

On Weakly Quasi-Prime Module

M. A. Hassin
 Department of Mathematical, College of Basic Education, University of Al-Mustansriyah

Received in: 3 April 2011 Accepted in: 18 October 2011

Abstract

In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.

Key words: Prime module, quasi-p rime module, weakly quasi-prime module.

1- Introduction

Let R be a commutative ring with unity, and let M be an R -module, we introduce that an R-module M is called weakly quasi-prime module if $\operatorname{ann}_{R} \mathrm{M}=\operatorname{ann}_{R} r \mathrm{M}$ for every $r \notin \operatorname{ann}_{R} \mathrm{M}$, where $\operatorname{ann}_{\mathrm{R}} \mathrm{M}=\{r: r \in \mathrm{R}$ and $r \mathrm{M}=0\}$.

The main purpose of this work is to investigate the properties of weakly quasi-prime modules, and we give several characterizations of weakly quasi-prime modules. Recall that an R -module is called prime if $\operatorname{ann}_{\mathrm{R}} \mathrm{M}=\operatorname{ann}_{\mathrm{R}} \mathrm{N}$ for every non-zero submodule N of M and $\operatorname{ann}_{\mathrm{R}} \mathrm{M}=\{r: r \in \mathrm{R}$ and $r \mathrm{M}=0\},[1]$.
A submodule N of M is said to be prime if $a m \in \mathrm{~N}$ for $a \in \mathrm{R}, m \in \mathrm{M}$, then either $m \in \mathrm{~N}$ or $a \in[\mathrm{~N}: \mathrm{M}]$ where $[\mathrm{N}: \mathrm{M}]=\{r: r \in \mathrm{R}, r \mathrm{M} \subseteq \mathrm{N}\},[1]$, [2].
It was shown that in [1] M is prime module iff (0) is prime submodule.
The concept of quasi-prime module is introduced in [3] where an R-module M is quasi-prime module if $\operatorname{ann}_{R} \mathrm{~N}$ is prime ideal for every nonzero submodule N of M . If M is quasi-prime module then $\operatorname{ann}_{R} \mathrm{M}=\mathrm{ann}_{\mathrm{R}} r \mathrm{M} \forall r \notin \mathrm{ann}_{\mathrm{R}} \mathrm{M}$, [3]. But the converse is not true for example:

Let $\mathrm{M}=Z_{p^{\infty}}$ as Z -module is not quasi-prime module since if $\mathrm{N}=<1 / p^{2}+z>\leq Z_{p^{\infty}}$. So $\operatorname{ann}_{R} \mathrm{~N}=p^{2} z$ is not prime ideal in Z.
But ann $Z_{p^{\infty}}=0$ and $\forall r \neq 0$, let $a \in \operatorname{ann} r Z_{p^{\infty}}$ so $a r Z_{p^{\infty}}=0$, so $a r \in \operatorname{ann} Z_{p^{\infty}}$
ar $r=0$, but $r \neq 0$ so $a=0$ so ann $r Z_{p^{\infty}}=0$. Then ann $Z_{p^{\infty}}=\operatorname{ann} r Z$

2- Weakly Quasi-Prime Module

In this section we introduce the concept of weakly quasi-prime module and give several results about it.

2.1 Definition:

An R-module M is called weakly quasi-prime module (briefly W.q.p) if $\mathrm{ann}_{\mathrm{R}} \mathrm{M}=\mathrm{ann}_{\mathrm{R}} r \mathrm{M}$ for every $r \notin \mathrm{ann}{ }_{\mathrm{R}} \mathrm{M}$.

