The Construction and Reverse Construction of the Complete Arcs in the Projective 3-Space Over Galois Field GF(2)

A. SH. Al-Mukhtar
 Department of Mathematics-Ibn-Al-Haitham College of Education - University of Baghdad

Received in : 11 May 2011 Accepted in : 16 June 2011

Abstract

The main purpose of this work is to find the complete arcs in the projective 3 -space over Galois field GF(2), which is denoted by PG(3,2), by two methods and then we compare between the two methods.

Keywords: arcs, secant, quadrable.

Introduction, [1,2]

A projective space $\operatorname{PG}(3, q)$ over Galois field $G F(q), q=p^{m}$, for some prime number p and some integer m , is a 3 - dimensional projective space.

Any point in $\operatorname{PG}(3, q)$ has the form of a quadrable $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, where $x_{1}, x_{2}, x_{3}, x_{4}$ are elements in $\mathrm{GF}(\mathrm{q})$ with the exception of the quadrable consisting of four zero elements.

Two quadrables $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ represent the same point if there exists λ in $\operatorname{GF}(\mathrm{q}) \backslash\{0\}$ such that $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\lambda\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}\right)$, this is denoted by $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right) \equiv$ ($\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}$).

Similarly, any plane in $\operatorname{PG}(3, q)$ has the form of a quadrable $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, where x_{1}, x_{2}, x_{3}, x_{4} are elements in $G F(q)$ with the exception of the quadrable consisting of four zero elements.

Two quadrables $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ and $\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$ represent the same plane if there exists λ in $\mathrm{GF}(\mathrm{q}) \backslash\{0\}$ such that $\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right]=\lambda\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}\right]$, this is denoted by $\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right] \equiv$ $\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$..

Also a point $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is incident with the plane $\pi\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ iff $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=0$.

Every line in $\operatorname{PG}(3, q)$ contains $q+1$ points and every point is on exactly $q+1$ lines._Any plane in $\operatorname{PG}(3, q)$ contains exactly $\mathrm{q}^{2}+\mathrm{q}+1$ points and $\mathrm{q}^{2}+\mathrm{q}+1$ lines. Every point is on $\mathrm{q}^{2}+$ $\mathrm{q}+1 \mathrm{p}$ lanes and is on $\mathrm{q}^{2}+\mathrm{q}+1$ lines.

Moreover PG(3,q) contains exactly $q^{3}+q^{2}+q+1$ points and also contains exactly $\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}+1$ planes.

Definition 1: [1,3]

A $(k, n)-\operatorname{arc} A$ in $\operatorname{PG}(3, q)$ is a set of k points such that at most n points of which lie in any plane, $n \geq 3$. n is called the degree of the $(k, n)-\operatorname{arc}$.

Ibn Al-Haitham Journal for Pure and Applied Science						مجلة إبن الهيثم للعلوم الصرفة و التطبيقية					
No.	1	Vol.	25	Year	201	201	السنة	25	لالمجلد	1	د12

Definition 2: [1,3]

In $\mathrm{PG}(3, \mathrm{q})$, if A is any (k, n) - arc, then an (n -secant) of A is a plane π such that $|\pi \cap \mathrm{A}|=\mathrm{n}$.

Definition 3: $[1,3]$

Let T_{i} be the total number of the $\mathrm{i}-$ secants of $\mathrm{a}(\mathrm{k}, \mathrm{n})-\operatorname{arc} \mathrm{A}$, then the type of A denoted by ($\mathrm{T}_{\mathrm{n}}, \mathrm{T}_{\mathrm{n}-1}, \ldots, \mathrm{~T}_{0}$).

Definition 4: $[1,3]$

Let $\left(k_{1}, n\right)-\operatorname{arc} A$ is of type $\left(T_{n}, \ldots, T_{0}\right)$ and $\left(k_{2}, n\right)-\operatorname{arc} B$ is of type $\left(S_{n}, \ldots, S_{0}\right)$, then A and B are projectively equivalent iff $T_{i}=S_{i}$.

Definition 5: [1,3]

If a point N not on a (k, n)-arc A has index i iff there are exactly $\mathrm{i}(\mathrm{n}$-secants) of A through N , one can denote the number of points N of index i by C_{i}.

Definition 6:

If (k, n)-arc A is not contained in any $(k+1, n)$-arc, then A is called a complete (k, n)-arc.

Remark:

From definition 5, it is concluded that the $(\mathrm{k}, \mathrm{n})-\operatorname{arc}$ is complete iff $\mathrm{C}_{0}=0$.
Thus the (k, n)-arc is complete iff every point of $\mathrm{PG}(3, \mathrm{q})$ lies on some n -secant of the (k,n)-arc.

