The Construction and Reverse Construction of the Complete Arcs in the Projective 3-Space Over Galois Field GF(2)

A. SH. Al-Mukhtar

Department of Mathematics-Ibn-Al-Haitham College of Education - University of Baghdad

Received in : 11 May 2011 Accepted in : 16 June 2011

Abstract

The main purpose of this work is to find the complete arcs in the projective 3-space over Galois field GF(2), which is denoted by PG(3,2), by two methods and then we compare between the two methods.

Keywords: arcs, secant, quadrable.

Introduction, [1,2]

A projective space PG(3,q) over Galois field GF(q), $q = p^m$, for some prime number p and some integer m, is a 3 – dimensional projective space.

Any point in PG(3,q) has the form of a quadrable (x_1, x_2, x_3, x_4) , where x_1, x_2, x_3, x_4 are elements in GF(q) with the exception of the quadrable consisting of four zero elements.

Two quadrables (x_1, x_2, x_3, x_4) and (y_1, y_2, y_3, y_4) represent the same point if there exists λ in GF(q) \ {0} such that $(x_1, x_2, x_3, x_4) = \lambda (y_1, y_2, y_3, y_4)$, this is denoted by $(x_1, x_2, x_3, x_4) = (y_1, y_2, y_3, y_4)$.

Similarly, any plane in PG(3,q) has the form of a quadrable $[x_1, x_2, x_3, x_4]$, where x_1, x_2, x_3, x_4 are elements in GF(q) with the exception of the quadrable consisting of four zero elements.

Two quadrables $[x_1, x_2, x_3, x_4]$ and $[y_1, y_2, y_3, y_4]$ represent the same plane if there exists λ in GF(q)\{0} such that $[x_1, x_2, x_3, x_4] = \lambda [y_1, y_2, y_3, y_4]$, this is denoted by $[x_1, x_2, x_3, x_4] = [y_1, y_2, y_3, y_4]$.

Also a point P(x₁, x₂, x₃, x₄) is incident with the plane π [a₁, a₂, a₃, a₄] iff a₁ x₁ + a₂ x₂ + a₃ x₃ + a₄ x₄ = 0.

Every line in PG(3,q) contains q + 1 points and every point is on exactly q + 1 lines. Any plane in PG(3,q) contains exactly $q^2 + q + 1$ points and $q^2 + q + 1$ lines. Every point is on $q^2 + q + 1$ planes and is on $q^2 + q + 1$ lines.

Moreover PG(3,q) contains exactly $q^3 + q^2 + q + 1$ points and also contains exactly $q^3 + q^2 + q + 1$ points and also contains exactly

Definition 1: [1,3]

A (k,n) – arc A in PG(3,q) is a set of k points such that at most n points of which lie in any plane, $n \ge 3$. n is called the degree of the (k,n) – arc.

Definition 2: [1,3]

In PG(3,q), if A is any (k,n) – arc, then an (n-secant) of A is a plane π such that $|\pi \cap A| = n$.

Definition 3: [1,3]

Let T_i be the total number of the *i* – secants of a (k,n) – arc A, then the type of A denoted by $(T_n, T_{n-1}, ..., T_0)$.

Definition 4: [1,3]

Let (k_1,n) – arc A is of type $(T_n, ..., T_0)$ and (k_2,n) – arc B is of type $(S_n, ..., S_0)$, then A and B are projectively equivalent iff $T_i = S_i$.

Definition 5: [1,3]

If a point N not on a (k,n)-arc A has index i iff there are exactly i(n - secants) of A through N, one can denote the number of points N of index i by C_i.

Definition 6:

If (k,n)-arc A is not contained in any (k + 1,n)-arc, then A is called a complete (k,n)-arc.

Remark:

From definition 5, it is concluded that the (k,n)-arc is complete iff $C_0 = 0$.

Thus the (k,n)-arc is complete iff every point of PG(3,q) lies on some n-secant of the (k,n)-arc.