Recall that if R is an integral domain, an R -module M is said to be divisible iff $r \mathrm{M}=\mathrm{M}$ for every nonzero element r in R, [4,p.35].
2.2 Examples and Remarks:

1. If M is divisible over integral domain then M is W.q.p.
2. Every quasi-prime is W.q.p but the converse is not true (see the example in the introduction).
3. Z as Z -module is W.q.p module since $\mathrm{ann}_{\mathrm{R}} \mathrm{Z}=0=\mathrm{ann}_{\mathrm{R}} r \mathrm{Z}, \forall \mathrm{r} \notin \mathrm{ann}_{\mathrm{R}} \mathrm{Z}$.
4. Z_{4} as Z -module is not W.q.p module Since $\mathrm{ann}_{\mathrm{R}} \mathrm{Z}_{4}=4 \mathrm{Z}$ and $\mathrm{ann}_{\mathrm{R}} 2 \mathrm{Z}=\operatorname{ann}_{\mathrm{R}}(\overline{2})=2 \mathrm{Z}$. Thus Z_{4} as Z -module is not W.q.p module.
5. Z_{6} as Z -module is not W.q.p module since $\operatorname{ann~}_{6}=6 \mathrm{Z}$ and $\operatorname{ann} 2 \mathrm{Z}_{6}=\operatorname{ann}(\overline{2})=3 \mathrm{Z}$, so $\mathrm{annZ}_{6} \neq$ ann $2 \mathrm{Z}_{6}$.
6. Z_{n} as Z -module is W.q.p module iff n is prime.
7. Let $\mathrm{M}=\mathrm{Z} \oplus \mathrm{Z}_{p} ; p$ is prime number is $\mathrm{W} . \mathrm{q} . \mathrm{p}$ module since annM $=$ ann $r \mathrm{M}=0$ for each $r \notin \operatorname{ann}\left(\mathrm{Z} \oplus \mathrm{Z}_{p}\right)$.
8. $Z_{p^{\infty}}$ is W.q.p module since ann $Z_{p^{\infty}}=\operatorname{ann} r Z_{p^{\infty}}=0$.

2.3 Note:

Let M be W.q.p over integral domain in R. Then every divisible submodule of W.q.p module. Recall that a proper submodule N of M is called semi-prime submodule if every $r \in$ $\mathrm{R}, x \in \mathrm{M}, k \in \mathrm{Z}_{+}$, such that $r^{k} x \in \mathrm{~N}$, then $r x \in \mathrm{~N},[4, \mathrm{p} .50]$.

2.4 Proposition:

Let M be divisible and (0) submodule of M is semi-prime submodule, then the following statements are equivalent

1. M is prime module,
2. M is q.p module,
3. M is W.q.p module.

Proof :(1) \rightarrow (2), by [2,p10]
(2) \rightarrow (3), by [2,p20]
(3) \rightarrow (1) To prove M is prime module, i.e. to show that (0) is prime submodule.

Let $r m=0, r \in \mathrm{R}, m \in \mathrm{M}$, to prove either $m=0$ or $r \in \operatorname{ann}_{\mathrm{R}} \mathrm{M}$. Suppose $r \notin \mathrm{ann}_{\mathrm{R}} \mathrm{M}$, so we must prove that $m=0$. Since $r \notin \mathrm{ann}_{\mathrm{R}} \mathrm{M}, r \mathrm{M} \neq 0$. Hence $r \mathrm{M}=\mathrm{M}$, because M is divisible. Thus $m=r m_{1}$ for some $m_{1} \in \mathrm{M}$. Since $r m=r\left(r m_{1}\right)=0$, that is $r^{2} m_{1}=0$ which implies that $r m_{1}=0$, since (0) submodule of M is semi-prime. Thus $m=0$.

2.5 Remark:

The condition in proposition 2.4 is necessary as the following example shows:
$Z_{p^{\infty}}$ is not q.p since if $\mathrm{N}=\frac{1}{p^{2}}+\mathrm{Z}$ then ann $\mathrm{N}=p^{2} \mathrm{Z}$ is not prime ideal, but $Z_{p^{\infty}}$ is W.q.p module (see the example in the introduction).

