No.	1	Vol.	25	Year	2012	2012	السنة	25	المجلد	1	العدد

On Projective 3-Space Over Galo is Field

A. SH. Al-Mukhtar

Department of Mathematics, College of Education Ibn-Al-Haitham,University of Baghdad

Received in : 11 May 2011 Accepted in :16 June 2011

Abstract

The purpose of this paper is to give the definition of projective 3 -space $\operatorname{PG}(3, q)$ over Galois field $\mathrm{GF}(\mathrm{q}), \mathrm{q}=\mathrm{p}^{\mathrm{m}}$ for some prime number p and some integer m .

Also, the definition of the plane in $\operatorname{PG}(3, q)$ is given and state the principle of duality.
Moreover some theorems in $\operatorname{PG}(3, q)$ are proved.

Keywords: plane, duality, Galois field.

1- Introduction, [1,2]

A projective 3 - space $\operatorname{PG}(3, K)$ over a field K is a 3 - dimensional projective space which consists of points, lines and planes with the incidence relation between them.

The projective 3 -space satisfies the following axioms:
A. Any two distinct points are contained in a unique line.
B. Any three distinct non-collinear points, also any line and point not on the line are contained in a unique plane.
C. Any two distinct coplanar lines intersect in a unique point.
D. Any line not on a given plane intersects the plane in a unique point.
E. Any two distinct planes intersect in a unique line.

A projective space $\operatorname{PG}(3, q)$ over Galois field $G F(q), q=p^{m}$, for some prime number p and some integer m , is a 3 - dimensional projective space.

Any point in $\operatorname{PG}(3, q)$ has the form of a quadrable $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, where $x_{1}, x_{2}, x_{3}, x_{4}$ are elements in $\mathrm{GF}(\mathrm{q})$ with the exception of the quadrable consisting of four zero elements.

Two quadrables $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ represent the same point if there exists λ in $\mathrm{GF}(\mathrm{q}) \backslash\{0\}$ such that $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\lambda\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}\right)$, this is denoted by $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right) \equiv$ ($\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}$).

Similarly, any plane in $\operatorname{PG}(3, q)$ has the form of a quadrable $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, where x_{1}, x_{2}, x_{3}, x_{4} are distinct elements in GF(q) with the exception of the quadrable consisting of four zero elements.

No.	1	Vol.	25	Year	2012	201	السنة	25	(المجلد	1	العدد

Two quadrables $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ and $\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$ represent the same plane if there exists λ in $\operatorname{GF}(\mathrm{q}) \backslash\{0\}$ such that $\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right]=\lambda\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}\right]$, this is denoted by $\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right] \equiv$ $\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$..

Also a point $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is incident with the plane $\pi\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ iff $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=0$.

Definition 1.1: [2]

A plane π in $\operatorname{PG}(3, q)$ is the set of all points $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ satisfying a linear equation $u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}+u_{4} x_{4}=0$.
This plane is denoted by $\pi\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$.
It should be noted that if one takes another representation of P, say $\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}, \lambda\right.$ x_{4}), then since $u_{1} \lambda x_{1}+u_{2} \lambda x_{2}+u_{3} \lambda x_{3}+u_{4} \lambda x_{4}=\lambda\left(u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}+u_{4} x_{4}\right)$, the definition of a plane is independent of the choice of representations of points on it.

2- Principle of Duality

Definition 2.1: [3]

For any $\mathrm{S}=\operatorname{PG}(\mathrm{n}, \mathrm{K})$, there is a dual space S^{*}, whose points and primes (subspaces of dimensions ($n-1$) are respectively the primes and points of S. For any theorem true in S, there is an equivalent theorem true in S^{*}. In particular, if T is a theorem in S stated in terms of points, primes and incidence, the same theorem is true in S^{*} and gives a dual theorem T^{*} in S by interchanging "point" and "prime" whenever they occur. In $\mathrm{PG}(3, \mathrm{~K})$ point and plane are dual, where as the dual of a line is a line.

Theorem 2.2:

The points of $\operatorname{PG}(3, q)$ have unique forms which are $(1,0,0,0),(x, 1,0,0)$, $(x, y, 1,0)$, $(x, y, z, 1)$ for all x, y, z in $G F(q)$.