1- The Construction of Complete (k, n)-Arcs in PG(3,2)

1.1 The Construction of Complete ($\mathbf{k}, \mathbf{3}$)-arcs in PG(3,2):

$\operatorname{PG}(3, q)$ contains 15 points and 15 planes such that each point is on 7 planes and every plane contains 7 points (see table 1).

The set $\mathrm{A}=\{1,2,3,4,13\}$ is taken which is the set of unit and reference points: $1(1,0,0,0), 2(0,1,0,0), 3(0,0,1,0), 4(0,0,0,1), 13(1,1,1,1)$. This set contains five points no four of them are on a plane since A intersects any plane in at most three points. Thus A is a $(5,3)$-arc.

A is a complete $(5,3)$ - arc since every point of $\mathrm{PG}(3,2)$ not in A is on a 3 -secant; that is, there are no points of index zero for A . This is equivalent to $\mathrm{C}_{0}=0$.

1.2 The Construction of Complete $(k, 4)$ - arcs in $\operatorname{PG}(\mathbf{3 , 2})$:

The distinct ($k, 4$) -arcs can be constructed by adding to A in each time one point from the remaining ten points of $\operatorname{PG}(3,2)$ as follows:
$A_{1}=A \cup\{5\}, A_{2}=A \cup\{6\}, A_{3}=A \cup\{7\}, A_{4}=A \cup\{8\}, A_{5}=A \cup\{9\}, A_{6}=A \cup\{10\}, A_{7}=A \cup\{11\}$, $\mathrm{A}_{8}=\mathrm{A} \cup\{12\}, \mathrm{A}_{9}=\mathrm{A} \cup\{14\}, \mathrm{A}_{10}=\mathrm{A} \cup\{15\}$.

By definition 4 of projectively equivalent (k, n) - arcs, there is only one $(6,4)-\operatorname{arc}$ since the $\operatorname{arcs} \mathrm{A}_{1}, \ldots, \mathrm{~A}_{10}$ are projectively equivalent.
For $T_{0}=0, T_{1}=2, T_{2}=3, T_{3}=6, T_{4}=4$. Thus we have $B=A \cup\{5\}=\{1,2,3,4,5,13\}$ is a complete $(6,4)$ - arc, since every point not in B is on a $4-$ secant and B intersects any plane in at most 4 points, that is $\mathrm{C}_{0}=0$.

Ibn Al-Haitham Journal for Pure and Applied Science						مجلة إبن الهيثم للعلوم الصرفة و التطبيقية					
No.	1	Vol.	25	Year	201	2012	السنة	25	لالمجلد	1	د12

1.3 The Construction of Complete (k,5) - arcs in PG(3,2) :

The arc B is a complete $(6,4)-\operatorname{arc}$. The distinct $(k, 5)-\operatorname{arcs}$ can be constructed by adding to B in each time one of the remaining nine points as follows:
$\mathrm{B}_{1}=\mathrm{B} \cup\{6\}, \mathrm{B}_{2}=\mathrm{B} \cup\{7\}, \mathrm{B}_{3}=\mathrm{B} \cup\{8\}, \mathrm{B}_{4}=\mathrm{B} \cup\{9\}, \mathrm{B}_{5}=\mathrm{B} \cup\{10\}, \mathrm{B}_{6}=\mathrm{B} \cup\{11\}, \mathrm{B}_{7}=\mathrm{B} \cup\{12\}$, $\mathrm{B}_{8}=\mathrm{B} \cup\{14\}, \mathrm{B}_{9}=\mathrm{B} \cup\{15\}$.

By definition 4, there are only two projectively distinct $(7,5)-\operatorname{arcs}$ since the $\operatorname{arcs} B_{1}, B_{4}$, $\mathrm{B}_{5}, \mathrm{~B}_{7}, \mathrm{~B}_{8}, \mathrm{~B}_{9}$ are projectively equivalent, for $\mathrm{T}_{0}=0, \mathrm{~T}_{1}=1, \mathrm{~T}_{2}=2, \mathrm{~T}_{3}=5, \mathrm{~T}_{4}=6, \mathrm{~T}_{5}=1$ and the arcs : B_{2}, B_{3}, B_{6} are projectively equivalent, for : $T_{0}=0, T_{1}=0, T_{2}=4, T_{3}=5, T_{4}=4, T_{5}=2$. Thus we have two projectively distinct $(7,5)-\operatorname{arcs} \mathrm{C}=\mathrm{B} \cup\{6\}=\{1,2,3,4,5,6,13\}, \mathrm{D}=\mathrm{B} \cup\{7\}$ $=\{1,2,3,4,5,7,13\}$.

We try to show the completeness of these arcs. Each of C and D is not complete since there exist some points of index zero.

We take the union of C and D. Then $E=C \cup D=\{1,2,3,4,5,6,7,13\}, E$ is incomplete $(8,5)-\operatorname{arc}$ since there exists one point of index zero for E, which is the point (15).