2.6 Theorem:

Let M be a module over an integral domain R and every submodule of M is divisible then ann $(r m)=$ ann (m), for each $r \notin$ ann (m).
Proof: Since $(r m) \subseteq(m)$, so
$\operatorname{ann}(m) \subseteq \operatorname{ann}(r m)$
To prove ann $(r m) \subseteq$ ann (m)
Let $x \in$ ann $(r m)$ so $x(r m)=0$. Since every submodule of M is divisible, $(r m)=(m)$ and so $x m=0$ which implies $x \in$ ann (m). Thus
$\operatorname{ann}(r m) \subseteq \operatorname{ann}(m)$
From (1) and (2), we have ann $(m)=\operatorname{ann}(r m)$, for each $r \notin$ ann (m).
Recall that an R -module M is called multiplication R -module if for every submodule N of M , there exists an ideal I of R such that $\mathrm{IM}=\mathrm{N}$.

2.7 Theorem:

Let M be multiplication W.q.p R-module. Then every submodule of M is W ,.q.p module. Proof: Let N be submodule of M , since M is multiplication R -module, so $\mathrm{N}=\mathrm{IM}$; I be ideal of ring R. To prove N is W.q.p module.
To prove $\operatorname{ann}_{R} \mathrm{~N}=\operatorname{ann}_{\mathrm{R}} r \mathrm{~N}, \forall \mathrm{r} \notin \mathrm{ann}_{\mathrm{R}} \mathrm{N}$ since $r \mathrm{~N} \subseteq \mathrm{~N}$ so
$\mathrm{ann}_{R} \mathrm{~N} \subseteq \mathrm{ann}_{\mathrm{R}} r \mathrm{~N}$
To prove $\operatorname{ann}_{R} r \mathrm{~N} \subseteq \operatorname{ann}_{\mathrm{R}} \mathrm{N}$. Let $x \in \operatorname{ann}_{R} r \mathrm{~N}$ so $x r \mathrm{~N}=0$. Since M is multiplication so there exists an ideal I of R such that $\mathrm{N}=\mathrm{IM}$. Thus $x r \mathrm{IM}=0$; that is $x \mathrm{I} \subseteq \mathrm{ann}_{\mathrm{R}} r \mathrm{M}=\operatorname{ann}_{\mathrm{R}} \mathrm{M}$, hence $x \mathrm{IM}=0$; so $x \mathrm{~N}=0$ which implies $x \in \operatorname{ann}_{\mathrm{R}} \mathrm{N}$. Thus
$\mathrm{ann}_{\mathrm{R}} r \mathrm{~N} \subseteq \mathrm{ann}_{\mathrm{R}} \mathrm{N}$
From (1) and (2) we have $a n_{R} \mathrm{~N}=\mathrm{ann}_{\mathrm{R}} r \mathrm{~N}$ so N is W.q.p module.

2.8 Prop osition:

Let M be cy clic W.q.p R-module. Then M is q.p module.
Proof: Let M be cyclic so there exist $x \in \mathrm{M} ; \mathrm{M}=(x)$, let $y \in \mathrm{M}$, to prove $\mathrm{ann}_{\mathrm{R}} y$ is prime ideal, so $y=r x ; r \in \mathrm{R}$, let $a, b \in \operatorname{ann}_{\mathrm{R}} y$, to prove either $a \in \operatorname{ann}_{\mathrm{R}} \mathrm{y}$ or $b \in \mathrm{ann}_{\mathrm{R}} y$. Since $\quad a b \in$ $\operatorname{ann}_{\mathrm{R}} y=\operatorname{ann}_{\mathrm{R}} r x$, so $a b r x=0$. Suppose $b \notin \operatorname{ann}_{\mathrm{R}} y=\operatorname{ann}_{\mathrm{R}} r x$, i.e $b r x \neq 0$, so $a b \in \operatorname{ann}_{\mathrm{R}}(r x)=\operatorname{ann}_{\mathrm{R}}(x)$, since M is W.q.p module, so $a b x=0$ which implies that $a \in \operatorname{ann}_{\mathrm{R}} \mathrm{bx}=$ $\operatorname{ann}_{\mathrm{R}}(x)$ (since M is W.q.p). Thus $a x=0$ which implies $r a x=r .0=0$ so $a \in \operatorname{ann}(r x)$ which means $a \in \operatorname{ann}_{\mathrm{R}} y$.
2.9 Theorem:

Let M be cy clic R-module then the following statements are equivalent

1. M is prime module
2. $a n n_{R} M=a n n_{R} I M ; I \nsubseteq a n n_{R} N$
3. M is W.q.p module.

Proof: To prove (1) \rightarrow (2)
It is clear by definition of prime submodules.
(2) \rightarrow (3) it is obvious.