Proof:
Let $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) ; x_{1} ; x_{2}, x_{3}, x_{4} \in G F(q)$ be any point in $P G(3, q)$, then either $x_{4} \neq 0$ or $\mathrm{x}_{4}=0$.

If $\mathrm{x}_{4} \neq 0$, then $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right) \equiv \mathrm{P}\left(\frac{x_{1}}{x_{4}}, \frac{x_{2}}{x_{4}}, \frac{x_{3}}{x_{4}}, 1\right)$, where $x=\frac{x_{1}}{x_{4}}, y=\frac{x_{2}}{x_{4}}, z=\frac{x_{3}}{x_{4}}$.
If $x_{4}=0$, then either $x_{3} \neq 0$ or $x_{3}=0$.
If $\mathrm{x}_{3} \neq 0$, then $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, 0\right) \equiv \mathrm{P}\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}, 1,0\right)$, where $x=\frac{x_{1}}{x_{3}}, y=\frac{x_{2}}{x_{3}}$.
If $x_{3}=0$, then either $x_{2} \neq 0$ or $x_{2}=0$.
If $\mathrm{x}_{2} \neq 0$, then $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, 0,0\right) \equiv \mathrm{P}\left(\frac{x_{1}}{x_{2}}, 1,0,0\right)=\mathrm{P}(\mathrm{x}, 1,0,0)$, where $x=\frac{x_{1}}{x_{2}}$.

If $\mathrm{x}_{2}=0$, then $\mathrm{x}_{1} \neq 0$ and $\mathrm{P}\left(\mathrm{x}_{1}, 0,0,0\right) \equiv \mathrm{P}\left(\frac{x_{1}}{x_{1}}, 0,0,0\right)=\mathrm{P}(1,0,0,0)$.
Similarly, one can prove the dual of theorem 1.

Theorem 2.3:

The planes of $\operatorname{PG}(3, q)$ have unique forms which are $[1,0,0,0],[x, 1,0,0],[x, y, 1,0]$, [$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{l}$] for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in $\mathrm{GF}(\mathrm{q})$.

Theorem 2.4: [1]
Every line in $\mathrm{PG}(3, \mathrm{q})$ contains exactly $\mathrm{q}+1$ points.

Theorem 2.5: [1]

Every point in $\operatorname{PG}(3, q)$ is on exactly $\mathrm{q}+1$ lines.

The orem 2.6: [1]

Every plane in $\operatorname{PG}(3, q)$ contains exactly $\mathrm{q}^{2}+\mathrm{q}+1$ points (lines).

Theorem 2.7: [1]

Every point in $\operatorname{PG}(3, \mathrm{q})$ is on exactly $\mathrm{q}^{2}+\mathrm{q}+1$ planes.

Theorem 2.8:

There exist $\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1$ points in $\operatorname{PG}(3, q)$.

Proof :

From theorem 1, the points of $\operatorname{PG}(3,9)$ have unique forms which are $(1,0,0,0),(x, 1,0,0)$, ($x, y, 1,0$), ($x, y, z, 1$) for all x, y, z in $G F(q)$.

It is clear that there exists one point of the form $(1,0,0,0)$.
There exist q points of the form ($\mathrm{x}, 1,0,0$).
There exist q^{2} points of the form ($\mathrm{x}, \mathrm{y}, 1,0$).
There exist q^{3} points of the form ($\mathrm{x}, \mathrm{y}, \mathrm{z}, 1$).
Similarly, one can prove the dual of theorem 2.8.

Theorem 2.9:

There exist $\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1$ planes in $\operatorname{PG}(3, \mathrm{q})$.

Theorem 2.10:

Any two planes in $\mathrm{PG}(3, \mathrm{q})$ intersect in exactly $\mathrm{q}+1$ points.

Proof

By axiom E, since any two planes intersect in a unique line and each line in $\operatorname{PG}(3, q)$ contains exactly $q+1$ points, then any two planes intersect in exactly $q+1$ points.

Theorem 2.11:

Any line in $\operatorname{PG}(3, \mathrm{q})$ is on exactly $\mathrm{q}+1$ planes.