We add the point (15) to E, we obtain a complete (9,5) - arc F, $\mathrm{F}=\mathrm{E} \cup\{15\}=\{1, \ldots, 7,13,15\}$. Thus every point not in F is on a ($5-$ secant) and F intersects any plane in at most 5 points.

1.4 The Construction of Complete $(k, 6)-\operatorname{arcs}$ in $\operatorname{PG}(\mathbf{3 , 2})$:

The arc $F=\{1, \ldots, 7,13,15\}$ is a complete $(9,5)-$ arc. The distinct $(k, 6)-\operatorname{arcs}$ can be constructed by adding to F in each time one of the remaining six points, then: $\mathrm{F}_{1}=\mathrm{F} \cup\{8\}, \mathrm{F}_{2}=\mathrm{F} \cup\{9\}, \mathrm{F}_{3}=\mathrm{F} \cup\{10\}, \mathrm{F}_{4}=\mathrm{F} \cup\{11\}, \mathrm{F}_{5}=\mathrm{F} \cup\{12\}, \mathrm{F}_{6}=\mathrm{F} \cup\{14\}$.

By the definition 4, there are only two projectively distinct arcs since the $\operatorname{arcs} \mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{5}$, F_{6} are projectively equivalent, For $T_{0}=T_{1}=T_{2}=0, T_{3}=2, T_{4}=4, T_{5}=6, T_{6}=3$ and the arcs F_{3} and F_{4} are projectively equivalent, for $\mathrm{T}_{0}=\mathrm{T}_{1}=2, \mathrm{~T}_{3}=2, \mathrm{~T}_{4}=4, \mathrm{~T}_{5}=7, \mathrm{~T}_{6}=2$. Thus we have two projectively distinct $(10,6)-\operatorname{arcs} \mathrm{G}_{1}=\{1,2,3,4,5,6,7,8,13,15\}, \mathrm{G}_{2}=\{1,2,3,4,5,6,7,11,13,15\}$ each of them is incomplete since there exist some points of index zero. We take the union of G_{1} and $G_{2} . G=G_{1} \cup G_{2}=\{1,2,3,4,5,6,7,8,11,13,15\} . G$ is incomplete $(11,6)-\operatorname{arc}$ since there exists one point of index zero, which is the point (9), then $\mathrm{H}=\mathrm{G} \cup\{9\}=\{1, \ldots, 9,11,13,15\}$.
H is a complete $(12,6)$ - arc, since every point not in H is on a $6-$ secant and H intersects any plane in at most 6 points.

1.5 The Construction of Complete ($k, 7$) - arcs in $\operatorname{PG}(3,2)$:

The arc $\mathrm{H}=\{1, \ldots, 9,11,13,15\}$ is a complete (12,6) - arc. Adding all the remaining points to H , The complete $(15,7)$ - arc can be obtained which is the maximal arc since it contains all points of $\operatorname{PG}(3,2)$, (see figure (1)).

2- The Reverse Construction of Complete (k,n)-Arcs in PG(3,2):

Complete (k, n) - arcs in $\operatorname{PG}(3,2)$ can be constructed by eliminating some points from the comp lete arcs of degree m , where $\mathrm{m}=\mathrm{n}+1,3 \leq \mathrm{n} \leq 6$, through the following steps:

2.1 The complete $(k, 7)$ - arc in $\operatorname{PG}(3,2)$:

The projective space PG $(3,2)$ contains 15 points and 15 planes, each plane contains exactly 7 points, then the maximal complete $(k, 7)-\operatorname{arc} A$ exists when $k=15$. This arc contains all the points of $\operatorname{PG}(3,2)$ since it intersects every plane in exactly 7 points and hence there arc no points of index zero for A . So $\mathrm{A}=\{1, \ldots, 15\}$ is the complete $(15,7)-\operatorname{arc}$.

2.2 The Construction of Complete ($\mathbf{k}, 6$) - arc in $\operatorname{PG}(\mathbf{3 , 2})$:

A complete $(k, 6)-\operatorname{arc} B$ is constructed from the complete $(15,7)-\operatorname{arc}$ A by eliminating some points from A such that:

1. B intersects any plane in at most 6 points.

Ibn Al-Haitham Journal for Pure and Applied Science						مجلة إبن الهيثم للعلوم الصرفة و التطبيقية					
No.	1	Vol.	25	Year	201	201	السنة	25	لالمجلد	1	د12

2. every point not in B is on at least one $6-$ secant of B.

The points $1,2,5$ are eliminated from A, we obtain a complete $(12,6)-\operatorname{arc} B$, since there are no points of index zero for $B . B=\{3,4,6, \ldots, 15\}$.

