25

					-
No.	$\begin{bmatrix} 1 \end{bmatrix}$	Vol.	(25)	Year	2012

المحلد

1

العدد

On Weakly Quasi-Prime Module

2012

السنة

M. A. Hassin Department of Mathematical, College of Basic Education, University of **Al-Mustansrivah** Received in: 3 April 2011 Accepted in: 18 October 2011

Abstract

In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.

Key words: Prime module, quasi-prime module, weakly quasi-prime module.

1-Introduction

Let R be a commutative ring with unity, and let M be an R-module, we introduce that an R-module M is called weakly quasi-prime module if $\operatorname{ann}_{R}M = \operatorname{ann}_{R}rM$ for every $r \notin \operatorname{ann}_{R}M$, where $\operatorname{ann}_{\mathbb{R}}M = \{r: r \in \mathbb{R} \text{ and } rM = 0\}.$

The main purpose of this work is to investigate the properties of weakly quasi-prime modules, and we give several characterizations of weakly quasi-prime modules. Recall that an R-module is called prime if $ann_{R}M = ann_{R}N$ for every non-zero submodule N of M and $ann_{R}M = \{r: r \in R \text{ and } rM = 0\}, [1].$

A submodule N of M is said to be prime if $a m \in N$ for $a \in R, m \in M$, then either $m \in N$ or $a \in [N:M]$ where $[N:M] = \{r: r \in \mathbb{R}, rM \subset N\}, [1], [2].$

It was shown that in [1] M is prime module iff (0) is prime submodule.

The concept of quasi-prime module is introduced in [3] where an R-module M is quasi-prime module if ann_RN is prime ideal for every nonzero submodule N of M. If M is quasi-prime module then $\operatorname{ann}_{\mathbb{R}} M = \operatorname{ann}_{\mathbb{R}} r M \forall r \notin \operatorname{ann}_{\mathbb{R}} M$, [3]. But the converse is not true for example:

Let M = $Z_{p^{\infty}}$ as Z-module is not quasi-prime module since if N = $\langle 1/p^2 + z \rangle \leq Z_{p^{\infty}}$. So $\operatorname{ann}_{\mathbb{R}}\mathbb{N} = p^2 z$ is not prime ideal in Z. But $\operatorname{ann} Z_{p^{\infty}} = 0$ and $\forall r \neq 0$, let $a \in \operatorname{ann} r Z_{p^{\infty}}$ so $a r Z_{p^{\infty}} = 0$, so $a r \in \operatorname{ann} Z_{p^{\infty}}$. a r = 0, but $r \neq 0$ so a = 0 so ann $r Z_{p^{\infty}} = 0$. Then ann $Z_{p^{\infty}} = ann r Z_{p^{\infty}}$.

2- Weakly Quasi-Prime Module

In this section we introduce the concept of weakly quasi-prime module and give several results about it.

2.1 Definition:

An R-module M is called weakly quasi-prime module (briefly W.q.p) if $\operatorname{ann}_{\mathbb{R}} M = \operatorname{ann}_{\mathbb{R}} r M$ for every $r \notin \operatorname{ann}_{\mathbb{R}} M$.

Recall that if R is an integral domain, an R-module M is said to be divisible iff rM = Mfor every nonzero element r in R, [4,p.35].

2.2 Examples and Remarks:

Ibn	A l-Hai tha	m Journal	for Pure	e and Applie	ed Science		يقية	لة و التطب	م الصرف	الهيثم للعلو	مجلة إبن	
No.		Vol.	25	Year	2012	π.9	2012	السنة (25	المجلد	$\left(\begin{array}{c}1\end{array}\right)$	العدد