Proof :

Let 1 be any line in $\operatorname{PG}(3, q)$ and m be another line in $\operatorname{PG}(3, q)$ not coplanar with $1 . m$ contains exactly $\mathrm{q}+1$ points. By axiom $\mathrm{B}, 1$ determines a unique plane with any point of m . Hence there exist $q+1$ planes through 1 . If there exists another plane through 1 , then this plane intersects m in another point which is a contradiction. Hence 1 is on exactly $\mathrm{q}+1$ planes.

Theorem 2.12:

Any two points in $\mathrm{PG}(3, \mathrm{q})$ are on exactly $\mathrm{q}+1$ planes.

Proof :

Since any two points determine a unique line and by theorem 10, then every line is on exactly $\mathrm{q}+1$ planes.

Theorem 2.13:

There exist $\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ lines in $P G(3, q)$.

Proof :

In $\mathrm{PG}(3, \mathrm{q})$, there exist $\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1$ planes, and each plane contains exactly $\mathrm{q}^{2}+\mathrm{q}+1$ lines, then the numbers of lines is equal to $\left(q^{3}+q^{2}+q+1\right)\left(q^{2}+q+1\right)$, but each line is on $\mathrm{q}+1$ planes, then there exist exactly $\frac{\left(q^{3}+q^{2}+q+1\right)\left(q^{2}+q+1\right)}{(q+1)}=\left(q^{2}+1\right)\left(q^{2}+q+1\right)$ lines in $\operatorname{PG}(3, q)$.

Now, some theorems on projective 3-space $\mathrm{PG}(3, \mathrm{q})$ can be proved.

Theorem 2.14:

Four distinct points $A\left(x_{1}, x_{2}, x_{3}, x_{4}\right), B\left(y_{1}, y_{2}, y_{3}, y_{4}\right), C\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$, and $D\left(w_{1}, w_{2}, w_{3}\right.$, w_{4}) are coplanar iff
$\Delta=\left|\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{1} & z_{2} & z_{3} & z_{4} \\ w_{1} & w_{2} & w_{3} & w_{4}\end{array}\right|=0$

Proof :

Let $\pi\left[u_{1}, u_{2}, u_{3}, u_{4}\right]$ be a plane containing the points A, B, C, D, then
$x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}+x_{4} u_{4}=0$
$y_{1} u_{1}+y_{2} u_{2}+y_{3} u_{3}+y_{4} u_{4}=0$
$z_{1} u_{1}+z_{2} u_{2}+z_{3} u_{3}+z_{4} u_{4}=0$
$\mathrm{w}_{1} \mathrm{u}_{1}+\mathrm{w}_{2} \mathrm{u}_{2}+\mathrm{w}_{3} \mathrm{u}_{3}+\mathrm{w}_{4} \mathrm{u}_{4}=0$
It is known from the linear algebra that this system of equations have non zero solutions for $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}$ iff $\Delta=0$. Thus the necessary and sufficient conditions for four points to be coplanar that $\Delta=0$.

No.	1	Vol.	25	Year	2012	201	السنة	25	المجلد	1	العدا

Corollary 2.15:

If four distinct points in $\operatorname{PG}(3, q) A\left(x_{1}, x_{2}, x_{3}, x_{4}\right), B\left(y_{1}, y_{2}, y_{3}, y_{4}\right), C\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$, and $\mathrm{D}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)$ are collinear, then $\Delta=0$.

This follows from theorem 2.14 and the incidence of these points on a line of some plane.

From the principle of duality, one can prove:

Theorem 2.16:

Four distinct planes in $\operatorname{PG}(3, q) A\left[x_{1}, x_{2}, x_{3}, x_{4}\right], B\left[y_{1}, y_{2}, y_{3}, y_{4}\right], C\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$, and $D\left[w_{1}, w_{2}, w_{3}, w_{4}\right]$ are concurrent (intersecting in one point) iff

$$
\Delta=\left|\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4} \\
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right|=0
$$

Theorem 2.17:

The equation of the plane determined by three distinct points $A\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$, $\mathrm{B}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}\right)$, and $\mathrm{C}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)$ is

$$
\left|\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4} \\
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right|=
$$

$$
\left|\begin{array}{ccc}
y_{2} & y_{3} & y_{4} \\
z_{2} & z_{3} & z_{4} \\
w_{2} & w_{3} & w_{4}
\end{array}\right| x_{1}+\left|\begin{array}{ccc}
y_{3} & y_{1} & y_{4} \\
z_{3} & z_{1} & z_{4} \\
w_{3} & w_{1} & w_{4}
\end{array}\right| x_{2}+\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{4} \\
z_{1} & z_{2} & z_{4} \\
w_{1} & w_{2} & w_{4}
\end{array}\right| x_{3}+\left|\begin{array}{ccc}
y_{3} & y_{2} & y_{1} \\
z_{3} & z_{2} & z_{1} \\
w_{3} & w_{2} & w_{1}
\end{array}\right| x_{4}=0
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be any variable point on the plane, and it's coordinates are:

$$
\left[\left|\begin{array}{ccc}
y_{2} & y_{3} & y_{4} \\
z_{2} & z_{3} & z_{4} \\
w_{2} & w_{3} & w_{4}
\end{array}\right|,\left|\begin{array}{lll}
y_{3} & y_{1} & y_{4} \\
z_{3} & z_{1} & z_{4} \\
w_{3} & w_{1} & w_{4}
\end{array}\right|,\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{4} \\
z_{1} & z_{2} & z_{4} \\
w_{1} & w_{2} & w_{4}
\end{array}\right|,\left|\begin{array}{ccc}
y_{3} & y_{2} & y_{1} \\
z_{3} & z_{2} & z_{1} \\
w_{3} & w_{2} & w_{1}
\end{array}\right|\right]
$$

Similarly, one can prove the dual of this theorem.

Theorem 2.18:

The equation of the point determined by three distinct planes (non-collinear) in PG(3,q) $\mathrm{a}\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}\right], \mathrm{b}\left[\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}\right]$, and $\mathrm{c}\left[\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right]$ is

$$
\left|\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4} \\
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right|=
$$

Journal for Pure and Applied Scie						الـ					
No.	1	Vol.	25	Year	2012	201	السنه	25	ال-	1	
$\left\|\begin{array}{lll} y_{2} & y_{3} & y_{4} \\ z_{2} & z_{3} & z_{4} \\ w_{2} & w_{3} & w_{4} \end{array}\right\| x_{1}+\left\|\begin{array}{ccc} y_{3} & y_{1} & y_{4} \\ z_{3} & z_{1} & z_{4} \\ w_{3} & w_{1} & w_{4} \end{array}\right\| x_{2}+\left\|\begin{array}{ccc} y_{1} & y_{2} & y_{4} \\ z_{1} & z_{2} & z_{4} \\ w_{1} & w_{2} & w_{4} \end{array}\right\| x_{3}+\left\|\begin{array}{ccc} y_{3} & y_{2} & y_{1} \\ z_{3} & z_{2} & z_{1} \\ w_{3} & w_{2} & w_{1} \end{array}\right\| x_{4}=0$											

where $\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right]$ be any variable plane passing through the point, and it's coordinates are:

$$
\left(\left|\begin{array}{ccc}
y_{2} & y_{3} & y_{4} \\
z_{2} & z_{3} & z_{4} \\
w_{2} & w_{3} & w_{4}
\end{array}\right|,\left|\begin{array}{ccc}
y_{3} & y_{1} & y_{4} \\
z_{3} & z_{1} & z_{4} \\
w_{3} & w_{1} & w_{4}
\end{array}\right|,\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{4} \\
z_{1} & z_{2} & z_{4} \\
w_{1} & w_{2} & w_{4}
\end{array}\right|,\left|\begin{array}{ccc}
y_{3} & y_{2} & y_{1} \\
z_{3} & z_{2} & z_{1} \\
w_{3} & w_{2} & w_{1}
\end{array}\right|\right)
$$

Notation 2.19:

If v is the vector with components $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, then the symbol $P(v)$ means that the coordinates of the point P are $\left(\mathrm{a}_{1}, a_{2}, a_{3}, a_{4}\right)$ in a projective 3 -space $\mathrm{S}=\mathrm{PG}(3, K)$.

Definition 2.20:[3]

The points $\mathrm{P}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{i}}\right)$, with $\mathrm{i}=1, \ldots, \mathrm{~m}$ are linearly dependent or independent according as the vectors v_{i} are linearly dependent or independent.

