| Ibn Al-Haitham Journal for Pure and Applied Science | مجلة إبن الهيثم للعلوم الصرفة و التطبيقية |
|-----------------------------------------------------|-------------------------------------------|
| No. 1 Vol. 25 Year 2012                             | العدد 1 المجلد 25 السنة 2012              |

L-pre and L-semi-p

مجموعات مفتوحة من النوع

سعاد جدعان جاسم قسم الرياضيات ، كلية التربية – إبن الهيثم ، جامعة بغداد

استلم البحث في : 24 تشرين الثاني 2010 قبل البحث في : 8 آب 2011

الخلاصة

الغرض من هذا البحث دراسة انواع جديدة من المجموعات المفتوحة في الفضاءات التبولوجية الثنائية .

Les All dell

| Ibn Al-Haitham Journal for Pure and Applied Science |             |      |    |      |      |              | قية  | لة و التطبيا | م الصرة | ، الهيثم للعلو | جلة إبن                                     | •     |
|-----------------------------------------------------|-------------|------|----|------|------|--------------|------|--------------|---------|----------------|---------------------------------------------|-------|
| No.                                                 | $\boxed{1}$ | Vol. | 25 | Year | 2012 | л <b>у</b> – | 2012 | السنة (      | 25      | المجلد         | $\left(\begin{array}{c}1\end{array}\right)$ | العدد |

# L-pre-open and L-semi-p-open Sets

## S. G. Gasim

Department of Mathematics, College of Education Ibn-Al-Haitham, University of Baghdad

## Received in: 24 November 2010 Accepted in: 8 February 2011

## Abstract

The purpose of this paper is to study new types of open sets in bitopological spaces. We shall introduce the concepts of L- pre-open and L-semi-p-open sets.

Keywords : pre- open- set, semi- p- open - set, L-pre-open, L-semi-p-open

## **1-Introduction**

Navalagi [1] introduced the concepts of pre-open and semi-P-open sets. A subset A of a topological space  $(X,_{\mathcal{T}})$  is said to be "pre-open" set if and only if  $A \subseteq \operatorname{int} cl(A)$ , the family of all pre open subsets of X is denoted by PO(X). The complement of a pre-open set is called pre-closed set, the family of all pre- closed subsets of X is denoted by PC(X) [1]. The smallest pre- closed subset of X containing A is called "pre-closure of A" and is denoted by pre-cl(A)[2].

Let  $(X, \tau)$  be a topological space, a subset A of X is said to be "semi-P-open" set if

and only if there exists a pre-open subset U of X such that  $U \subseteq A \subseteq pre-cl(U)$ , the family of all semi –p-open subsets of X is denoted by SPO(X). The complement of a semi-p-open set is called "semi-p-closed" set, the family of all semi-p-closed subsets of X is denoted by SPC(x). The smallest semi-p-closed set containing A is called semi-p-closure of A denoted by semi-p-cl(A)[3].[2]shows that every open set is a pre-open and the union of any family of preopen subsets of X is a pre-open set, but the intersection of any two pre-open subsets of X need not be apre-open set.[3] shows that every pre-open set is a semi –p-open and consequentiy every open set is a semi-p-open. Also she shows that the union of any family of semi-p-open subsets of X is a semi-p-open set, but the intersection of any two semi-p-open subsets of X need not be a semi-p-open set.

The concepts of bitopological space was initiated by Kelly[4]. A set X equipped with two topologies  $\tau_1$  and  $\tau_2$  is called a bitopological space denoted by  $(X, \tau_1, \tau_2)$ .

L-open set was studied by Al-swid[5], asubset G of a bitopological space  $(X, \tau_1, \tau_2)$ is said to be "L –open" set if and only if there exists a  $\tau_1$ -open set U such that  $U \subseteq G \subseteq cl \tau_2(U)$ , the family of all L-open subsets of X is denoted by L-O(X). The complement of an L-open set is called "L-closed" set, the family of all L-closed subsets of X is denoted by L-C(X). In a bitopological space  $(X, \tau_1, \tau_2)$  every  $\tau_1$ -open set is an L-open set[5]. The union of any family of L-open subsets of X is an L-open set, but the intersection of any two L-open subsets of X need not be L-open set[5]. Al-Talkahny [6], introduces two new concepts "L- $T_2$  -spaces" and "L-continuous functions". A bitopological space  $(X, \tau_1, \tau_2)$  is