- 1. If M is divisible over integral domain then \overline{M} is W.q.p.
- 2. Every quasi-prime is W.q.p but the converse is not true (see the example in the introduction).
- 3. Z as Z-module is W.q.p module since $\operatorname{ann}_{R} Z = 0 = \operatorname{ann}_{R} r Z$, $\forall r \notin \operatorname{ann}_{R} Z$.
- 4. Z_4 as Z-module is not W.q.p module Since $ann_RZ_4 = 4Z$ and $ann_RZ_2 = ann_R(\overline{2}) = 2Z$. Thus Z_4 as Z-module is not W.q.p module.
- 5. Z_6 as Z-module is not W.q.p module since $annZ_6 = 6Z$ and $ann2Z_6 = ann(\overline{2}) = 3Z$, so $annZ_6 \neq ann 2Z_6$.
- 6. Z_n as Z-module is W.q.p module iff *n* is prime.
- 7. Let $M = Z \oplus Z_p$; p is prime number is W.q.p module since ann M = 0 for each $r \notin ann(Z \oplus Z_p)$.
- 8. $Z_{p^{\infty}}$ is W.q.p module since ann $Z_{p^{\infty}} = \operatorname{ann} r Z_{p^{\infty}} = 0$.

2.3 Note:

Let M be W.q.p over integral domain in R. Then every divisible submodule of W.q.p module. Recall that a proper submodule N of M is called semi-prime submodule if every $r \in$ R, $x \in$ M, $k \in Z_+$, such that $r^k x \in$ N, then $rx \in$ N, [4,p.50].

2.4 Proposition:

Let M be divisible and (0) submodule of M is semi-prime submodule, then the following statements are equivalent

- 1. M is prime module,
- 2. M is q.p module,
- 3. M is W.q.p module.

Proof :(1) \rightarrow (2), by [2,p10]

 $(2) \rightarrow (3)$, by [2,p20]

 $(3) \rightarrow (1)$ To prove M is prime module, i.e. to show that (0) is prime submodule.

Let rm = 0, $r \in \mathbb{R}$, $m \in \mathbb{M}$, to prove either m = 0 or $r \in \operatorname{ann}_{\mathbb{R}}\mathbb{M}$. Suppose $r \notin \operatorname{ann}_{\mathbb{R}}\mathbb{M}$, so we must prove that m = 0. Since $r \notin \operatorname{ann}_{\mathbb{R}}\mathbb{M}$, $r\mathbb{M} \neq 0$. Hence $r\mathbb{M} = \mathbb{M}$, because \mathbb{M} is divisible. Thus $m = rm_1$ for some $m_1 \in \mathbb{M}$. Since $rm = r(rm_1) = 0$, that is $r^2m_1 = 0$ which implies that $rm_1 = 0$, since (0) submodule of \mathbb{M} is semi-prime. Thus m = 0.

2.5 Remark:

The condition in proposition 2.4 is necessary as the following example shows:

 $Z_{p^{\infty}}$ is not q.p since if N = $\frac{1}{p^2}$ + Z then ann N = p^2 Z is not prime ideal, but $Z_{p^{\infty}}$ is

W.q.p module (see the example in the introduction).

2.6 Theorem:

Let M be a module over an integral domain R and every submodule of M is divisible then ann (rm) = ann (m), for each $r \notin ann (m)$.

...(1)

...(2)

Proof: Since
$$(rm) \subseteq (m)$$
, so

 $\operatorname{ann}(m) \subseteq \operatorname{ann}(rm)$

To prove ann $(rm) \subseteq ann (m)$

Let $x \in ann(rm)$ so x(rm) = 0. Since every submodule of M is divisible, (rm) = (m) and so xm = 0 which implies $x \in ann(m)$. Thus

$$\operatorname{ann}(rm) \subseteq \operatorname{ann}(m)$$

From (1) and (2), we have ann $(m) = \operatorname{ann}(rm)$, for each $r \notin \operatorname{ann}(m)$.

Recall that an R-module M is called multiplication R-module if for every submodule N of M, there exists an ideal I of R such that IM = N.

Ibn A	l-Hai tha	m Journal	for Pure	and Appli	ed Science		يقية	ة و التطب	م الصرف	الهيثم للعلو	مجلة إبن	
No.	$\boxed{1}$	Vol.	25	Year	2012	T.9 -	2012	السنة (25	المجلد ($\left(\begin{array}{c}1\end{array}\right)$	العدد

2.7 Theorem:

Let M be multiplication W.g.p R-module. Then every submodule of M is W.g.p module. Proof: Let N be submodule of M, since M is multiplication R-module, so N = IM; I be ideal of ring R. To prove N is W.q.p module.

