap N)_P = 0_P$ which implies that  $U_P \cap N_P = 0_P$ , but  $0_P \neq U_P \leq M_P$  by hypothesis, so that  $N_P \leq M_P$  which is a contradiction.  $\Box$ 

#### **Proposition (1.5)**

Let M be an R-module ,  $N \leqslant M$  . If  $N_P$  is an essentially quasi-invertible  $R_P$  -submodule of  $R_P$ -module  $M_P$  (for each maximal ideal P of R), then N is an essentially quasi-invertible submodule of an R-module M.

#### **Proof**:

Since N<sub>P</sub> is an essentially quasi-invertible R<sub>P</sub>-submodule of M<sub>P</sub>,  $Hom(M_P/N_P, M_P) = 0$ . But by [4, Ex.3, p.75],  $(Hom(M/N, M))_P \subseteq Hom(M_P/N_P, M_P) = 0$ , thus  $(Hom(M/N, M))_P = 0$ and by [4, Prop.3.13, p.70], Hom(M/N, M) = 0; that is N is a quasi-invertible submodule of M . Beside this , by (Lemma (1.4 )) ,  $N \leq_e M$  . Thus N is an essentially quasi-invertible submodule of M .  $\Box$ 

#### IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

Recall that an R-submodule N of an R-module M is called a SQI-submodule if, for each  $f \in Hom(M/N, M)$ , f(M/N) is a small submodule in M, [6, p.44]. And an R-submodule N of an R-module M is called a small submodule of M (N  $\leq$  M, for short) if, for all K  $\leq$  M with N+K = M implies K = M, [3, P.106].

#### **Remark (1.6)**

It is clear that every quasi-invertible submodule is an SQI-submodule and hence every essentially quasi-invertible submodule is an SQI-submodule .

The converse of (Remark 1.6) is not true in general, consider the following example .

#### Example (1.7)

Consider the Z-module  $Z_4$ ,  $N = (\overline{2})$ , then N is an SQI-submodule of  $Z_4$ , since for all  $f \in Hom(Z_4/(\overline{2}), Z_4)$ , then  $f(Z_4/(\overline{2}) \leq Z_4$ , and every proper submodule of  $Z_4$  is a small in  $Z_4$ , so  $f(Z_4/(\overline{2}) \ll Z_4)$ , but it is known that  $N = (\overline{2})$  is not essentially quasi-invertible in  $Z_4$ , (see Rem.and.Ex. 1.2(3)).

#### 2. Essentially Quasi-Dedekind Modules

In this section we give the definition of essentially quasi-Dedekind module with some examples. We prove that essentially quasi-Dedekind module and K-nonsingular module which is introduced by [8] are equivalent. We give conditions under which submodule (resp. quotient module) of essentially quasi-Dedekind is essentially quasi-Dedekind.

#### **Definition (2.1)**

An R-module M is called essentially quasi-Dedekind if, Hom(M/N, M) = 0 for all  $N \leq_e M$ . A ring R is essentially quasi-Dedekind if R is an essentially quasi-Dedekind R-module .

#### **Remarks and Examples (2.2)**

- It is clear that every quasi-Dedekind module is an essentially quasi-Dedekind module, but the converse is not true in general, for example: Each of Z<sub>10</sub>, Z<sub>15</sub> are essentially quasi-Dedekind as a Z-module , but it is not quasi-Dedekind .
- 2) Every integral domain R is an essentially quasi-Dedekind R-module, by [5, Ex 1.4, p.24] and (Rem.and.Ex 2.2(1)).
- 3)  $Z_4$  as a Z-module is not essentially quasi-Dedekind , since  $(\overline{2}) \leq_e Z_4$ ,

but  $Hom(Z_4/(\bar{2}), Z_4) \cong Z_2 \neq 0$ .

4) Let  $M = Z_p^{\infty}$  as a Z-module. Then M is not essentially quasi-Dedekind, but  $End_Z(M)$  (is the ring of P-adic integers) is a commutative domain [see Ex 4.1.2,8], so  $End_Z(M)$  is essentially quasi-Dedekind, by (Rem.and.Ex 2.2(2)).