1- The Construction of Complete (k,n)-Arcs in PG(3,2)

1.1 The Construction of Complete (k,3)-arcs in PG(3,2):

PG(3,q) contains 15 points and 15 planes such that each point is on 7 planes and every plane contains 7 points (see table 1).

The set $A = \{1, 2, 3, 4, 13\}$ is taken which is the set of unit and reference points: 1(1,0,0,0), 2(0,1,0,0), 3(0,0,1,0), 4(0,0,0,1), 13(1,1,1,1). This set contains five points no four of them are on a plane since A intersects any plane in at most three points. Thus A is a (5,3)-arc.

A is a complete (5,3) – arc since every point of PG(3,2) not in A is on a 3-secant; that is, there are no points of index zero for A. This is equivalent to $C_0 = 0$.

1.2 The Construction of Complete (k,4) – arcs in PG(3,2) :

The distinct (k,4) –arcs can be constructed by adding to A in each time one point from the remaining ten points of PG(3,2) as follows:

 $A_1 = A \cup \{5\}, A_2 = A \cup \{6\}, A_3 = A \cup \{7\}, A_4 = A \cup \{8\}, A_5 = A \cup \{9\}, A_6 = A \cup \{10\}, A_7 = A \cup \{11\}, A_8 = A \cup \{12\}, A_9 = A \cup \{14\}, A_{10} = A \cup \{15\}.$

By definition 4 of projectively equivalent (k,n) – arcs, there is only one (6,4) – arc since the arcs A_1, \ldots, A_{10} are projectively equivalent.

For $T_0=0$, $T_1=2$, $T_2=3$, $T_3=6$, $T_4=4$. Thus we have $B=A \cup \{5\}=\{1,2,3,4,5,13\}$ is a complete (6,4) – arc, since every point not in B is on a 4 – secant and B intersects any plane in at most 4 points, that is $C_0 = 0$.

1.3 The Construction of Complete (k,5) – arcs in PG(3,2) :

The arc B is a complete (6,4) – arc. The distinct (k,5) – arcs can be constructed by adding to B in each time one of the remaining nine points as follows:

 $B_1=B\cup\{6\}, B_2=B\cup\{7\}, B_3=B\cup\{8\}, B_4=B\cup\{9\}, B_5=B\cup\{10\}, B_6=B\cup\{11\}, B_7=B\cup\{12\}, B_8=B\cup\{14\}, B_9=B\cup\{15\}.$

By definition 4, there are only two projectively distinct (7,5) – arcs since the arcs B_1 , B_4 , B_5 , B_7 , B_8 , B_9 are projectively equivalent, for $T_0=0$, $T_1=1$, $T_2=2$, $T_3=5$, $T_4=6$, $T_5=1$ and the arcs : B_2 , B_3 , B_6 are projectively equivalent, for : $T_0=0$, $T_1=0$, $T_2=4$, $T_3=5$, $T_4=4$, $T_5=2$. Thus we have two projectively distinct (7,5) – arcs $C=B\cup\{6\}=\{1,2,3,4,5,6,13\}$, $D=B\cup\{7\}=\{1,2,3,4,5,7,13\}$.

We try to show the completeness of these arcs. Each of C and D is not complete since there exist some points of index zero.

We take the union of C and D. Then $E=C\cup D=\{1,2,3,4,5,6,7,13\}$, E is incomplete (8,5) – arc since there exists one point of index zero for E, which is the point (15).

We add the point (15) to E, we obtain a complete (9,5) – arc F, $F=E\cup\{15\}=\{1,\ldots,7,13,15\}$. Thus every point not in F is on a (5 – secant) and F intersects any plane in at most 5 points.

1.4 The Construction of Complete (k,6) – arcs in PG(3,2) :

The arc $F = \{1, ..., 7, 13, 15\}$ is a complete (9,5) – arc. The distinct (k,6) – arcs can be constructed by adding to F in each time one of the remaining six points, then: $F = F_{12}(9)$, $F = F_{12}(10)$, $F = F_{12}(11)$, $F = F_{12}(12)$, $F = F_{12}(14)$.