To prove $\operatorname{ann}_{\mathbb{R}} N = \operatorname{ann}_{\mathbb{R}} r N$, $\forall r \notin \operatorname{ann}_{\mathbb{R}} N$ since $r N \subset N$ so $\operatorname{ann}_{\mathbb{R}}\mathbb{N} \subseteq \operatorname{ann}_{\mathbb{R}}r\mathbb{N}$

...(1)

To prove $\operatorname{ann}_{\mathbb{R}} r\mathbb{N} \subset \operatorname{ann}_{\mathbb{R}} \mathbb{N}$. Let $x \in \operatorname{ann}_{\mathbb{R}} r\mathbb{N}$ so $xr\mathbb{N} = 0$. Since M is multiplication so there exists an ideal I of R such that N = IM. Thus xrIM = 0; that is $xI \subseteq ann_R rM = ann_R M$, hence xIM = 0; so xN = 0 which implies $x \in ann_{R}N$. Thus ...(2)

 $\operatorname{ann}_{\mathbb{R}}r\mathbb{N} \subset \operatorname{ann}_{\mathbb{R}}\mathbb{N}$

From (1) and (2) we have $ann_R N = ann_R r N$ so N is W.q.p module.

2.8 Proposition:

Let M be cyclic W.q.p R-module. Then M is q.p module.

Proof: Let M be cyclic so there exist $x \in M$; M = (x), let $y \in M$, to prove ann_Ry is prime ideal, so v = rx; $r \in \mathbb{R}$, let $a, b \in \operatorname{ann}_{\mathbb{R}} v$, to prove either $a \in \operatorname{ann}_{\mathbb{R}} v$ or $b \in \operatorname{ann}_{\mathbb{R}} v$. Since *ab* ∈ $\operatorname{ann}_{R} y = \operatorname{ann}_{R} rx$, so abrx = 0. Suppose $b \notin \operatorname{ann}_{R} y = \operatorname{ann}_{R} rx$, i.e $brx \neq arx$ 0. so $ab \in \operatorname{ann}_{\mathbb{R}}(rx) = \operatorname{ann}_{\mathbb{R}}(x)$, since M is W.q.p module, so abx = 0 which implies that $a \in \operatorname{ann}_{\mathbb{R}}bx = 0$ $\operatorname{ann}_{\mathbb{R}}(x)$ (since M is W.g.p). Thus ax = 0 which implies rax = r.0 = 0 so $a \in \operatorname{ann}(rx)$ which means $a \in \operatorname{ann}_{\mathbb{R}} v$.

2.9 Theorem:

Let M be cyclic R-module then the following statements are equivalent

1. M is prime module

2. $\operatorname{ann}_{\mathbb{R}}M = \operatorname{ann}_{\mathbb{R}}IM$; $I \not\subseteq \operatorname{ann}_{\mathbb{R}}N$

3. M is W.q.p module.

Proof: To prove $(1) \rightarrow (2)$

It is clear by definition of prime submodules.

 $(2) \rightarrow (3)$ it is obvious.

To prove $(3) \rightarrow (1)$, to prove M is prime module.

By proposition (2.8) we have M is q.p module which implies that $ann_{\rm R}M$ is prime ideal, see [3,p.14] and by [3,p.8] we get M is a prime module.

2.10 Theorem:

The direct sum of two W.q.p R-module is also W.q.p R-module.

Proof: Let $M = M_1 \oplus M_2$ where M_1 and M_2 are two W.q.p module, to prove M is W.q.p module, i.e to prove $\operatorname{ann}_{\mathbb{R}}M = \operatorname{ann}_{\mathbb{R}}rM$, for all $r \notin \operatorname{ann}_{\mathbb{R}}M$.

