Ibn Al	-Haitha	m Journal	for Pure	and Appli	ed Science		
No.	$\left(2\right)$	Vol.	25	Year	2012	TOP)(

Purely co-Hopfian Modules

Z. T.Salman

Department Of Mathematics , College of science , University of Baghdad Received in: 22 Septembre 2011 Accepted in: 11January 2012

Abstract

Let R be an associative ring with identity and M a non – zero unitary R-module. In this paper we introduce the definition of purely co-Hopfian module, where an R-module M is said to be purely co-Hopfian if for any monomorphism f $\hat{1}$ End (M), Imf is pure in M and we give some properties of this kind of modules.

Keywords: co-Hopfian module, semi co-Hopfian module, purely co-Hopfian module

Introduction and Preliminaries

Let R be an associative ring with identity and M a non – zero unitary R – module, Recall that a module M is called co-Hopfian if any injective endomorphism of M is an isomorphism [1].A module M is called semi co-Hopfian if any injective endomorphism of M has a direct summand image that means any injective endomorphism of M splits [1].A ring R is semi co-Hopfian if R is semi co-Hopfian R - module. Clearly, any co-Hopfian is semi co-Hopfian but the converse is not true in general as, for example $M = Q^{N} = Q \stackrel{A}{A} Q \stackrel{A}{A} \dots$, as Z-module is semi co-Hopfian but it is not co-Hopfian [1]. A submodule N of M is called pure if IM \cap N=IN for each ideal of R,[8].It is well–known every direct summand of a module M is pure submodule but the converse is not true in general [2].This leads us to introduce the following concept, namely purely co-Hopfian module.

Definition 1.1

An R- module M is called purely co-Hopfian if for any monomorphism f \hat{i} End (M), Imf is pure in M.

Remarks and examples 1.2

- 1. Every semi co-Hopfian module is purely co-Hopfian.
- 2. Every F- regular module M is purely co-Hopfian, where M is F- regular if every submodule of M is pure,[3].
- 3. Every semi simple R-module is purely co-Hopfian.
- 4. If M is pure simple (that means M has only two pure submodules 0, M) [2], then M is purely co-Hopfian.

Icmma 1.3

The following are equivalent for an R-module M:

- 1. M is purely co-Hopfian.
- 2. Any submodule N of M such that N @M, N is pure in M.
- **Proof** $(1) \rightarrow (2)$

Let $N \leq M$, $N \otimes M$. Then there exists $\alpha : M \to N$, α is an isomorphism. Hence

 $M \overset{3}{4} \overset{3}{2} \otimes N \overset{3}{4} \overset{i}{3} \otimes M$ where $i : N \to M$ is the inclusion map, and this implies io $a \mid$ End (M), i $\circ a$ is monomorphism. So $(i \circ \alpha) (M)$ is pure in M. Thus $i (\alpha (M)) = i (N) = N$ is pure in M.

 $(2)\rightarrow(1)$: let f I End (M), f is monomorphism. Hence f(M) @M and so by (2), f (M) is pure in M.

Ibn Al	-Haitha	m Journal	for Pure	and Appli	ed Science		يقية	فية و التطو	رم الصرة	الهيثم للعلو	مجلة إبن	
No.	2	Vol.	25	Year	2012	To -	2012	السنة (25	المجلد	$\left(\begin{array}{c}2\end{array}\right)$	العد

Proposition 1.4

The following are equivalent for a ring R

- 1. R is purely co-Hopfian.
- 2. R is semi co-Hopfian.

Proof $(1) \rightarrow (2)$

Let f: $R \rightarrow R$, f is R-monomorphism. Hence f (R) = $\langle a \rangle$ for some a ¹ 0 | R. Since R is purely co-Hopfian, $\langle a \rangle$ is pure ideal at R, hence $\langle a \rangle = \langle a^2 \rangle$ (since $\langle a \rangle$ | $\langle a \rangle = \langle a \rangle \langle a \rangle$). Thus a = ra² for some r | R, this implies ra is idempotent and $\langle a \rangle$ = $\langle ra \rangle$. It follows that $\langle a \rangle$ is a direct summand. The proof of the part (2) \rightarrow (1) is clear.

5

By combining proposition 1.4 and proposition 2.3 from [1] we get the following result.

Corollary 1.5

The following are equivalent for any a ring R :

- 1. R is purely co-Hopfian.
- 2. R is semi co-Hopfian.
- 3. ann (a) = 0, a $\int R$ then $\langle a \rangle$ is a direct summand .
- 4. If ann(a) = 0, $a \mid R$ then $\langle a \rangle = R$.
- 5. Every R isomorphism $\langle a \rangle \rightarrow R$, a R, extends to R.