Definition 2.21:[3]

If the points $P_{1}, P_{2}, \ldots, P_{m}$ are linearly dependent, then at least one of the c_{i} 's of the equation $\sum_{i=1}^{m} c_{i} \mathrm{P}_{i}\left(v_{i}\right)=0$ is not equal to zero, say c_{1}, then $\mathrm{P}_{1}=\frac{-1}{c_{1}}\left(\mathrm{c}_{2} \mathrm{P}_{2}+\mathrm{c}_{3} \mathrm{P}_{3}+\cdots+\mathrm{c}_{\mathrm{m}} \mathrm{P}_{\mathrm{m}}\right)$. The point P_{1} is then said to be a linear combination of the points $\mathrm{P}_{2}, \mathrm{P}_{3}, \ldots, \mathrm{P}_{\mathrm{m}}$.

This definition may be dualized by replacing the word "point" by the word "plane", and the geometric meaning of linear dependence of points or planes may now be given.

Theorem 2.22:

Two points (planes) in $\operatorname{PG}(3, q)$ are linearly dependent iff they coincide.

Proof :

Let P and Q be any two p oints. If P and Q are linearly dependent, then there exist c_{1} and c_{2} such that $\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \neq(0,0), \mathrm{c}_{1} \mathrm{P}+\mathrm{c}_{2} \mathrm{Q}=\theta$.

If $\mathrm{c}_{1}=0$, then $\mathrm{c}_{2} \mathrm{Q}=\theta$.
This implies $c_{2}=0$, since $\mathrm{Q} \neq(0,0,0)$. Then $\mathrm{c}_{1} \neq 0$ and similarly $\mathrm{c}_{2} \neq 0, \mathrm{P}=\frac{-\mathrm{c}_{2}}{\mathrm{c}_{1}} \mathrm{Q}$.
This means that P and Q coincide. If P and Q are coincide, then there exist $c_{1} \neq 0, c_{2} \neq 0$ s.t. $c_{1} \mathrm{P}=\mathrm{c}_{2} \mathrm{Q}$.

Hence, $\mathrm{c}_{1} \mathrm{P}-\mathrm{c}_{2} \mathrm{Q}=\theta$ and thus P and Q are linearly dependent.

Theorem 2.23:

Four points in $\operatorname{PG}(3, q)$ are linearly dependent iff they are coplanar.

Proof :

No.	1	Vol.	25	Year	2012	2012	السنه	25	المجلد	1	1

Let $A\left(x_{1}, x_{2}, x_{3}, x_{4}\right), B\left(y_{1}, y_{2}, y_{3}, y_{4}\right), C\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$, and $D\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ be any four points in S. If A, B, C, D are linearly dependent, then there exist c_{1}, c_{2}, c_{3} and c_{4} in K such that $\left(c_{1}, c_{2}, c_{3}, c_{4}\right) \neq(0,0,0,0)$ and $c_{1} A+c_{2} B+c_{3} C+c_{4} D=\theta$
$c_{1} A+c_{2} B+c_{3} C+c_{4} D=c_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+c_{2}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)+c_{3}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)+$ $\mathrm{c}_{4}\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)=(0,0,0,0)$
$\mathrm{c}_{1} \mathrm{x}_{1}+\mathrm{c}_{2} \mathrm{y}_{1}+\mathrm{c}_{3} \mathrm{z}_{1}+\mathrm{c}_{4} \mathrm{w}_{1}=0$
$\mathrm{c}_{1} \mathrm{x}_{2}+\mathrm{c}_{2} \mathrm{y}_{2}+\mathrm{c}_{3} \mathrm{z}_{2}+\mathrm{c}_{4} \mathrm{w}_{2}=0$
$\mathrm{c}_{1} \mathrm{x}_{3}+\mathrm{c}_{2} \mathrm{y}_{3}+\mathrm{c}_{3} \mathrm{Z}_{3}+\mathrm{c}_{4} \mathrm{w}_{3}=0$
$\mathrm{c}_{1} \mathrm{x}_{4}+\mathrm{c}_{2} \mathrm{y}_{4}+\mathrm{c}_{3} \mathrm{z}_{4}+\mathrm{c}_{4} \mathrm{w}_{4}=0$