5) Let M be a uniform R-module . Then M is a quasi-Dedekind R-module if and only if M is an essentially quasi-Dedekind R-module .

**Proof :** It is clear .  $\Box$ 

Roman C.S in [8], introduce the following: "An R-module M is called K-nonsingular if, for each  $f \in End_R(M)$ , Kerf  $\leq_e M$  implies f = 0". However we prove the following:

#### **Theorem (2.3)**

Let M be an R-module . Then M is an essentially quasi-Dedekind R-module if and only if M is a K-nonsingular R-module .

**Proof**:  $\Rightarrow$ ) Let  $f \in End_R(M)$ ,  $f \neq 0$ . Suppose that Kerf  $\leq_e M$ , defined

 $g: M/Kerf \longrightarrow M$  by g(m+Kerf) = f(m) for all  $m \in M$ . It is easy to see that g is well-defined and g is a nonzero homomorphism. Thus  $Hom(M/Kerf, M) \neq 0$  which is a contradiction, since M is an essentially quasi-Dedekind R-module.

 $(=) \quad N \leq_{e} M \quad \text{. Suppose that there exists } f: M/N \longrightarrow M \text{ and } f \neq 0 \text{ . we have } M \xrightarrow{\pi} M/N \xrightarrow{f} M \text{, where } \pi \text{ is the canonical projection . Let } \psi = fo \pi \in End_{R}(M).$ 

 $N \subseteq Ker\psi$  and  $N \leq_e M$  implies  $Ker\psi \leq_e M$ ,  $\psi(M) = fo\pi(M) = f(M/N) \neq 0$  which is a contradiction with M is a K-nonsingular R-module .  $\Box$ 

Although the concepts of essentially quasi-Dedekind module and K-nonsingular module are equivalent ,but we see that it is convenient to use the notion essentially quasi-Dedekind in this paper.

#### **Proposition (2.4)**

Every semisimple R-module is an essentially quasi-Dedekind R-module.

**Proof**:\_ It is easy .  $\Box$ 

The converse of (Prop 2.4) is not true in general, consider the following example.

#### Example (2.5)

It is known that Z as a Z-module is essentially quasi-Dedekind, but it is not semisimple .

Recall that an ideal I of a ring R is semiprime if, for all  $r \in R$  with  $r^2 \in I$ implies  $r \in I$  [or, for all ideal A of R with  $A^2 \subseteq I$  implies  $A \subseteq I$ ]. And a ring R is called semiprime if (0) is a semiprime ideal of R; i.e R does not contain nonzero nilpotent ideals, [2].

#### **Proposition (2.6)**

Let R be a ring. The following statements are equivalent : 1) R is an essentially quasi-Dedekind ring. 2) R is a semiprime ring.

3) Z(R) = 0 (R is a nonsingular ring).

#### **Proof** :

 $(2) \Leftrightarrow (3)$ : It is follows by [2, Prop 1.27, p.35]  $(2) \Rightarrow (1)$ : Let  $f \in End_R(R)$  such that Kerf  $\leq_e R$ . To prove f = 0. Suppose that  $f \neq 0$ , there exists  $0 \neq r \in R$  such that f(a) = ra for all  $a \in R$ . Since Kerf  $\leq_e R$  and  $0 \neq r \in R$ , then there exists  $0 \neq t \in R$  such that  $0 \neq rt \in Kerf$ , hence 0 =  $f(rt) = rf(t) = r^2t$ . This implies  $(rt)^2 = 0$  and since R is semiprime, rt = 0 which is a contradiction. Thus f = 0 and R is essentially quasi-Dedekind.

#### IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

 $(1) \Rightarrow (3)$ : Suppose that  $Z(R) \neq 0$ . Then there exists  $0 \neq a \in Z(R)$  and hence  $ann_R(a) \leq_e R$ , this implies  $ann_R(a)$  is a quasi-invertible ideal and so that by (5, Prop 2.2),  $ann_R(ann_R(a)) = 0$ , but  $(a) \subseteq ann_R(ann_R(a))$ , hence a = 0 which is a contradiction.  $\Box$ **Proposition (2.7)** 

Let R be a ring. Then R is essentially quasi-Dedekind if and only if R[x] is essentially quasi-Dedekind, where R[x] is the ring of polynomials with one indeterminate x.

#### **Proof**:

 $\Rightarrow$ ) Suppose that R is essentially quasi-Dedekind , so by (Prop 2.6) R is a nonsingular ring, and hence by [2, Ex. 13, p.37], R[x] is a nonsingular ring . Thus R[x] is essentially quasi-Dedekind , by (Prop 2.6).

 $\Leftarrow$ ) Suppose that R is not essentially quasi-Dedekind, so by (Prop 2.6), R is not a semiprime ring; that is there exists  $a \in L(R)$  and  $a \neq o$ , where  $L(R) = \{x \in R : x^n = 0, \text{ for some } n \in N\}$ , then  $a^n = 0$ , for some  $n \in N$ . Define  $f(x) = a \neq 0$ , so  $f(x) \in R[x]$ , and R[x] is a semiprime ring, by (Prop 2.6). On the other hand  $[f(x)]^n = a^n = 0$ , implies  $f(x) \in L(R[X]) = 0$ . It follows that f = 0 which is a contradiction. Thus R is essentially quasi-Dedekind.  $\Box$ 

#### **Proposition (2.8)**

Let M be a faithful R-module. Then R is essentially quasi-Dedekind if and only if  $N \oplus \frac{M}{N}$  is a faithful R-module, for all  $N \le M$ .

#### **Proof**:

⇒) Suppose that R is essentially quasi-Dedekind, so by ((Prop 2.6), R is semiprime . Let  $r \in ann_R(N \oplus \frac{M}{N})$ , then  $r \in ann_R(N) \cap ann_R(\frac{M}{N})$ ; that is rN = 0 and  $rM \subseteq N$ , so  $r^2M \subseteq rN = 0$  implies  $r^2 \in ann_R(M) = 0$  then  $r^2 = 0$ , thus r = 0, since R is a semiprime ring. Therefore  $N \oplus \frac{M}{N}$  is a faithful R-module for all  $N \leq M$ .

 $\iff \text{Suppose that } N \oplus \frac{M}{N} \text{ is a faithful R-module, for all } N \leq M \text{ . To prove that } R \text{ is essentially quasi-Dedekind} . We shall prove that R is a semiprime ring. Let <math>r \in R$  with  $r^2 = 0$ , suppose that  $r \neq 0$ , so  $r \notin ann_R(M)$ , since M is a faithful R-module, then  $rM \neq 0$ . Let  $N = rM \leq M$ , hence  $rN = r^2M = 0$ , so  $r \in ann_R(N)$ , but  $r \in ann_R(\frac{M}{N})$  (since  $rM \subseteq rM = N$ ), so

 $r \in ann_R(N) \cap ann_R(\frac{M}{N}) = ann_R(N \oplus \frac{M}{N}) = 0$ , thus r = 0 which is a contradiction. Hence R is essentially quasi-Dedekind.  $\Box$ 

#### IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

#### **Proposition (2.9)**

Let M be an R-module and let  $\overline{R} = R/J$ , where J is an ideal of R such that  $J \subseteq ann_R(M)$ . Then M is an essentially quasi-Dedekind R-module if and only if M is an essentially quasi-Dedekind  $\overline{R}$ -module.

#### **Proof** :

By [3, p.51], we have  $Hom_R(M/N, M) = Hom_{\overline{R}}(M/N, M)$  for all  $N \le M$ . Suppose that M is an essentially quasi-Dedekind R-module, then  $Hom_{\overline{R}}(M/N, M) = Hom_R(M/N, M) = 0$  for all  $N \le_e M$ , implies M is an essentially quasi-Dedekind  $\overline{R}$ -module.