Proof

(1) \leftrightarrow (2): see proposition 1.4

 $(2) \leftrightarrow (3) \leftrightarrow (4) \leftrightarrow (5)$: (see proposition 2.3), [1].

Corollary 1.6

If R is a ring with two idempotent 0,1 then the following statement are equivalent : -

- 1. R is co-Hopfian.
- 2. R is semi co-Hopfian.
- 3. R is purely co-Hopfian.

Proof

 $(1) \rightarrow (2)$: it is clear

 $(2) \leftrightarrow (3)$ by proposition 1.4

 $(3)\rightarrow(2)$: Let $f: R \rightarrow R$, f is monomorphism then $f(R) = \langle a \rangle$ for some $a \mid R, a \mid 0$, but $I = \langle a \rangle$ is a direct summand of R (since R is Semi co-Hopfian) then $\langle a \rangle$ is generated by idempotent. Since $a \mid 0$, hence a = 1 and $\langle a \rangle = R$. Thus f is onto and we get R is co-Hopfian.

Recall that module M has C2 if for any submodule N of M which is isomorphic to a direct summand of M, is a direct summand of M [4].

Corollary 1.7

If R is a ring only idempotent 0 and 1 the following equivalent:

- 1. R has C_2 .
- 2. R is co-Hopfian.
- 3. R is purely co-Hopfian.
- 4. R is semi co-Hopfian.

Proof $(1) \rightarrow (2)$

let f: $R \to R$ be monomorphism. To prove that R is co-Hopfian, we must prove f is an isomorphism. Since f is monomorphism, f (R) @R. But R is C_2 by (1) and R is direct

Ibn Al-Haitham Journal for Pure and Applied Science		مجلة إبن الهيثم للعلوم الصرفة و التطبيقية
No 2 Vol 25 Vear 2012	TOP	العدر 2 المحاد 25 السنة 2012

summand of R, hence f(R) is direct summand of R.It follows that f (R) is generated by idempotent. Since R has only 2 – idempotent namely 0, 1 and f (R) 1 0, then f (R) = <1> thus f(R) = R and so that f is an isomorphism .

- $(2) \rightarrow (3 : \text{It is clear.})$
- $(3) \rightarrow (4)$: It follows by proposition (1.4).
- $(4) \rightarrow (1)$: It follows by proposition 2.4 [1].

Corollary 1.8

Let R be an integral domain. Then the following are equivalent:

- 1. R is co-Hopfian.
- 2. R is semi co-Hopfian.
- 3. R is purely co-Hopfian.
- 4. R is field.

Proof

 $(1) \leftrightarrow (2) \leftrightarrow (3)$: It follows by corollary 1.6

 $(1) \rightarrow (2) \rightarrow (3)$ it follows by corollary 1.0 $(1) \rightarrow (4)$:Let a $[R, a^{-1}]$ 0 then ann (a) = 0 since R is an integral domain. By corollary $1.5, \langle a \rangle = R$. Hence a is an invertible element. Then R is a field.

 $(4) \rightarrow (1)$ Since R is a field, R has only two ideals namely R, (0). Hence for any f. R \rightarrow R, f is R – monomorphism $f(R)^{1}$ 0. Hence f(R) = R. Thus f is onto then R is co-Hopfian.

Proposition 1.9

Any direct summand of purely co-Hopfian module is purely co-Hopfian. Proof

Let N be a direct summand of M, so M = N $\stackrel{A}{\rightarrow}$ A for some submodule A of M. Let f: N \rightarrow N be monomorphism. Define $g: M \to M$ by g(n+a) = f(n)+a where $n \mid N$, $a \mid A$ it is easy to see that g is monomorphism Hence g(M) = f(A) A N. Since M is purely co-Hopfian, g (M) is pure in M.To prove f (N) pure in N, let I be any ideal of R,

 $IM \cap g(M) = Ig(M)_{g}$ $I(N \mathring{A}_A) \cap (f(N) \mathring{A}_A) = I(f(N) \mathring{A}_A),$ $(IN \stackrel{\text{d}}{\land} IA) \cap (f(N) \stackrel{\text{d}}{\land} A) = (IN \cap f(N)) \stackrel{\text{d}}{\land} (IA \cap A) = If(N) \stackrel{\text{d}}{\land} IA,$ $(IN \cap f(N)) \stackrel{\text{\tiny A}}{=} IA = If(N) \stackrel{\text{\tiny A}}{=} IA, IN \cap f(N) = If(N).$ Thus f(N) is pure in N and so N is purely copfian.

Recall that a submodule N of M is a non-summand if N is not direct summand of M [1].

Proposition 1.10

Let M be an R- module such that every non summand N of M is purely co-Hopfian, if for any non - summand submodule N of M, N is purely co-Hopfian, then M is purely co-Hopfian.