This system has non zero solutions for $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}$ iff
$\Delta=\left|\begin{array}{llll}x_{1} & y_{1} & z_{1} & w_{1} \\ x_{2} & y_{2} & z_{2} & w_{2} \\ x_{3} & y_{3} & z_{3} & w_{3} \\ x_{4} & y_{4} & z_{4} & w_{4}\end{array}\right|=\left|\begin{array}{cccc}x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{1} & z_{2} & z_{3} & z_{4} \\ w_{1} & w_{2} & w_{3} & w_{4}\end{array}\right|=0$
by theorem 2.14 the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar.
Conversely, if the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar, then
$\Delta=\left|\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{1} & z_{2} & z_{3} & z_{4} \\ w_{1} & w_{2} & w_{3} & w_{4}\end{array}\right|=0$, then $\left|\begin{array}{llll}x_{1} & y_{1} & z_{1} & w_{1} \\ x_{2} & y_{2} & z_{2} & w_{2} \\ x_{3} & y_{3} & z_{3} & w_{3} \\ x_{4} & y_{4} & z_{4} & w_{4}\end{array}\right|=0$.
So the system (1) of equations has non zero solutions for $c_{1}, c_{2}, c_{3}, c_{4}$. Thus A, B, C, D are linearly dependent.

Theorem 2.24:

Any five points (planes) in $\mathrm{PG}(3, q)$ in S are linearly dependent.

Proof :

Let $\mathrm{A}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right), \mathrm{B}\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}\right), \mathrm{C}\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right), \mathrm{D}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \mathrm{~d}_{4}\right)$ and
$E\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be any five points in S. Let a $A+b B+c C+d D+e E=\theta$
$a\left(a_{1}, a_{2}, a_{3}, a_{4}\right)+b\left(b_{1}, b_{2}, b_{3}, b_{4}\right)+c\left(c_{1}, c_{2}, c_{3}, c_{4}\right)+d\left(d_{1}, d_{2}, d_{3}, d_{4}\right)+e\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=\theta$
$a a_{1}+b b_{1}+c c_{1}+d d_{1}+e e_{1}=0$
$a \mathrm{a}_{2}+\mathrm{b} \mathrm{b}_{2}+\mathrm{cc}_{2}+\mathrm{dd}_{2}+e e_{2}=0$
$a a_{3}+b b_{3}+c c_{3}+d d_{3}+e e_{3}=0$
$\mathrm{a}_{4}+\mathrm{b} \mathrm{b}_{4}+\mathrm{cc}_{4}+\mathrm{dd}_{4}+e e_{4}=0$
This system of 4 linear homogeneous equations in 5 unknowns $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e has non trivial solutions since $4<5$. Then A, B, C, D, E are linearly dependent.

In $P G(3, q)$ if $P_{1}, P_{2}, \ldots, P_{m}$ are linearly independent points while $P_{1}, P_{2}, \ldots, P_{m+1}$ are linearly dependent, then the coordinates of the points may be chosen so that $\mathrm{P}_{1}+\mathrm{P}_{2}+\cdots+\mathrm{P}_{\mathrm{m}}=\mathrm{P}_{\mathrm{m}+1}$.

Proof :

Since the points $P_{1}, P_{2}, \ldots, P_{m+1}$ are linearly dependent, constants $c_{1}, c_{2}, \ldots, c_{m+1} \neq$ $0,0, \ldots, 0$ exist such that
$\mathrm{c}_{1} \mathrm{P}_{1}\left(\mathrm{v}_{1}\right)+\mathrm{c}_{2} \mathrm{P}_{2}\left(\mathrm{v}_{2}\right)+\cdots+\mathrm{c}_{\mathrm{m}} \mathrm{P}_{\mathrm{m}}\left(\mathrm{v}_{\mathrm{m}}\right)+\mathrm{c}_{\mathrm{m}+1} \mathrm{P}_{\mathrm{m}+1}\left(\mathrm{v}_{\mathrm{m}+1}\right)=\theta$.
Now, $\mathrm{c}_{\mathrm{m}}+1 \neq 0$, for otherwise the points $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{m}}$ would be dependent contrary to hypothesis. The equation may, therefore, be solved for $\mathrm{P}_{\mathrm{m}+1}$ giving