To prove (3) \rightarrow (1), to prove M is prime module.
By proposition (2.8) we have M is q.p module which implies that $a n_{R} M$ is prime ideal, see [3,p.14] and by [3,p.8] we get M is a prime module.

2.10 Theorem:

The direct sum of two W.q.p R-module is also W.q.p R-module.
Proof: Let $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ where M_{1} and M_{2} are two W.q.p module, to prove M is W.q.p module, i.e to prove $\operatorname{ann}_{R} \mathrm{M}=\mathrm{ann}_{R} r \mathrm{M}$, for all $r \notin \mathrm{ann}_{R} \mathrm{M}$.

$$
\begin{aligned}
\operatorname{ann}_{\mathrm{R}} r \mathrm{M} & =\operatorname{ann}_{\mathrm{R}} r\left(\mathrm{M}_{1} \oplus \mathrm{M}_{2}\right) & & \\
& \left.=\operatorname{ann}_{\mathrm{R}} r \mathrm{M}_{1} \oplus r \mathrm{M}_{2}\right) & & \text {, see [2, p.80] } \\
& =\operatorname{ann}_{\mathrm{R}} r \mathrm{M}_{1} \cap \operatorname{ann}_{\mathrm{R}} r \mathrm{M}_{2} & & \text {, see [2, p.83] } \\
& =\operatorname{ann}_{\mathrm{R}} \mathrm{M}_{1} \cap \operatorname{ann}_{\mathrm{R}} \mathrm{M}_{2} & & \text {, since } \mathrm{M}_{1} \text { and } \mathrm{M}_{2} \text { are W.q.p } \\
& =\operatorname{ann}_{\mathrm{R}}\left(\mathrm{M}_{1} \oplus \mathrm{M}_{2}\right) & & \\
& =\operatorname{ann}_{\mathrm{R}} \mathrm{M} & &
\end{aligned}
$$

2.11 Corollary:

Let M be an R -module if M is $\mathrm{W} . \mathrm{q} . \mathrm{p}$ module then for any positive integer n, M^{n} is W.q.p module where M^{n} is the direct sum of n copies of M .
2.12 Remark:

Ibn Al-Hai tham Journal for Pure and Applied Sce					
No.	1	Vol.	25	Year	2012

A direct summand of W.q.p module is need not be W.q.p module.
For example: Let $\mathrm{M}=\mathrm{Z} \oplus \mathrm{Z}_{4}$ so $\mathrm{ann}_{\mathrm{R}} \mathrm{M}=\operatorname{ann}_{\mathrm{R}} r \mathrm{M} \forall r \notin \operatorname{ann}_{\mathrm{R}} \mathrm{M}$. But Z_{4} is not W.q.p module, (see remarks and examples (2.2(4)).