Proof

Suppose M is not purely co-Hopfian then there exists N < M, $N \otimes M$, N is not pure in M by lemma (1.3). But N is not pure implies N is not summand. Hence by hypothesis N is purely co-Hopfian which implies M is purely co-Hopfian which is a contradiction.

Recall that M is fully stable if for any submodule N of M, f. N \rightarrow M is then f (N) \pounds N [5].

Proposition 1.11

Let $M = M_1 A_2$, M is fully stable. Then M is purely co-Hopfian if and only if M_1 , M_2 are purely co-Hopfian

Proof

Ibn Al-Haitham Journal for Pure	and Applied Science
---------------------------------	---------------------

Vol.

25 Year 2012

2

العدد

25

It follows by proposition 1.9. Conversely, Let f. M \rightarrow M be monomorphism put $f_1 = f _{M1}$
$f_2 = f _{M_2}$. Since M is fully stable, $f_1(M_1) \notin M_1$ and $f_2(M_2) \notin M_2$. Since f is monomorphism,
f_1 , f_2 are monomorphism. Hence f_1 (M ₁), f_2 (M ₂) are pure in M ₁ , M ₂ respectively. Hence f_1
$(M_1) \stackrel{\bullet}{A} f_2 (M_2)$ is pure in M [2]. But it is easy to see that $f(M) = f_1 (M_1) \stackrel{\bullet}{A} f_2 (M_2)$. Thus
f(M) is pure in M.

2012

Corollary 1.12

2

No.

Let $M = A_i |_{I} M_i$, M is fully stable M is purely co-Hopfian if and only if M_i is purely co-Hopfian for all i $|_{I}$.

Recall that M is torsion free if rm = 0 then r = 0 or m = 0 for any $r \mid R, m \mid M$. Note that torsion free module needs not purely co-Hopfian, for example Z as Z-module. Now we have the following result which improves proposition 2.13 in [1]. Which states that ,let R be a commutative domain and let M be a torsion free semi co-Hopfian R-module .Then M is injective .

Proposition 1.13

Let R be an integral domain and let M be a torsion free purely co-Hopfian R – module . Then M is injective R-module.

Proof

Let a $| R , a^{-1} | 0$. Define $f : M \to M$ by f(m) = am, for all a | M. Then f is monomorphism, hence f(M) = aM is pure submodule in M since M is purely co-Hopfian. Thus IM | f(M) = I f(M) for any ideal I of R. Take $I = \langle a \rangle$. Hence (a) M | aM = (a). aM thus $aM = a^2M$. Now for any m | M, $am = a^2m_1$, so a $(m - am_1) = 0$. Hence $m = am_1 = 0$ since M is torsion free and so $m = am_1$. Thus we have M = aM, that is M divisible torsion free, hence M is injective.

Proposition 1.14

If M has Dcc on non pure submodule (that means has Dcc on not pure submodule), then M is purely co-Hopfian.

Proof

Suppose M is not purely co-Hopfian, then by lemma 1.3, there exists M_1 (not pure submodule of M) such that M_1 @M. Hence M_1 is not purely co-Hopfian and, so there exists M_2 submodule of M_1 which is not pure of M_2 @M₁. By repeating this argument we have strictly descending chain $M_1 \stackrel{\text{tense}}{=} M_2 \stackrel{\text{tense}}{=} \dots$. Moreover M_i is not pure in M, for all $i = 1, 2, \dots$.

. To show this M_1 is not pure in M (by proof). If M_2 pure in M ,then M_1 pure in M [2,Rem.7.2(1)], which is a contradiction. Thus, M_2 is not pure in M.Similarly M_i is not pure in M, for all $i = 3, 4, \ldots$. Thus $M_1 \stackrel{\frown}{=} M_2 \stackrel{\frown}{=} \ldots$ is strictly descending chain of non pure submodule of M, which is a contradiction. Thus M is purely co-Hopfian.

Remark 1.15

The endomorphism ring of purely co-Hopfian module need not be purely co-Hopfian. **Example 1.16**

The Z – module $Z_p \not\models$ is co-Hopfian. S = End ($Z_p \not\models$) is the integral domain of P-adic integers is not co-Hopfian [6], Then S is not purely co-Hopfian by Corollary (1.6).

Recall that an R-module M is called multiplication module if for each N \leq M, there exists ideal I of R such that N=IM. Equivalently, Mis multiplication if for each N \leq M, N=(N:M)M,where (N:M)={rr| R, rM| N}[7].