2.3 The Construction of Complete $(k, 5)$ - arc in $\operatorname{PG}(3,2)$:

A complete $(k, 5)-\operatorname{arc}$ in PG $(3,2)$ can be constructed from the complete $(12,6)-\operatorname{arc} \mathrm{B}$ by eliminating some points from B , which are: $3,6,9$.
Then a complete $(9,5)-$ arc C is obtained, $\mathrm{C}=\{4,7,8,10,11,12,13,14,15\}$ since each point not in C is on at least one 5 - secant, hence there are no points of index zero for C and C intersects any plane of $\mathrm{PG}(3,2)$ in at most 5 points.

2.4 The Construction of Complete $(k, 4)$ - arc in $\operatorname{PG}(3,2)$:

A complete $(k, 4)$ - arc in $P G(3,2)$ can be constructed from the complete $(9,5)-\operatorname{arc} C$ by eliminating three points from C, which are the points $4,7,10$, then a complete $(6,4)-\operatorname{arc} D$ is obtained, $D=\{8,11,12,13,14,15\}$ since each point not in D is on at least one 4 -secant of D and hence there are no points of index zero and D intersects each plane in at most 4 points.

2.5 The Construction of Complete $(\mathbf{k}, 3)$ - arc in $\operatorname{PG}(\mathbf{3}, 2)$:

A complete $(k, 3)-\operatorname{arc}$ in $P G(3,2)$ can be constructed from the complete $(6,4)-\operatorname{arc} D$ by eliminating one point from D , which is the point : 15 .
A complete $(5,3)-\operatorname{arc} E$ is obtained, $E=\{8,11,12,13,14\}$ since each point not in E is on at least one 3 -secant, hence there are no points of index zero for E and E intersects each plane in at most 3 points.
See figure (2).

3- Results and Conclusion

From the previous results of the two methods, we found that there is no differences between them, the numbers of the points of the complete (k, n) $-\operatorname{arcs}$ in the two methods given in table (2).

References

1. Al-Mukhtar, A.Sh. (2008) Complete Arcs and Surfaces in three Dimensional Projective Space Over Galois Field, Ph.D. Thesis, University of Technology, Iraq.
2. Hirschfeld, J. W. P. (1998) Projective Geometries Over Finite Fields, Second Edition, Oxford University Press.
3. Mohammed, S. K. and Al-Mukhtar, A. Sh. (2009) Engineering and Technology Journal, On Projective 3-Space, Vol.27(8):

Table (1):The Points P_{i} and Planes π_{i} of $\operatorname{PG}(3,2)$

i	P_{i}	π_{i}						
1	$(1,0,0,0)$	2	3	4	6	7	10	12
2	$(0,1,0,0)$	1	3	4	7	9	14	15
3	$(0,0,1,0)$	1	2	4	5	8	10	15
4	$(0,0,0,1)$	1	2	3	5	6	9	11
5	$(1,1,0,0)$	3	4	5	7	8	11	13
6	$(0,1,1,0)$	1	4	6	11	12	13	15
7	$(0,0,1,1)$	1	2	5	7	12	13	14
8	$(1,1,0,1)$	3	5	10	11	12	14	15
9	$(1,0,1,0)$	2	4	9	10	11	13	14
10	$(0,1,0,1)$	1	3	8	9	10	12	13
11	$(1,1,1,0)$	4	5	6	8	9	12	14
12	$(0,1,1,1)$	1	6	7	8	10	11	14
13	$(1,1,1,1)$	5	6	7	9	10	13	15
14	$(1,0,1,1)$	2	7	8	9	11	12	15
15	$(1,0,0,1)$	2	3	6	8	13	14	15

Table (2):The Maximum (k,n)-arcs in Two Methods

n	maximum (k,n)- arcs in the first method	maximum (k,n)- arcs in the second method
3	5	5
4	6	6
5	9	9
6	12	12
7	15	15

Fig. (1):All complete $\left(k_{n}, n\right)-\operatorname{arcs}$ in $P G(3,2), 3 \leq n \leq 7$

Fig. (2):All complete $\left(k_{n}, n\right)-\operatorname{arcs}$ in $P G(3,2), 3 \leq n \leq 7$, by reverse construction

No.	1	Vol.	25	Year	2012

البناء والبناء العكسي للكأقواس الكاملة للفضاء الثلاثي الاسقاطي حول حقل كالوا GF(2)

آمال شهاب المختار
قسم الرياضيات ، كلية التربية - ابن الهيثّم ، جامعة بغادل

استلم البحث في : 11 آيار 2011 قبل البحث في :16 خزيران 2011

الخلاصة

الهنف الاساسي من هذا البحث هو ايجاد الاقواس الكاملة في الفضاء الثاثي الاسقاطي حول حقل كالوا
والذي يرمز له (PG(3.2)، بطريقتني ومن ثم نقارن بين الطريقتنّن.