 $\operatorname{ann}_{\mathbb{R}} r \mathbf{M} = \operatorname{ann}_{\mathbb{R}} r (\mathbf{M}_1 \oplus \mathbf{M}_2)$ $= \operatorname{ann}_{\mathbb{R}}(rM_1 \oplus rM_2)$, see [2, p.80] $= \operatorname{ann}_{\mathbb{R}} r \mathrm{M}_{1} \cap \operatorname{ann}_{\mathbb{R}} r \mathrm{M}_{2}$, see [2, p.83] $= ann_R M_1 \cap ann_R M_2$, since M_1 and M_2 are W.q.p $= \operatorname{ann}_{\mathbb{R}}(\mathbb{M}_1 \oplus \mathbb{M}_2)$ $= ann_{R}M$

2.11 Corollary:

Let M be an R-module if M is W.q.p module then for any positive integer n, Mⁿ is W.q.p module where M^n is the direct sum of *n* copies of M.

2.12 Remark:

Ibn A	l-Haitha	m Journal	for Pure a	and Applie	ed Science		قية	لله و التطبيا	م الصرف	الهيثم للعلو	جلة إبن	.)
No.	$\boxed{1}$	Vol.	25	Year	2012	л Р —)	2012	السنة (25	المجلد	$\left(\begin{array}{c}1\end{array}\right)$	العدد

A direct summand of W.q.p module is need not be W.q.p module.

For example: Let $M = Z \oplus Z_4$ so $\operatorname{ann}_R M = \operatorname{ann}_R r M \forall r \notin \operatorname{ann}_R M$. But Z_4 is not W.q.p module, (see remarks and examples (2.2(4)).

2.13 Theorem:

Let M_1 ; M_2 then M_1 is W.q.p iff M_2 is W.q.p.

Proof: \Rightarrow Let f: $M_1 \rightarrow M_2$ be 1-1 and onto and homomorphisim and M_2 is W.q.p. To prove $M_1 = f^{-1}(M_2)$ is W.q.p module, that is to prove $\operatorname{ann}_R r f^{-1}(M_2) \subseteq \operatorname{ann}_R f^{-1}(M_2)$; $r \notin \operatorname{ann}_R f^{-1}(M_2)$, let $x \in \operatorname{ann}_R r f^{-1}(M_2)$ so $xr f^{-1}(M_2) = 0$ and since f^{-1} is homomorphism so $f^{-1}(xrM_2) = f^{-1}(0)$ and since f^{-1} is 1-1 so $xrM_2 = 0$ which mean $x \in \operatorname{ann}_R rM_2$ but M_2 is W.q.p module and $r \notin \operatorname{ann}_R M_2$ then $xM_2 = 0$ which implies $f^{-1}(xM_2) = f^{-1}(0)$, but f^{-1} is homomorphism so $x f^{-1}(M_2) = 0$ implies $x \in \operatorname{ann}_R f^{-1}(M_2)$ so

 $\operatorname{ann}_{\mathbb{R}} r \operatorname{f}^{-1}(\mathbb{M}_2) \subseteq \operatorname{ann}_{\mathbb{R}} \operatorname{f}^{-1}(\mathbb{M}_2) \qquad \dots (1)$ and since $r \operatorname{f}^{-1}(\mathbb{M}_2) \subseteq \operatorname{f}^{-1}(\mathbb{M}_2)$, so

...(2)

...(1)

...(2)

...(1)

 $\operatorname{ann}_{\mathbb{R}} f^{-1}(\mathbb{M}_2) \subseteq \operatorname{ann}_{\mathbb{R}} r f^{-1}(\mathbb{M}_2)$

From (1) and (2) we have $\operatorname{ann}_{\mathbb{R}}f^{-1}(M_2) = \operatorname{ann}_{\mathbb{R}}rf^{-1}(M_2)$. So $f^{-1}(M_2)$ is W.q.p module. \Leftarrow clearly.

2.14 Note:

The condition "isomorphism" in theorem 2.13 is necessary as the following example shows

Example: Let $\pi: \mathbb{Z} \longrightarrow \mathbb{Z}/(4)$; Z₄, where Z is W.q.p, but Z₄ is not W.q.p.

It is known that, if M is an R-module and I is an ideal of R which is contained in annRM then M is R/I-module, by taking $(r + 1)x = rx \ \forall x \in M$, $r \in R$, see [5,p.40].

Now, we give the following result.