2.13 Theorem:

Let $\mathrm{M}_{1} ; \mathrm{M}_{2}$ then M_{1} is W.q.p iff M_{2} is W.q.p.
Proof: \Rightarrow Let $\mathrm{f}: \mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$ be 1-1 and onto and homomorphisim and M_{2} is W.q.p. To prove $\mathrm{M}_{1}=\mathrm{f}^{-1}\left(\mathrm{M}_{2}\right)$ is W.q.p module, that is to prove $\operatorname{ann}_{\mathrm{R}} \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right) \subseteq \operatorname{ann}_{\mathrm{R}} \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right) ; r \notin \operatorname{ann}_{\mathrm{R}} \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right)$, let $x \in \operatorname{ann}_{\mathrm{R}} r \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right)$ so $x r \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right)=0$ and since f^{-1} is homomorphisim so $\mathrm{f}^{-1}\left(x r \mathrm{M}_{2}\right)=\mathrm{f}^{-1}(0)$ and since f^{-1} is $1-1$ so $x r \mathrm{M}_{2}=0$ which mean $x \in \mathrm{ann}_{\mathrm{R}} r \mathrm{M}_{2}$ but M_{2} is W.q.p module and $r \notin \operatorname{ann}_{\mathrm{R}} \mathrm{M}_{2}$ then $x \mathrm{M}_{2}=0$ which implies $\mathrm{f}^{-1}\left(x \mathrm{M}_{2}\right)=\mathrm{f}^{-1}(0)$, but f^{-1} is homomorphisim so $x \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right)=0$ implies $x \in \operatorname{ann}_{\mathrm{R}} \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right)$ so
$\mathrm{ann}_{\mathrm{R}} r \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right) \subseteq \operatorname{ann}_{\mathrm{R}} \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right)$
and since $r \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right) \subseteq \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right)$, so
$\mathrm{ann}_{\mathrm{R}} \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right) \subseteq \operatorname{ann}_{\mathrm{R}} r \mathrm{f}^{-1}\left(\mathrm{M}_{2}\right)$
From (1) and (2) we have $\operatorname{ann}_{R} f^{-1}\left(M_{2}\right)=\operatorname{ann}_{R} r f^{-1}\left(M_{2}\right)$. So $f^{-1}\left(M_{2}\right)$ is W.q.p module.
\Leftarrow clearly.

2.14 Note:

The condition "isomorphism" in theorem 2.13 is necessary as the following example shows
Example: Let $\pi: Z \longrightarrow \mathrm{Z} /(4) ; \mathrm{Z}_{4}$, where Z is $\mathrm{W} . \mathrm{q} . \mathrm{p}$, but Z_{4} is not W.q.p.

It is known that, if M is an R -module and I is an ideal of R which is contained in annRM then M is R / I-module, by taking $(r+1) x=r x \forall x \in \mathrm{M}, r \in \mathrm{R}$, see [5,p.40].

Now, we give the following result.

2.15 Theorem:

Let M be an R -module and let I be an ideal of R , which is contained in $a n n_{R} \mathrm{M}$. Then M is W.q.p R-module iff M is W.q.p R/I-module.
Proof: \Rightarrow To prove M is W.q.p R/I-module, i.e. to prove $\operatorname{ann}_{R I I} M=\operatorname{ann}_{R I}(r+1) M$. Since $(r+1) \mathrm{M} \subseteq \mathrm{M}$ so
$\mathrm{ann}_{\mathrm{RII}} \mathrm{M} \subseteq \operatorname{ann}_{\mathrm{RI}}(r+1) \mathrm{M}$
To prove ann $\mathrm{RII}(r+1) \mathrm{M} \subseteq \operatorname{ann}_{\mathrm{RII}} \mathrm{M}$
Let $x \in \operatorname{ann}_{R I}(r+1) \mathrm{M}$ so $x(r+1) \mathrm{M}=0$, which implies $(x r+1) \mathrm{M}=0$ so $(x r) \mathrm{M}=0$ (by definition), so $x \in \mathrm{ann}_{\mathrm{R}} \mathrm{rM}=\mathrm{ann}_{\mathrm{R}} \mathrm{M}$ (since M is W.q.p R-module).
$x \in \operatorname{ann}_{\text {RII }} \mathrm{M}$ (since $\mathrm{I} \subseteq \mathrm{ann}_{\text {RII }} \mathrm{M}$), so
$\mathrm{ann}_{\mathrm{RII}}(r+1) \mathrm{M} \subseteq \mathrm{ann}_{\mathrm{R} I} \mathrm{M}$
From (1) and (2) we have $\mathrm{ann}_{\text {RII }} \mathrm{M}=\operatorname{ann}_{\mathrm{RII}}(r+1) \mathrm{M}$.
\Leftarrow If M is W.q.p R / I-module then M is W.q.p R-module, i.e. to prove $a \mathrm{an}_{\mathrm{R}} \mathrm{M}=a \mathrm{an}_{\mathrm{R}} r \mathrm{M}$, $\forall r \notin \mathrm{ann}_{R} \mathrm{M}$. Since $r \mathrm{M} \subseteq \mathrm{M}$ so
$\mathrm{ann}_{\mathrm{R}} \mathrm{M} \subseteq \mathrm{ann}_{\mathrm{R}} r \mathrm{M}$
To prove ann ${ }_{R} r \mathrm{M} \subseteq \operatorname{ann}_{R} \mathrm{M}$
Let $x \in \mathrm{ann}_{\mathrm{R}} r \mathrm{M}$ so $(x r) \mathrm{M}=0$ implies that $(x r+1) \mathrm{M}=0$, so $x(r+1) \mathrm{M}=0$, hence $x \in \operatorname{ann}_{\text {RII }}(r+1) \mathrm{M}=\operatorname{ann}_{\text {RII }} \mathrm{M}$ (since M is W.q.p R/I-module). Thus $x \in \operatorname{ann}_{\mathrm{RII}} \mathrm{M}$, which implies that $x \in \operatorname{ann}_{R} \mathrm{M}\left(\right.$ since $\left.\mathrm{I} \subseteq \operatorname{ann}_{R} \mathrm{M}\right)$, so
$\mathrm{ann}_{\mathrm{R}} r \mathrm{M} \subseteq \mathrm{ann}_{\mathrm{R}} \mathrm{M}$