Theorem 1.17

Let M be a faithful finitely generated multiplication R - module the following statements are equivalent:

1. M is purely co-Hopfian.

2. R is semi co-Hopfian.

Ibn Al-Haitham Journal for Pure and Applied Science							يقية	فة و التط	رم الصرا	الهيثم للعلو	جلة إبن	•
No.	2	Vol.	25	Year	2012	T	2012	السنة (25	المجلد	2	العد

3. R is purely co-Hopfian.

4. M is co-Hopfian.

5. M is Semi co-Hopfian.

Proof

(1) \rightarrow (2): Let a R, ann_Ra = 0. Define f: M \rightarrow M by f (m) = am for any m M.we can see that f is monomorphism as follows, let m | Kerf then am = 0 and so m | $ann_M (a)$. But $ann_M(a) = (ann_R(a)) M$. Hence m ($ann_R a$) M = 0. M = 0, then we get m = 0. Now f (M) = a M is pure in M. Hence $\langle a \rangle$ is pure in R, since M is faithful finitely generated multiplication. Thus $\langle a \rangle = \langle a^2 \rangle$ so $a = ra^2$, which implies a (1-ra) = 0, since ann (a) = 0, 1-ra = 0, 1 = ra, that is a is an inevitable element, so $\langle a \rangle = R$.

(2) \leftrightarrow (3): It follows by proposition (1.4).

 $(3) \rightarrow (4)$: Let $f : M \rightarrow M$ be monomorphism , Since M is finitely generated multiplication, then M is a scalar module , there exists a $| R , a |^{1}$ Osuch that , f(m) = am for all m | M[8]. Since Kerf = {0}, ann_Ma = 0. [To prove this. Since ann_M(a) = { m : am = 0 } \neq { m : f (m) = 0 = { m : m = 0 }].But ann_Ma = (ann_Ra) M, so ann_R(a) .M = 0 .Thus ann_R(a) annM = 0 . It follows that $\operatorname{ann}_{R}(a) = 0$. But R is purely co-Hopfian so $\langle a \rangle = R$ by corollary (1.5).

(4) \rightarrow (5): It is clear any co-Hopfian is semi co-Hopfian by [1].

 $(5) \rightarrow (1)$: By [Remark and Examples 1.2]

corollary 1.18

Let M be a faithful finitely generated multiplication R-Module then the following are equivalent:

1. M is purely co-Hopfian module.

2. End _R M is purely co-Hopfian ring (semi co-Hopfian , co-Hopfian)

Proof $(1) \leftrightarrow (2)$

Since M is a finitely generated multiplication R-module M is a scalar module by [8, prop.1.1.10]. Hence End M CR by [9, lemma 6.1, ch.3]. Thus by previous theorem we obtained the result

References

1- Aydogdu, P.Ozcan, A. Cigdem; 10(2008), Semi co-hopfian and semi hopfian modules. East-West J. Math., no. 1: 55-70.

2- Yaseen, S.M., Msc. thesis, (1993), On F-regular modules , University of Baghdad, College of science.

3- Fieldhouse, D.J.(1969), pure theorie ,Math.Ann. 184:1-18.

4- Mohamed, S.H., and Muller B.J., (1990), Continuous and Discrete Module, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge .

5- Abbas, M.S., (1990), On fully stable module, ph.D. thesis . University of Baghdad .

6- Lam, T.Y., 3(2004) Acrash course on stable range, cancellation, substitution and exchange. J.Algebra Appl., no. 3:301-343.

7- EL.Bast ,Abd , Z and P.F. Smith (1988), Multiplication modules, comm. Algebra ,16(4): 755-779.

8- Shihab B.N. (2004), Scalar Reflexive module , ph.D. thesis .University of Baghdad college of science.

9- Mohammed Ali, E.A.AL-Am .(2006), On Ikeda Nakayma module, ph.D. thesis .University of Baghdad.

Ibn Al-Haitham Journal for Pure and Applied Science	مجلة إبن الهيثم للعلوم الصرفة و التطبيقية
No. 2 Vol. 25 Year 2012	العد 2 المجلد 25 السنة 2012

المقاسات الهوبفينيةالمضادع النقية

زينب طالب سلمان قسم الرياضيات ، كلية العلوم ، جامعة بغداد استلم البحث في : 22 ايلول 2011 قبل البحث في: 11 كانون الثاني 2012

الخلاصة

لتكن R حلقه تجميعيه ذا عنصر محايد ، M مقاسا احاديا غير صفري معرفا عليها . في هذا البحث نقدم مفهوم المقاسات الهوفينيةالمضادطاً النقية QG يقال عن مقاس M على حلقه R مقاسا هوبفينيا مضادا اذا كان لكل (M) f î End أ f i دالة متباينة فان Imf نقي في M . واعطينا بعض خواص هذا النوع من المقاسات .

الكلمات المفتاحية:مقاسات هوفينية مضالط نقية ، مقاسات شبة هوفينية مضالط ، مقاسات هوفينية مضالط