2.15 Theorem:

Let M be an R-module and let I be an ideal of R, which is contained in ann_RM . Then M is W.q.p R-module iff M is W.q.p R/I-module.

Proof: \Rightarrow To prove M is W.q.p R/I-module, i.e. to prove $\operatorname{ann}_{R/I}M = \operatorname{ann}_{R/I}(r+1)M$. Since $(r+1)M \subseteq M$ so

 $\operatorname{ann}_{R/I} M \subseteq \operatorname{ann}_{R/I}(r+1)M$

To prove $\operatorname{ann}_{R/I}(r+1)M \subseteq \operatorname{ann}_{R/I}M$

Let $x \in \operatorname{ann}_{R/I}(r + 1)M$ so x(r + 1)M = 0, which implies (xr + 1)M = 0 so (xr)M = 0 (by definition), so $x \in \operatorname{ann}_{R}rM = \operatorname{ann}_{R}M$ (since M is W.q.p R-module).

 $x \in \operatorname{ann}_{R/I} M$ (since $I \subseteq \operatorname{ann}_{R/I} M$), so $\operatorname{ann}_{R/I} (r+1) M \subset \operatorname{ann}_{R/I} M$

From (1) and (2) we have $\operatorname{ann}_{R/I}M = \operatorname{ann}_{R/I}(r+1)M$.

⇐ If M is W.q.p R/I-module then M is W.q.p R-module, i.e. to prove $ann_R M = ann_R r M$, $\forall r \notin ann_R M$. Since $rM \subseteq M$ so

 $ann_RM \subseteq ann_RrM$

To prove $\operatorname{ann}_{\mathbb{R}} r \mathbb{M} \subseteq \operatorname{ann}_{\mathbb{R}} \mathbb{M}$

Let $x \in \operatorname{ann}_{\mathbb{R}} rM$ so (xr)M = 0 implies that (xr + 1)M = 0, so x(r + 1)M = 0, hence $x \in \operatorname{ann}_{\mathbb{R}/I}(r + 1)M = \operatorname{ann}_{\mathbb{R}/I}M$ (since M is W.q.p R/I-module). Thus $x \in \operatorname{ann}_{\mathbb{R}/I}M$, which implies that $x \in \operatorname{ann}_{\mathbb{R}}M$ (since $I \subseteq \operatorname{ann}_{\mathbb{R}}M$), so $\operatorname{ann}_{\mathbb{R}} rM \subseteq \operatorname{ann}_{\mathbb{R}}M$...(2)

From (1) and (2) we have $\operatorname{ann}_{\mathbb{R}}M = \operatorname{ann}_{\mathbb{R}}rM$. So M is W.q.p module.

Recall that a subset S of a ring R is called multiplicatively closed if $1 \in S$ and $a \cdot b \in S$ for every $a, b \in S$. We know that every proper ideal P in R is prime if and only if R-P is multiplicatively closed, see [4,p.42].

Let M be a module on the ring R and S be a multiplicatively closed on R such that $S \neq 0$ and let R_S be the set of all fractional r/s where $r \in R$ and $s \in S$ and M_S be the set of all fractional x/s where $x \in M$, $s \in S$; $x_1/s_1 = x_2/s_2$ if and only if there exists $t \in S$ such that $t(s_1x_2 - s_2x_1) = 0$. So, can make M_S into R_S-module by setting x/s + y/t = (tx + sy)/st, $r/t \cdot x/s = rx/ts$ for every $x, y \in M$ and for every $r \in R$, $s, t \in S$. If S = R-P where P is a prime ideal we use M_P instead of M_S and R_P instead of R_S. A ring in which there is only one maximal ideal is called local ring, see [4,p.50], hence R_P is often called the localization of R, similar M_P is the localization of M at P. So we can define the two maps $\psi: R \longrightarrow R_S$, such that $\psi(r) = r/1$, $\forall r \in R$, $\phi: M \longrightarrow M_S$, such that $\phi(m) = m/1$, $\forall m \in M$, see [5,p.69]. Through this paper S⁻¹R and S⁻¹M represent R_S and M_S respectively.

2.16 Proposition:

Let M be W.q.p R-module then $S^{-1}M$ is W.q.p $S^{-1}R$ -module for each multiplicatively closed set S of R.