 $F_1 = F \cup \{8\}, F_2 = F \cup \{9\}, F_3 = F \cup \{10\}, F_4 = F \cup \{11\}, F_5 = F \cup \{12\}, F_6 = F \cup \{14\}.$

By the definition 4, there are only two projectively distinct arcs since the arcs F_1 , F_2 , F_5 , F_6 are projectively equivalent, For $T_0=T_1=T_2=0$, $T_3=2$, $T_4=4$, $T_5=6$, $T_6=3$ and the arcs F_3 and F_4 are projectively equivalent, for $T_0=T_1=2$, $T_3=2$, $T_4=4$, $T_5=7$, $T_6=2$. Thus we have two projectively distinct (10,6) – arcs $G_1=\{1,2,3,4,5,6,7,8,13,15\}$, $G_2=\{1,2,3,4,5,6,7,11,13,15\}$ each of them is incomplete since there exist some points of index zero. We take the union of G_1 and G_2 . $G=G_1\cup G_2=\{1,2,3,4,5,6,7,8,11,13,15\}$. G is incomplete (11,6) – arc since there exists one point of index zero, which is the point (9), then $H=G\cup\{9\}=\{1,\ldots,9,11,13,15\}$.

H is a complete (12,6) – arc, since every point not in H is on a 6 – secant and H intersects any plane in at most 6 points.

1.5 The Construction of Complete (k,7) – arcs in PG(3,2) :

The arc H = $\{1, \dots, 9, 11, 13, 15\}$ is a complete (12, 6) – arc. Adding all the remaining points to H, The complete (15,7) – arc can be obtained which is the maximal arc since it contains all points of PG(3,2), (see figure (1)).

2- The Reverse Construction of Complete (k,n)-Arcs in PG(3,2):

Complete (k,n) – arcs in PG(3,2) can be constructed by eliminating some points from the complete arcs of degree m, where m = n + 1, $3 \le n \le 6$, through the following steps:

2.1 The complete (k,7) – arc in PG(3,2) :

The projective space PG (3,2) contains 15 points and 15 planes, each plane contains exactly 7 points, then the maximal complete (k,7) – arc A exists when k = 15. This arc contains all the points of PG(3,2) since it intersects every plane in exactly 7 points and hence there arc no points of index zero for A. So A = $\{1, ..., 15\}$ is the complete (15,7) – arc.

2.2 The Construction of Complete (k,6) – arc in PG(3,2) :

A complete (k,6) – arc B is constructed from the complete (15,7) – arc A by eliminating some points from A such that:

1. B intersects any plane in at most 6 points.

Ibn Al-Haitham Journal f	or Pure and Applie	لتطبيقية	وم الصرفة و اا	الهيثم للعل	جلة إبن		
No. 1 Vol.	25 Year	2012	ټر 2012	25 السنا	المجلد	$\boxed{1}$	العدد

2. every point not in B is on at least one 6 – secant of B.

The points 1, 2, 5 are eliminated from A, we obtain a complete (12,6) – arc B, since there are no points of index zero for B. B = {3, 4, 6, ..., 15}.

2.3 The Construction of Complete (k,5) – arc in PG(3,2) :

A complete (k,5) – arc in PG (3,2) can be constructed from the complete (12,6) – arc B by eliminating some points from B, which are: 3,6,9.

Then a complete (9,5) – arc C is obtained, C = {4, 7, 8, 10, 11, 12, 13, 14, 15} since each point not in C is on at least one 5 – secant, hence there are no points of index zero for C and C intersects any plane of PG(3,2) in at most 5 points.

2.4 The Construction of Complete (k,4) – arc in PG(3,2) :

A complete (k,4) – arc in PG(3,2) can be constructed from the complete (9,5) – arc C by eliminating three points from C, which are the points 4, 7, 10, then a complete (6,4) – arc D is obtained, D = {8, 11, 12, 13, 14, 15} since each point not in D is on at least one 4 – secant of D and hence there are no points of index zero and D intersects each plane in at most 4 points.