The converse follows similarly .  $\Box$ 

Let R be an integral domain, and let M be an R-module. An element  $x \in M$  is called a torsion element of M if,  $ann_R(x) \neq 0$ . The set of all torsion elements of M denoted by T(M) and it is a submodule of M. If T(M) = 0 the R-module M is said to be torsion-free, [1, p.45].

The following result shows that essentially quasi-Dedekind preserves under isomorphism .

#### **Proposition (2.10)**

Let  $M_1$ ,  $M_2$  be R-modules such that  $M_1 \cong M_2$ . Then  $M_1$  is an essentially quasi-Dedekind R-module if and only if  $M_2$  is an essentially quasi-Dedekind R-module.

#### **Proof** :

⇒) Suppose that  $M_1$  is an essentially quasi-Dedekind R-module . Let  $\phi: M_1 \longrightarrow M_2$ ,  $\phi$  is an isomorphism . To prove that  $M_2$  is an essentially quasi-Dedekind R-module . Let  $f \in End_R(M_2)$ ,  $f \neq 0$  . We have  $M_1 \xrightarrow{\phi} M_2 \xrightarrow{f} M_2 \xrightarrow{\phi^{-1}} M_1$ , let  $h = \phi^{-1}ofo\phi \in End_R(M_1)$ , and hence  $h \neq 0$ , then Kerh  $\leqslant_e M_1$  . To prove Kerf  $\leqslant_e M_2$  , we cliam that  $Kerf = \{y \in M_2 : \phi^{-1}(y) \in Kerh\}$ , to prove our a sseration. Let  $y \in Kerf$ , f(y) = 0,  $h(\phi^{-1}(y)) = (\phi^{-1}ofo\phi)(\phi^{-1}(y)) = (\phi^{-1}of)(y) = \phi^{-1}(f(y)) = \phi^{-1}(0) = 0$ . Then for all  $y \in Kerf$ ,  $\phi^{-1}(y) \in Kerh$ , so  $\phi^{-1}(Kerf) \subseteq Kerh \leqslant_e M_1$  which implies  $\phi^{-1}(Kerf) \leqslant_e M_1$ , so Kerf  $\leqslant_e M_2$ . Thus  $M_2$  is an essentially quasi-Dedekind R-module .

 $\Leftarrow$  ) The proof is similarly .  $\Box$ 

#### **Remark (2.11)**

Let M be an R-module and let  $N \le M$ . If M/N is an essentially quasi-Dedekind R-module. Then M is not necessarily an essentially quasi-Dedekind R-module, as we can see by the following example.

#### **Example (2.12)**

Let  $M = Z_4$  as a Z-module, and  $N = (\overline{2}) \le Z_4$ , then  $Z_4/(\overline{2}) \cong Z_2$  is an essentially quasi-Dedekind Z-module, but  $M = Z_4$  is not an essentially quasi-Dedekind Z-module.

Now, we turn our attention to a submodule of essentially quasi-Dedekind. First consider the following remark :

#### IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.24 (3) 2011

#### **Remark (2.13)**

Let M be an essentially quasi-Dedekind R-module ,  $N \le M$ . Then it is not necessarily that N be an essentially quasi-Dedekind R-module. To show this, consider the following example which appeared in [7].

Let  $M = Q \oplus Z_2$  as a Z-module is essentially quasi-Dedekind. Take  $N = Z \oplus Z_2 \leq Q \oplus Z_2$  as a Z-module, then N is not essentially quasi-Dedekind as a Z-module, since if  $f: N \longrightarrow N$  define by  $f(x, \overline{y}) = (0, \overline{x})$ ,  $x \in Z$ ,  $\overline{y} \in Z_2$ , then  $f \neq 0$  and  $Kerf = \{(x, \overline{y}) \in N : f(x, \overline{y}) = (0, \overline{0})\} = \{(x, \overline{y}) \in N : \overline{x} = \overline{0}\} = 2Z \oplus Z_2$ . Hence Kerf  $\leq_e N$ . Thus  $N = Z \oplus Z_2$  is not an essentially quasi-Dedekind as a Z-module.