Proof: To prove $\operatorname{ann}_{S_R}^{-1} S^{-1} M = \operatorname{ann}_{S_R}^{-1} r/t S^{-1} M \quad \forall \frac{r}{t} \notin \operatorname{ann}_{S_R}^{-1} S^{-1} M$, since $r/t S^{-1} M \subseteq S^{-1} M$ so $\operatorname{ann}_{S_R}^{-1} S^{-1} M \subseteq \operatorname{ann}_{S_R}^{-1} r/t S^{-1} M$...(1)

To prove $\operatorname{ann}_{S_R}^{-1} r/t \operatorname{S}^{-1} \operatorname{M} \subseteq \operatorname{ann}_{S_R}^{-1} \operatorname{S}^{-1} \operatorname{M}$

Let $y/t' \in \operatorname{ann}_{S^R}^{-1} r/t \operatorname{S}^{-1} \operatorname{M}$ so $y/t' \cdot r/t \operatorname{S}^{-1} \operatorname{M} = 0$ which implies that $yr/tt' \operatorname{S}^{-1} \operatorname{M} = 0$ where $yr \in \operatorname{M}$, $tt' \in \operatorname{S}$ so $yr/tt' \operatorname{S}^{-1} \operatorname{M} = 0$ which implies that $yr/tt' \operatorname{M/S} = 0$ so $yr\operatorname{M} = 0$. Hence $y \in \operatorname{ann}_{R} r\operatorname{M} = \operatorname{ann}_{R} \operatorname{M}$. Since $y \in \operatorname{ann}_{R} \operatorname{M}$ so $y\operatorname{M} = 0$. Thus $y\operatorname{M/ts} = 0$ so $y/t \cdot \operatorname{S}^{-1} \operatorname{M} = 0$, $y/t \cdot \in \operatorname{ann}_{R} \operatorname{S}^{-1} \operatorname{M}$, hence

...(2)

Since $y \in \operatorname{ann}_{R}M$ so y|M = 0. Thus y|M/ts = 0 so $y/t \cdot S = 0$, $y/t \cdot \in \operatorname{ann}_{R}S = M$, hence $\operatorname{ann}_{S^{-1}R}^{-1}r/tS^{-1}M \subseteq \operatorname{ann}_{S^{-R}}^{-1}S^{-1}M$

From (1) and (2) we have $\operatorname{ann}_{S_R}^{-1} S^{-1}M = \operatorname{ann}_{S_R}^{-1} r/t S^{-1}M$, so $S^{-1}M$ is W.q.p module.

References:

- 1. AL-Bahraany, B., (1996), Note on Prime Modules and Pure Submodule, J.Science, <u>37</u>, . 1431 1441.
- Anderson, F.W. and Fuller, R.R., (1973), Rings and Categories of M module, University of Oregon.
- 3. Abdul Razak, H.M., (1999), Quasi Prime Module and Quasi-Prime Submodule. M.Sc. thesis, University of Baghdad.
- 4. Sharpe, D.W. and Vamos, P., (1972), Injective Modules, Cambridge University, press.
- 5. Larsen, M.D. and Mccarl, P.J., (1971), Multiplicative Theory of Ideals, Academic Press, New York.

Ibn Al-Haitham Journal for Pure and Applied Science	ثم للعلوم الصرفة و التطبيقية	مجلة إبن الهي
No. 1 Vol. 25 Year 2012	جلد 25 السنة 2012	العدد 1 الم

حول الموديولات الشبه الأوليه الضعيفة

منتهى عبد الرزاق حسن قسم الرياضيات، كلية التربية الاساسية، الجامعة المستنصرية استلم البحث في: 3 نيسان 2011 قبل البحث في: 18 تشرين الاول 2011

الخلاصة

في هذا العمل قدمتُ تعريف جديد وهو الموديولات الشبه أوليه الضعيفة. وقد برهنتُ بعض الخواص لهذا النوع من الموديولات.

الكلمات المفتاحية: الموديول الأولى ، الموديول الشبه الأولى ، الموديول الشبه الأولى الضعيف.

Education top