2.5 The Construction of Complete (k,3) – arc in PG(3,2) :

A complete (k,3) – arc in PG(3,2) can be constructed from the complete (6,4) – arc D by eliminating one point from D, which is the point : 15.

A complete (5,3) – arc E is obtained, E = {8, 11, 12, 13, 14} since each point not in E is on at least one 3 – secant, hence there are no points of index zero for E and E intersects each plane in at most 3 points.

See figure (2).

3- Results and Conclusion

From the previous results of the two methods, we found that there is no differences between them, the numbers of the points of the complete (k,n) – arcs in the two methods given in table (2).

References

- 1. Al-Mukhtar, A.Sh. (2008) Complete Arcs and Surfaces in three Dimensional Projective Space Over Galois Field, Ph.D. Thesis, University of Technology, Iraq.
- 2. Hirschfeld, J. W. P. (1998) Projective Geometries Over Finite Fields, Second Edition, Oxford University Press.
- Mohammed, S. K. and Al-Mukhtar, A. Sh. (2009) Engineering and Technology Journal, On Projective 3-Space, Vol.27(8):

Ibn Al-Haitham Journal for Pure and Applied Science						بيقية	فة و التط	وم الصر	الهيثم للعلو	يلة إبن	M.	
No.	$\boxed{1}$	Vol.	25	Year	2012	π 9 -	2012	السنة	25	المجلد	$\left(\begin{array}{c}1\end{array}\right)$	العدد

i	P _i				π_{i}			
1	(1,0,0,0)	2	3	4	6	7	10	12
2	(0,1,0,0)	1	3	4	7	9	14	15
3	(0,0,1,0)	1	2	4	5	8	10	15
4	(0,0,0,1)	1	2	3	5	6	9	11
5	(1,1,0,0)	3	4	5	7	8	11	13
6	(0,1,1,0)	1	4	6	11	12	13	15
7	(0,0,1,1)	1	2	5	7	12	13	14
8	(1,1,0,1)	3	5	10	11	12	14	15
9	(1,0,1,0)	2	4	9	10	11	13	14
10	(0,1,0,1)	1	3	8	9	10	12	13
11	(1,1,1,0)	4	5	6	8	9	12	14
12	(0,1,1,1)	1	6	7	8	10	11	14
13	(1,1,1,1)	5	6	7	9	10	13	15
14	(1,0,1,1)	2	7	8	9	11	12	15
15	(1,0,0,1)	2	3	6	8	13	14	15

Table (1): The Points P_i and Planes π_i of PG(3,2)

Table (2): The Maximum (k,n)-arcs in Two Methods

n	maximum (k,n)– arcs in the first method	maximum (k,n)– arcs in the second method					
3	5	5					
4	6	6					
5	9	9					
6	12	12					
7	15	15					

Fig. (2):All complete (k_n,n) – arcs in PG(3,2), $3 \le n \le 7$, by reverse construction

Ibn Al-Haitham Journal for Pure and Applied Science						يقية	فة و التطب	م الصر	الهيثم للعلو	بلة إبن	-	
No.	$\boxed{1}$	Vol.	25	Year	2012	л . Р	2012	السنة	25	المجلد	$\left(\begin{array}{c}1\end{array}\right)$	العدد

البناء والبناء العكسي للأقواس الكاملة للفضاء الثلاثي الاسقاطي حول حقل كالوا (GF(2

آمال شهاب المختار قسم الرياضيات ، كلية التربية – ابن الهيثم ، جامعة بغداد

استلم البحث في : 11 آيار 2011 قبل البحث في : 16 حزيران 2011

الخلاصة

الهدف الاساسي من هذا البحث هو ايجاد الاقواس الكاملة في الفضاء الثلاثي الاسقاطي حول حقل كالوا (GF(2)،

والذي يرمز له (PG(3.2، بطريقتين ومن ثم نقارن بين الطريقتين.