From (1) and (2) we have $\mathrm{ann}_{\mathrm{R}} \mathrm{M}=\mathrm{ann}_{\mathrm{R}} r \mathrm{M}$.
So M is W.q.p module.
Recall that a subset S of a ring R is called multiplicatively closed if $1 \in \mathrm{~S}$ and $a \cdot b \in \mathrm{~S}$ for every $a, b \in \mathrm{~S}$. We know that every proper ideal P in R is prime if and only if $\mathrm{R}-\mathrm{P}$ is multiplicatively closed, see [4,p.42].

Let M be a module on the ring R and S be a multiplicatively closed on R such that $\mathrm{S} \neq 0$ and let R_{S} be the set of all fractional r / s where $r \in \mathrm{R}$ and $s \in \mathrm{~S}$ and M_{S} be the set of all fractional x / s where $x \in \mathrm{M}, s \in \mathrm{~S} ; x_{1} / s_{1}=x_{2} / s_{2}$ if and only if there exists $t \in \mathrm{~S}$ such that $t\left(s_{1} x_{2}-s_{2} x_{1}\right)=0$. So, can make M_{S} into R_{S}-module by setting $x / s+y / t=(t x+s y) / s t$, $r / t \cdot x / s=r x / t s$ for every $x, y \in \mathrm{M}$ and for every $r \in \mathrm{R}, s, t \in \mathrm{~S}$. If $\mathrm{S}=\mathrm{R}-\mathrm{P}$ where P is a prime ideal we use M_{P} instead of M_{S} and R_{P} instead of R_{S}. A ring in which there is only one maximal ideal is called local ring see [4,p.50], hence R_{P} is often called the localization of R, similar M_{P} is the localization of M at P . So we can define the two maps $\psi: \mathrm{R} \longrightarrow \mathrm{R}_{\mathrm{S}}$, such that $\psi(r)=r / 1, \forall r \in \mathrm{R}, \phi: \mathrm{M} \longrightarrow \mathrm{M}_{\mathrm{S}}$, such that $\phi(m)=m / 1, \forall m \in \mathrm{M}$, see [5,p.69]. Through this paper $\mathrm{S}^{-1} \mathrm{R}$ and $\mathrm{S}^{-1} \mathrm{M}$ represent R_{S} and M_{S} respectively.