| C | Ibn Al-Haitham Journal for Pure and Applied Science |             |      |    |      |      |      | يقية | ة و التطب | م الصرف | الهيثم للعلو | مجلة إبن    |       | ) |
|---|-----------------------------------------------------|-------------|------|----|------|------|------|------|-----------|---------|--------------|-------------|-------|---|
| [ | No.                                                 | $\boxed{1}$ | Vol. | 25 | Year | 2012 | 万岁 - | 2012 | السنة     | 25      | المجلد       | $\boxed{1}$ | العدد |   |

said to be "L- $T_2$  -space" if and only if for each pair of distinct points x and y in X, there exists two disjoint L-open subsets G and H of X such that  $x \in G$  and  $y \in H$ . Let  $(X, \tau_1, \tau_2), (Y, \tau_1', \tau_2')$  be any bitopological spaces and let  $f: X \to Y$  be any function, then f is said to be "L-continuous" function if and only if the inverse image of any L-open subset of Y is an L-open subset of X.

#### 2- L-pre-open and L-semi-P-open Sets

#### **Definition 2.1**

Let  $(X, \tau_1, \tau_2)$  be a bitopological space and let G be a subset of X. then G is said to be:

- 1- "L-pre-open" set if and only if there exists a  $\tau_1$ -pre-open set U such that  $U \subseteq G \subseteq cl \tau_2(U)$  the family of all L-pre-open sub sets of X is denoted by L PO(X).
- 2- "L-semi-P-open" set if and only if there exists a  $\tau_1$  semi-P-open setU such that  $U \subseteq G \subseteq cl\tau_2(U)$  the family of all L- semi-P-open sub sets of X is denoted by L SPO(X).

## Remark(2.2):

- 1- The complement of an L-pre-open subset of a bitopological space X is called an L-pre-closed set. The family of all L- pre-closed sub sets of X is denoted by L PC(X).
- 2- The complement of an L-semi-P-open sub set of a bitopological space X is called an L-semi-P-closed set. The family of all L- semi-P-closed sub sets of X is denoted by L - SPC(X).

## **Remark (2.3):**

In a bitopological space  $(X, \tau_1, \tau_2)$ :

- 1- Every L-open set is an L-pre-open set.
- 2- Every L-pre-open set is an L-semi-P-open set.
- 3- Every L-open set is an L-semi-P-open set.

The converse of each case of remark (2.3) is not true in general as the following example shows:

## Example (2.4):

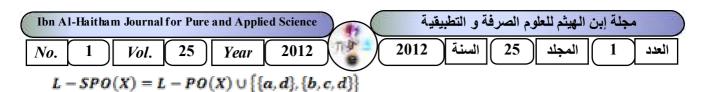
Let 
$$X = \{a, b, c, d\}$$

$$\tau_1 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$$

 $\tau_2 = D$  = the discrete topology

Then  $L - O(X) = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ 

 $L - po(X) = L - O(X) Y \{\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, d\}, \{a, c, d\}\}$ 



Note that, **(b)** is an L-pre-open set, but it is not L- open. And **(a, d)** is an L-semi-P-open set but it is neither L-pre-open nor L-open.

#### Remark(2.5)

In a bitopological space  $(X, \tau_1, \tau_2)$ :

- 1- Every  $\mathbf{r}_1$ -pre-open set is an L-pre-open set.
- 2- Every T<sub>1</sub>-semi- p-open set is an L-semi-p-open set.

The opposite direction of each case in remark (2.5) is not true in general, as the following example shows: +AN

#### Example (2.6):

Let 
$$X = \{a, b, c, d\}$$
  $\tau_1 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ 

= I = the indiscrete topology

$$\tau_{1} - po(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\}\}$$
$$\tau_{1} - SPO(X) = \tau_{1} - PO(X) \cup \{\{a, d\}, \{b, c, d\}\}$$
$$L - PO(X) = \tau_{1} - PO(X) \vee \{\{a, d\}, \{b, d\}, \{c, d\}, \{b, c, d\}\}$$
$$L - SPO(X) = L - PO(X)$$

Note that,  $\{a,d\}$  is an L-pre-open set, but it is not  $\tau_1$ -pre-open. And  $\{b,d\}$  is an L-semi-Popen set but it is notr<sub>1</sub> -semi-P-open.