$$
\begin{aligned}
\mathrm{P}_{\mathrm{m}+1} & =-\frac{1}{\mathrm{c}_{\mathrm{m}+1}}\left[\mathrm{c}_{1} \mathrm{P}_{1}\left(\mathrm{v}_{1}\right)+\cdots+\mathrm{c}_{\mathrm{m}} \mathrm{P}_{\mathrm{m}}\left(\mathrm{v}_{\mathrm{m}}\right)\right] \\
& =\mathrm{k}_{1} \mathrm{P}_{1}\left(\mathrm{v}_{1}\right)+\cdots+\mathrm{k}_{\mathrm{m}} \mathrm{P}_{\mathrm{m}}\left(\mathrm{v}_{\mathrm{m}}\right) \\
& =\mathrm{P}_{1}\left(\mathrm{k}_{1} \mathrm{v}_{1}\right)+\cdots+\mathrm{P}_{\mathrm{m}}\left(\mathrm{k}_{\mathrm{m}} \mathrm{v}_{\mathrm{m}}\right)
\end{aligned}
$$

where $k_{i}=\frac{-c_{i}}{c_{m+1}}, \mathrm{i}=1, \ldots, \mathrm{~m}$ or dropping the symbols $\mathrm{k}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}, \mathrm{P}_{\mathrm{m}+1}=\mathrm{P}_{1}+\mathrm{P}_{2}+\cdots+\mathrm{P}_{\mathrm{m}}$.

Theorem 2.26:

In $\mathrm{PG}(3, \mathrm{q})$ a point D is on the plane determined by three distinct points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ iff D is a linear combination of $\mathrm{A}, \mathrm{B}, \mathrm{C}$.

Proof :

If D is on the plane determined by three distinct points, then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar. By theorem (5), they are linearly dependent, there exist constants a, b, c, d such that not all of them are zero and $\mathrm{a} \mathrm{A}+\mathrm{bB}+\mathrm{c} \mathrm{C}+\mathrm{d} \mathrm{D}=\theta$.
If $\mathrm{d}=0$, then $\mathrm{a} A+b \mathrm{~B}+\mathrm{c} \mathrm{C}=\theta$, which implies that $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$, since $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are linearly independent, which is a contradiction. Since any three noncollinear points in the plane are linearly independent, [3]. So $d \neq 0$, and then
$\mathrm{D}=\left(\frac{-a}{d}\right) \mathrm{A}+\left(\frac{-b}{d}\right) \mathrm{B}+\left(\frac{-c}{d}\right) \mathrm{C}$
Thus D is a linear combination of A, B, C. Suppose D is a linear combination of A, B, C, then there exist constants c_{1}, c_{2}, c_{3} not all of them are zero such that:
$\mathrm{D}=\mathrm{c}_{1} \mathrm{~A}+\mathrm{c}_{2} \mathrm{~B}+\mathrm{c}_{3} \mathrm{C}$, which implies $\mathrm{c}_{1} \mathrm{~A}+\mathrm{c}_{2} \mathrm{~B}+\mathrm{c}_{3} \mathrm{C}+(-1) \mathrm{D}=\theta$, then it follows that A , B, C, D are linearly dependent. By theorem (5), the points A, B, C, D are coplanar.

References

1. Al-Mukhtar, A.Sh. (2008) Complete Arcs and Surfaces in three Dimensional Projective Space Over Galois Field, Ph.D. Thesis, University of Technology, Iraq.
2. Kirdar,M.S. and Al-Mukhtar, A.Sh. (2009) Engineering and Technology Journal, On Projective 3-Space, Vol.27(8):

Ibn Al-Haitham Journal for Pure and Applied Scie					
No.	1	Vol.	25	Year	2012

3. Hirschfeld, J. W. P. (1998) Projective Geometries Over Finite Fields, Second Edition, Oxford University Press.

حول الفضاء الثلاثي الاسقاطي حول حقل كالوا

آمال شهاب المختار
قسم الرياضيات ، كلية التربية - ابن الهيثم ، جامعة بغداد

استلم البحث في : 11 آيار 2011 قبل البحث في :16 حزيران 2011

، GF(q) الغـرض مـن هـا البحث هـو إعطــاء تعريف الفضاء الثثلاثي الاسـقاطي PG(3,q) فـي حقـل كـالوا
 مبدأ الثنائية وبرهنت بعض المبرهنات في C بي
(الكلمات المفتاحية : مستوي ، مبدأ الثائية ، حقل كالوا .