Now, in the next proposition we give a condition which makes R-submodule of an essentially quasi-Dedekind R-module is essentially quasi-Dedekind .

#### **Proposition** (2.14)

Let M be an essentially quasi-Dedekind R-module, and M is quasi-injective. If  $N \leq_e M$  then N is an essentially quasi-Dedekind R-module.

#### **Proof**:

Let  $f \in End_R(N)$ ,  $f \neq 0$ , to prove that Kerf  $\leq_e N$ . Assume that Kerf  $\leq_e N$ . N. Since M is quasi-injective, then there exists  $g \in End_R(M)$  such that goi = iof, (where i is the inclusion mapping).



It follows that  $g \neq 0$ , and this implies  $\operatorname{Kerg} \leqslant_{e} M$ , since M is essentially quasi-Dedekind. But  $\operatorname{Kerf} \subseteq \operatorname{Kerg}$ , so  $\operatorname{Kerf} \leqslant_{e} M$ . On the other hand  $N \leq_{e} M$  and by assumption  $\operatorname{Kerf} \leq_{e} N$  imply  $\operatorname{Kerf} \leq_{e} M$ . To show this, since  $N \leq_{e} M$  then for all  $U \leq M$ ,  $U \neq 0$  then  $N \cap U \neq 0$  and  $N \cap U \leq N$ . But  $\operatorname{Kerf} \leq_{e} N$ , hence  $\operatorname{Kerf} \cap (N \cap U) \neq 0$ ; that is  $(\operatorname{Kerf} \cap U) \cap N \neq 0$  which implies that  $\operatorname{Kerf} \cap U \neq 0$  which is a contradiction. Thus  $\operatorname{Kerf} \leqslant_{e} N$  and hence N is an essentially quasi-Dedekind R-module.  $\Box$ 

#### Corollary (2.15)

Let M be an R-module . If  $\overline{M}$  is an essentially quasi-Dedekind R-module then M is an essentially quasi-Dedekind R-module .

**Proof:** Suppose that  $\overline{M}$  is an essentially quasi-Dedekind R-module, and since  $\overline{M}$  is a quasi-injective R-module and  $M \leq_e \overline{M}$ , so by (Prop 2.14), M is an essentially quasi-Dedekind R-module.  $\Box$ 

#### Corollary (2.16)

Let M be an R-module . If E(M) is an essentially quasi-Dedekind R-module then M is an essentially quasi-Dedekind R-module .

#### **Proof :** It is clear . $\Box$

The converse of (Coro2.16) is not true in general, consider the following example.

#### **Example (2.17)**

Let  $M = Z_2$  as a Z-module. M is an essentially quasi-Dedekind Z-module. But  $E(Z_2) = Z_2^{\infty}$  is not an essentially quasi-Dedekind Z-module , (see Rem.and.Ex 2.2(4)).

Now we prove the following proposition :

#### **Proposition (2.18)**

Let M be an R-module such that , for each  $f \in Hom(M, E(M))$ ,  $f \neq 0$  implies Kerf  $\leq_{e} M$ . Then M is essentially quasi-Dedekind.

**Proof**: Let  $g \in End_R(M)$ ,  $g \neq 0$ . Then  $iog \in Hom(M, E(M))$ , and  $iog \neq 0$ , where i is the inclusion mapping. Hence  $Ker(iog) \leq_e M$ . But Kerg = Ker(iog). Thus  $Kerg \leq_e M$  and M is essentially quasi-Dedekind.  $\Box$ 

Next we study the behavior of the quotient module of essentially quasi-Dedekind module . First we have the following .

#### Remark (2.19)

Let M be an R-module,  $N \leq M$ . If M is an essentially quasi- Dedekind R-module , then M/N is not necessarily essentially quasi- Dedekind R-module , consider the following example .

#### Example(2.20)

It is well-known that Z as a Z-module is essentially quasi-Dedekind.