#### **Proposition (2.7):**

The union of any family of L -pre-open (L-semi-P-open) subsets of a bitopological space  $(X, \tau_1, \tau_2)$  is an L -pre-open (L-semi-P-open) respectively.

#### **Proof:**

Let  $\{G_{\alpha} : \alpha \in \Lambda\}$  be a family of L -pre-open (L-semi-P-open) subsets of X, then for each  $G_{\alpha}$  there exists a  $\tau_1$ -pre-open( $\tau_1$ -semi- p-open) set  $U_{\alpha}$  in X such that

$$U_{\alpha} \subseteq G_{\alpha} \subseteq cl \tau_{2}(U_{\alpha}).$$
 So  $\underset{\alpha \in \Lambda}{\mathbf{Y}} U_{\alpha} \subseteq \underset{\alpha \in \Lambda}{\mathbf{Y}} G_{\alpha} \subseteq \underset{\alpha \in \Lambda}{\mathbf{Y}} cl \tau_{2}(U_{\alpha}) = cl \tau_{2}(\underset{\alpha \in \Lambda}{\mathbf{Y}} U_{\alpha}).$  But  $\underset{\alpha \in \Lambda}{\mathbf{Y}} U_{\alpha}$ 

is a  $\tau_1$ -pre-open( $\tau_1$ -semi- p-open).Hence  $Y U_{\alpha}$  is an L-pre-open (L-semi-P-open)

respectively.

#### **Remark (2.8):**

The intersection of any two L -pre-open (L-semi-P-open) sets need not be L -pre-open (L-semi-P-open) respectively.

For example

Ibn Al-Haitham Journal for Pure and Applied Science

Vol.

25

مجلة إبن الهيثم للعلوم الصرفة و التطبيقية

المحلد

1

العدد

25

$$X = \{1, 2, 3, 4\}$$
  
Let  $\tau_{1} = \{X, \phi, \{1\}, \{4\}, \{1, 4\}\}$   
 $\tau_{2} = \{X, \phi, \{1, 2\}\}$ 

Year

Note that  $\{1,3\}, \{3,4\}$  are two L -pre-open (L-semi-P-open) sets, but  $\{1,3\}$  I  $\{3,4\} = \{3\}$  is neither L -pre-open nor L-semi-P-open.

2012

#### **Definition (2.9):**

1

No.

Let  $(X, \tau_1, \tau_2)$  be abitopological space and let  $x \in X$ , a subset M of X is said to be

2012

السنة

- 1- An "L-pre-neighbourhood" of x if and only if there exists an L-pre-open set G such that  $x \in G \subseteq M$
- 2- An "L-semi-p- neighbourhood" of x if and only if there exists an L-semi-p-open set G such that  $x \in G \subseteq M$

#### **Definition (2.10):**

Let  $(X, \tau_1, \tau_2)$  be abitopological space and let A be a subset of X, then:

- 1- The intersection of all L-pre-closed subset of X containing A is called "L-preclosure of A" and is dented by L-pcl(A).
- 2- The intersection of all L-semi-p-closed subset of X containing A is called "L-semip-closure of A" and is dented by L-spcl(A).

## Theorem (2.11):

Let  $(X, \tau_1, \tau_2)$  be abitopological space and let A be a subset of X.A point x in X is an L-pre-closure (L-semi-p-closure) point of A if and only if every L-preneighbourhood (L-semi-p- neighbourhood) of x intersects A.

#### **Proof:**

#### The "only if" part

Assum that x is an L-pre-closure (L-semi-p-closure) of A, then  $x \in \Im = I \{F \subseteq X : A \subseteq F \text{ and } F \text{ is an } L - pre - closed (L - semi - p - closed)\}$ . Suppose that there exists an L-pre-neighbourhood (L-semi-p- neighbourhood) M of x such that  $M \mid A = \phi$ , that is, there exists an L-pre-open(L-semi-p - open) set G such that  $x \in G \subseteq M$ , then such that  $A \subseteq M^c \subseteq G^c$ , but  $G^c$  is an L-pre-closed (L-semi-p-closed) with

 $x \notin G^c$ . Therefore  $x \notin \Im$  which is a contradiction hence every L-pre-neighborhood (L-semip-neighborhood) of x must intersect A.