2.16 Prop osition:

Let M be W.q.p R-module then $\mathrm{S}^{-1} \mathrm{M}$ is W.q.p $\mathrm{S}^{-1} \mathrm{R}$-module for each multiplicatively closed set S of R.
Proof: To prove $\operatorname{ann}_{S_{R}}^{-1} \mathrm{~S}^{-1} \mathrm{M}=\operatorname{ann}_{\mathrm{S} R}^{-1} r / t \mathrm{~S}^{-1} \mathrm{M} \forall \frac{r}{t} \notin \operatorname{ann}_{\mathrm{S}_{\mathrm{R}}}^{-1} \mathrm{~S}^{-1} \mathrm{M}$, since $r / t \mathrm{~S}^{-1} \mathrm{M} \subseteq \mathrm{S}^{-1} \mathrm{M}$ so $\operatorname{ann}_{S_{R}}^{-1} \mathrm{~S}^{-1} \mathrm{M} \subseteq \operatorname{ann}_{S_{R}}^{-1} r / t \mathrm{~S}^{-1} \mathrm{M}$
To prove $\operatorname{ann}_{S_{R}}^{-1} r / t \mathrm{~S}^{-1} \mathrm{M} \subseteq \operatorname{ann}_{S_{\mathrm{R}}^{-1}} \mathrm{~S}^{-1} \mathrm{M}$
Let $y / t^{\prime} \in \operatorname{ann}_{S_{\mathrm{R}}}^{-1} r / t \mathrm{~S}^{-1} \mathrm{M}$ so $y / t^{\prime} \cdot r / t \mathrm{~S}^{-1} \mathrm{M}=0$ which implies that $y r / t t^{\prime} \mathrm{S}^{-1} \mathrm{M}=0$ where $y r \in \mathrm{M}, t t^{\prime} \in \mathrm{S}$ so $y r / t t^{\prime} \mathrm{S}^{-1} \mathrm{M}=0$ which implies that $y r / t t^{\prime} \mathrm{M} / \mathrm{S}=0$ so $y r \mathrm{M}=0$. Hence $y \in \mathrm{ann}_{\mathrm{R}} r \mathrm{M}=\mathrm{ann}_{\mathrm{R}} \mathrm{M}$.
Since $y \in \operatorname{ann}_{R} \mathrm{M}$ so $y \mathrm{M}=0$. Thus $y \mathrm{M} / t s=0$ so $y / t \cdot \mathrm{~S}^{-1} \mathrm{M}=0, y / t \cdot \in \operatorname{ann}_{R} \mathrm{~S}^{-1} \mathrm{M}$, hence $\operatorname{ann}_{S}^{-1} r / t \mathrm{~S}^{-1} \mathrm{M} \subseteq \operatorname{ann}_{S_{R}}^{-1} \mathrm{~S}^{-1} \mathrm{M}$
From (1) and (2) we have $\operatorname{ann}_{S_{R}}^{-1} S^{-1} \mathrm{M}=\operatorname{ann}_{S_{R}}^{-1} r / t \mathrm{~S}^{-1} \mathrm{M}$, so $\mathrm{S}^{-1} \mathrm{M}$ is W.q.p module.

References:

1. AL-Bahraany, B., (1996), Note on Prime Modules and Pure Submodule, J.Science, 37, . 1431-1441.
2. Anderson, F.W. and Fuller,R.R., (1973), Rings and Categories of M module, University of Oregon.
3. Abdul Razak, H.M., (1999), Quasi Prime Module and Quasi-Prime Submodule. M.Sc. thesis, University of Baghdad.
4. Sharpe, D.W. and Vamos, P., (1972), Injective Modules, Cambridge University, press.
5. Larsen, M.D. and Mccarl, P.J., (1971), Multiplicative Theory of Ideals, Academic Press, New York.

Ibn Al-Haitham Journal for Pure and Applied Science						مجلة إبن الهيثّم للعلوم الصرفة و التطبيقية					
No.	1	Vol.	25	Year	2012	2012	السنة	25	المجلد	1	(العدد

حول الموديولات الثبهه الأوليه الضعيفة

منتهى عبد الرزاق حسن
قسم الرياضيات، كلية التربية الاساسية، الجامعة المستنصرية
استثم (البحث في: 3 نيسلان 2011 قبل البحث في: 18 تشرين الاول 2011

الخلاصة

في هذا العمل قدمتُ نعريف جديد وهو الموديولات الثبه أوليه الضعيفة. وقد برهـتُ بعض الخواص لهذا النوع من
الموديولات.

الكلمات المفتاحية: الموديول الأولي ، الموديول الشبه الأولي ، الموديول الشبه الأولي الضعيف.