Let  $N = (4) \le Z$ ,  $Z/N = Z/(4) \cong Z_4$  is not essentially quasi-Dedekind as a Z-module , (see Rem.and.Ex 2.2(3)).

We need to recall that an R-module P is projective if and only if, for any R-modules A, B and for any epimorphism  $f: A \longrightarrow B$  and for any homomorphism  $g: P \longrightarrow B$ , there exists a homomorphism  $h: P \longrightarrow A$  such that foh = g (i.e the following diagram is a commutative), [3, p.117].

VOL.24 (3) 2011



Now , in the next proposition we give a condition under which the (Remark 2.19) is true .

#### **Proposition (2.21)**

Let M be an R-module such that M/K is a projective R-module for all  $K \leq_e M$ . If M is an essentially quasi-Dedekind R-module, then M/N is an essentially quasi-Dedekind R-module for all  $N \leq M$ . proof:

Let  $U/N \leq_{e} M/N$ . Then  $U \leq_{e} M$  and hence by hypothesis M/U is a projective R-module. Suppose that there exists  $f \in Hom(\frac{M/N}{U/N}, \frac{M}{N}), f \neq 0$ . But

 $Hom(\frac{M/N}{U/N}, \frac{M}{N}) \cong Hom(\frac{M}{U}, \frac{M}{N})$  and since M/U is projective, so there exists M

 $g: \frac{M}{U} \longrightarrow M$  such that  $\pi og = f$ , where  $\pi$  is the canonical projection mapping.



Since  $f \neq 0$  then  $g \neq 0$ , thus  $Hom(\frac{M}{U}, M) \neq 0$ ,  $U \leq_e M$ ; that is M is not an essentially quasi-Dedekind R-module , which is a contradiction. Thus M/N is an essentially quasi-Dedekind R-module for all  $N \leq M$ .  $\Box$ 

## References

- Atiyah, M.F. and Macdonald, I.G. (1969) "Introduction to commutative algebra", 1. University of Oxford .
- 2. Goodearl, K.R. (1976) "Ring theory" Maracel Dekker, Newyork.
- Kasch, F. (1982) " Modules and rings ", Academic press, London.
  Larsen, M. D. and Mc Carthy, P. J. (1971) " Multiplication theory of Ideals ", Academic press Newyork and London
- 5. Mijbass, A.S. (1997) " Quasi-Dedekind Modules ", Ph. D. Thesis, College of Science, University of Baghdad .
- 6. Naoum, A.G. and Hadi, I. M-A .(2002) "SQI Submodules and SQD Modules ", Iraqi J. Sci, 1.43.D (2): 43 – 54.
- 7. Rizvi, S.T. and Roman, C.S. (2007) "On K-Nonsingular Modules and applications", Comm. In Algebra, No.35: 2960-2982.
- 8. Roman, C. S. (2004) "Baer and Quasi Baer Modules", Ph. D. Thesis, Graduate, School of Ohio, State University .

# المقاسات الجزئية شبه معكوسة الواسعة و المقاسات شبه – ديديكاندية الواسعة

# أنعام محمد على ، ثائر يونس غاوى قسم الرياضيات، كلية التربية أبن الهيثم جامعة بغداد قسم الرّياضيات ، كلية التربية ، جامعة القادسية

استلم البحث في : 6 حزيران 2011 قبل البحث في : 8 شباط 2011

## الخلاصة

لتكن R حلقة أبدالية ذا عنصر محايد . في هذا البحث درسنا مفهومي المقاسات الجزئية شبه-معكوسة الواسعة. والمقاسات شبه - ديديكاندية الواسعة أعمام إلى المقاسات الجزئية شبه-معكوسة و المقاسات شبه - ديديكاندية. ومن بين النتائج التي حصلنا عليها النتيجة الاتية " M مقاس شبه- ديديكاندي وإسع اذا كان M مقاس غير منفرد من النمط – K "، اذ المقاس M هو مقاس غير منفرد من النمط – K اذا كان لكل تشاكل f من M إلى M على الحلقة R . f = 0 يؤدى إلى أن Kerf  $\leq_e M$