## The "if" part

Assume that every L-pre-neighborhood (L-semi-p- neighborhood) of x intersects A, and suppose that x is not L-pre-closure (L-semi-p-closure) point of A, then  $x \notin \mathfrak{I}$ , that is, there exists an L-pre-closed (L-semi-p-closed) subset F of X with  $A \subseteq F$  such that  $x \notin F$ , it

| ( | Ibn Al-Haitham Journal for Pure and Applied Science |             |      |    |      |      |            | بقية | ة و التطب | م الصرف | الهيثم للعلو | جلة إبن                                     |       | ) |
|---|-----------------------------------------------------|-------------|------|----|------|------|------------|------|-----------|---------|--------------|---------------------------------------------|-------|---|
|   | No.                                                 | $\boxed{1}$ | Vol. | 25 | Year | 2012 | π <b>9</b> | 2012 | السنة (   | 25      | المجلد       | $\left(\begin{array}{c}1\end{array}\right)$ | العدد |   |

follows that  $x \in F^c$  which is an L-pre-open(L-semi-p - open) set. Now there is an L-preneighborhood (L-semi-p- neighborhood)  $F^c$  of x with  $A \perp F^c = \phi$  that implies to contradiction with our assumption. Hence x must be an L-pre-(L-semi-p-) closure point of A

#### **Theorem (2.12):**

Let  $(X, \tau_1, \tau_2)$  be a bit opological space. A subset A of X is an L-pre-(L-semi-p-) closed if and only if A = L - Pcl(A)(L - SPcl(A))

#### **Proof:**

The "only if" part

Suppose that  $A \in L - PC(X)(L - SPC(X))$  and  $A \neq L - Pcl(A)(L - SPcl(A))$ . Since  $A \subseteq L - Pcl(A)(L - SPcl(A))$ , so  $L - Pcl(A)(L - SPcl(A)) \not\subset A$ , that is, there exists an element

 $r \in L - Pcl(A)(L - SPcl(A))$  and  $r \notin A$ , it follows that  $r \in A^c$  which is an L-pre-(L-semi-p-) open set. Then by theorem (3.33) AI  $A^c \neq \phi$  which is a contradiction with the fact AI  $A^c = \phi$ . Hence A = L - Pcl(A)(L - SPcl(A))

#### The "if" part

Assume that A = L - Pcl(A)(L - SPcl(A)), but L - Pcl(A)(L - SPcl(A)) is an L-pre-(L-semi-p-) closed subset of X by definition (3.32). So A is an L-pre-(L-semi-p-) closed set.

## Definition (2.13):

A bi topological space  $(X, \tau_1, \tau_2)$  is said to be :

- 1- " $L pre T_2$  space" if and only if for each pair of distinct points x and y, there are two disjoint L-pre-open subsets U and V of X such that  $x \in U$  and  $y \in V$ .
- 2- "L semi  $p T_2$  space" if and only if for each pair of distinct points x and y, there are two disjoint L-semi-p-open subsets U and V of X such that  $x \in U$  and  $y \in V$ .

#### **Proposition (2.14)**

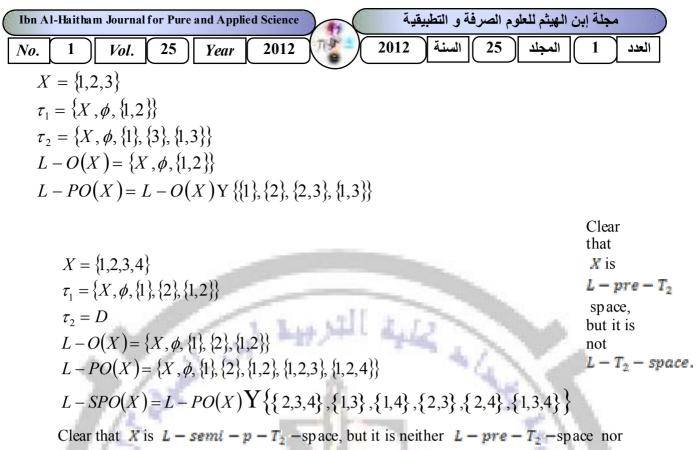
- 1- Every  $L T_2$  space is an  $L pre T_2$ .
- 2- Every  $L pre T_2$  space is an  $L semi p T_2$ .
- 3- Every  $L T_2$  space is an L semi  $p T_2$ .

#### **Proof:**

follows from remark (2.3).

## Remark (2.15):

The opposite direction of each case proposition (2.6) is not true in general. As the following two examples show:



 $L - T_2 - space.$ 

#### **Definition (2.16):**

Let  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \rho_1, \rho_2)$  be any function, then f is said to be:

- 1- "L-pre-irresolute" function if and only if the inverse image of an L-pre-open subset of Y is an L-pre-open subset of X
- 2- "L-semi-p-irresolute" function if and only if the inverse image of an L-semi-p-open subset of Y is an L-semi-p-open subset of X.

(Education ton)

It is clear that their is no relation among the concepts of L-continuous, L-preirresolute and L-semi-p-irresolute function. See the following examples:

Example(2.17):

 $X = \{1, 2, 3\}$   $T_{1=\{X, 0, (1)\}}$ 

 $T_{2=1}$  L = O(X) = [X, O(1), (1, 2), (1, 3)]

 $\tau_1 PO(X) = \{X, \emptyset, \{1\}, \{1,2\}, \{1,3\}\}$ 

$$L - PO(X) = \tau_1 PO(X) = L - SPO(X)$$

 $Y = \{a, b, c\} \qquad \tau'_{1 = \{Y, \emptyset, \{b, c\}\}}$ 

 $T'_{2=\{Y,\emptyset,\{b,\},\{a,\},\{a,b\}\}}$ 

 $L - O(Y) = \{Y, \emptyset, \{b, c\}\}$ 



$$\begin{aligned} t'_{1} PO(Y) &= \{Y, \emptyset, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{c\}\} \\ L - PO(Y) &= t'_{1} PO(Y) = L - SPO(Y) \\ Let \ f: Y \to X \ such \ that \ f(a) = f(c) = 1 \ and \ f(b) = 2 \end{aligned}$$

It is clear that f is L-pre-(L-semi-p-)irresolute function but it is not L-continuous function.

444

## Eample(2.18):

 $X = \{1, 2, 3\}$ 

 $\tau_{2=3}$ 

L - O(X) = L - PO(X) = L - SPO(X)

T1=(x,0,11)(2)(1,2)]

 $L = O(X) = \{X, O(1), (1, 2), (1, 3), (2), (2, 3)\}$ 

 $Y = \{a, b, c\} \qquad \tau'_{1 = \{Y, 0, \{a\}\}}$ 

 $\tau'_{2=1}$  $L - O(Y) = \{Y, \emptyset, \{a, \}, \{a, b\}, \{a, c\}\}$ 

$$L - PO(Y) = L - O(Y) = L - SPO(Y)$$

Let  $f: X \to Y$  such that f(1) = a, f(2) = b and f(3) = c

It is clear that f is L-pre-(L-semi-p-)irresolute function and L-continuous function.

## **Theorem**(2.19):

A bit opological space  $(X, \tau_1, \tau_2)$  is  $L - pre - (L - semi - p -)T_2$  - space if and only if for each pair of distinct points x, y in X there exists L-pre-(L-semi-p-)irresolute function f from  $(X, \tau_1, \tau_2)$  into  $(Y, \rho_1, \rho_2)$  which is L-pre-(L-semi-p-)  $T_2$ -space such that  $f(x) \neq f(y)$ .

olloge of Education

#### **Proof:**

"first direction"

Suppose that  $(X, \tau_1, \tau_2)$  is  $L - pre - (L - semi - p) - T_2$  space. If we take the identity function  $i: (X, \tau_1, \tau_2) \rightarrow (X, \tau_1, \tau_2)$  clear that i is L-pre (L-semi-p)-irresolute function. Now let  $x \neq y$  in X so i(x) = x, i(y) = y, it follows that  $i(x) \neq i(y)$ .

"second direction"

Let  $f: (X, \tau_1, \tau_2) \rightarrow (Y, \rho_1, \rho_2)$  be an L-pre-(L-semi-p-) irresolute function and  $(Y, \tau_1, \tau_2)$  is an  $L - pre(L - semi - p) - T_2$  space and let  $x \neq y$  in X, then by ypothesis

| ( | Ibn Al-Haitham Journal for Pure and Applied Science |             |      |    |      |      |     | بقية | ة و التطب | م الصرف | الهيثم للعلو | مجلة إبن                                    |       | ) |
|---|-----------------------------------------------------|-------------|------|----|------|------|-----|------|-----------|---------|--------------|---------------------------------------------|-------|---|
|   | No.                                                 | $\boxed{1}$ | Vol. | 25 | Year | 2012 | π\$ | 2012 | السنة (   | 25      | المجلد       | $\left(\begin{array}{c}1\end{array}\right)$ | العدد |   |

 $f(x) \neq f(y)$  in Y. So there are L-pre(L-semi-p)-open sets U, V such that  $f(x) \in U, f(y) \in V$  and  $U \cap V = \emptyset$  that is  $x \in f^{-1}(U), y \in f^{-1}(V)$  and  $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\emptyset) = \emptyset$  where  $f^{-1}(U), f^{-1}(V)$  are L - pre(L - semi - p) - open sets in X. Hence X is  $L - pre(L - semi - p) - T_2$  space.

## Definition(2.20):

A function  $f_1(X, \tau_1, \tau_2) \rightarrow (Y, \rho_1, \rho_2)$  is called:

- 1. "L-pre-open" function if and only if  $f(U) \in L PO(Y)$  for each  $U \in L PO(X)$ .
- 2. "L-semi-p-open" function if and only if  $f(U) \in L SPO(Y)$  for each  $U \in L SPO(X)$ .
- 3. "L-pre-closed" function if and only if  $f(F) \in L PC(Y)$  for each  $F \in L PC(X)$ .
- 4. "L-semi-p-closed" function if and only if  $f(F) \in L SPC(Y)$  for each  $F \in L SPC(X)$ .

## proposition(2.21):

if  $f:(X, \tau_1, \tau_2) \rightarrow (Y, \rho_1, \rho_2)$  is bijectiv,  $L - pre(L - semi - p) - open and <math>L - pre(L - semi - p) - irresolute function and <math>(X, \tau_1, \tau_2)$  is  $L - pre(L - semi - p) - T_2$  space, then  $(Y, \rho_1, \rho_2)$  is  $L - pre(L - semi - p) - T_2$  space.

## **Proof:**

Suppose that  $y_1 \neq 0$ 

 $y_2$  in Y.Since f is onto, then there exist  $x_1, x_2$  in X such that  $y_1 = f(x_1), y_2 = f(x_2)$  and since f is (1-1), then  $x_1 \neq x_2$  in X wich is  $L - pre(L - semi - p) - T_2 - space$ . Therefore there exist L - pre(L - semi - p) - open sets U, V such that  $x_1 \in U, x_2 \in V$  and  $U \cap V = \emptyset$ . It follows that  $y_1 \in f(U), y_2 \in f(V)$  where f(U), f(V) are L - pre(L - semi - p) - open sets in Y and  $f(U) \cap f(V) = \emptyset$ .

thege of Edos

Hence  $(Y, \rho_1, \rho_2)$  is  $L - pre(L - semi - p) - T_2 - space$ .

| ( | Ibn Al-Haitham Journal for Pure and Applied Science |             |      |    |      |      |      | يقية | ة و التطب | م الصرف | الهيثم للعلو | مجلة إبن                                    |       | ) |
|---|-----------------------------------------------------|-------------|------|----|------|------|------|------|-----------|---------|--------------|---------------------------------------------|-------|---|
| ſ | No.                                                 | $\boxed{1}$ | Vol. | 25 | Year | 2012 | 万岁 - | 2012 | السنة     | 25      | المجلد       | $\left(\begin{array}{c}1\end{array}\right)$ | العدد |   |

## References

- 1.Navalagi ,G.B.(2000)"Definition Bank in General Topology" which is available at Topology Atlas –Survey Articles Section.
- 2. Nasir ,A.I.(2005)"some Kinds of strongly Compact and Pair- wise compact Spaces"M.SC.Thesis, University of Baghdad ,Iraq,.
- 3.Al-Khazaraji, R.B.(2004)" On Semi-p-open Sets", M.Sc. Thesis, College of Education Ibn Al-Haitham, University of Baghdad,.
- 4. Kelly, J.C.(1963)" Bitopological spaces", Proc.London Math.Soc.<u>13</u>:71-89.
- 5.Al-Swid, L.A.(1994)"On New Separation Axioms in Bitopological Spaces" to appear.
- 6.AL-Talkhany, Y.K.(2001)"Separation Axioms in Bitopological spaces ", Research

submitted to college of Education Babylon University as apartial Fulfillment of the

Requirement for Degree of master of science in Math.