No. 2 Vol. 25 Year 2012

On Fuzzy Groups and Group Homomorphism

L. N. M. Tawfiq , M. M. Qa'aed Department of Mathematics, College of Education Ibn Al-Haitham, Universityof Baghdad.

Received in: 9December 2009 Accepted in: 14 December 2010

Abstract

In this paper, we study the effect of group homomorphism on the chain of level subgroups of fuzzy groups. We prove a necessary and sufficient conditions under which the chains of level subgroups of homomorphic images of an a arbitrary fuzzy group can be obtained from that of the fuzzy groups.

Also, we find the chains of level subgroups of homomorphic images and pre-images of arbitrary fuzzy groups.

Key ward: - Fuzzy Groups, Group Homomorphism.

1.Introduction

If X is a non- empty set then a function $m: X \otimes [0,1]$ is called a fuzzy subset of X [1].

A fuzzy subset *m*of G is said to be fuzzy subgroup of G if and only if $m(xy)^3 \min\{m(x), m(y)\}$ and $m(x) = m(\chi^{-1})$ [2].

It is easy to see that if *m* is fuzzy subgroup of G, then $m(e)^3 m(x)$, "x $\hat{I} G.[3]$

We say that m has the sup-property if every non-empty subset of Im(m) has a maximal element.[4], [5].

If *m* is a fuzzy subset of G, then the subset $m = \{x \mid G; m(x) \mid t\}$, $t \mid [0, 1]$ is called the level subset of *m* in G and $\dot{m} = \{x \mid G; m(x) > t\}$ is called the strong level subset of *m* in G when t = 0 the subset \dot{m} is called support of *m* in G and it will be denoted by $\dot{m}[6], [7]$.

If / is a fuzzy subgroup of G, then the level subsets $/_{t}$ of / in G and the strong level subsets $/_{t}^{*}$ of / in G, tî [0, /(e)], are subgroups of G and viseversa [8].

If $t_1, t_2 \hat{1}$ Im(*m*) such that $t_1 \hat{1} t_2$, then obviously, $m_1 \hat{1} m_2$. Further, if Im(*m*) = $\{t_i : i = 1, 2, ..., n\}$ where $t_1 > t_2 > ... > t_n$, then the level subgroups of *m* form a chain of subgroups of G. C(*m*) $\hat{0} m_1 \hat{1} m_2 \hat{1} ... \hat{1} m_n = G$ [2].

Let $f: G \otimes H$ be a homomorphism of groups, / be a fuzzy subgroup of G, m a fuzzy subgroup of H. Then $f^{-1}(m) = m(f(x)), "x\hat{l} G$,

Ibn Al-Haitham Journal for Pure and Applied Science						بن الهيثم للعلوم الصرفة و التطبيقية					مجلة	
No.	2 <i>Vol.</i>	25	Year	2012	TIM	2012	السنة	25	المجلد	$\left(\begin{array}{c}2\end{array}\right)$	العد	

and the fuzzy sets f(l) and $f^{-1}(m)$ are fuzzy subgroups of H and G respectively [7], [9]. Now let $f: X \otimes Y$ be a function and /[m] be a fuzzy subset of X[Y]. Then we say that / is f - invariant if $f(x_1) = f(x_2)$ whenever $f(x_1) = f(x_2), x_1, x_2 \hat{f} X.[5]$

2. Homomorphic pre-images of fuzzy groups

In this section, we prove necessary and sufficient conditions under which the chains of level subgroups of homomorphic pre-images of an arbitrary fuzzy group can be obtained from that of the fuzzy group.

Let $: G \otimes H$ is a group homomorphism and mis a fuzzy subgroup of H

We shall denote by $|^{-1}(C(m))$ the chain consisting of inverse images under | of members of C(m). I is a fuzzy subgroup of G.

Proposition (2.1)

If mis a fuzzy subgroup of H and $\{m_i \mid j\hat{I} \}$ is the collection of all level subgroups of

m, then $\{ | [m_{i}] | j | j | J \}$ is the collection of all level subgroups of $| [m_{i}] | j | J \}$. Proof

Let $| = |^{-1}(m)$ and $|_{[0,1]}$. Then : $\hat{x} |_{t} \hat{U}|^{-1} (m)^{3} t \hat{U} m(|x))^{3} t \hat{U} |(x)|^{n} m \hat{U} x \hat{I}|^{-1} (m_{t})$. Hence $I_{t} = I_{t}^{-1}(\mathbf{m})$ t \hat{I} [0, 1]....(1) In particular, we have : $I_{t_i} = I^{-1}(m_i)$ " jî J If | has a level subgroup $|_{t}$ which does not belong to $\{i^{-1}(m_{i}) \mid j\hat{I} \}$ then m must have a level subgroup m_{i} which does not belong to $\{m_{t_j} \mid j\hat{l} \ J \ \}$ such that (1) holds. This is a contradiction. Hence the result.

We observe from the following example that some of the

 $l^{-1}(m_i)$'s may be equal so that $C(l^{-1}(m))$ has fewer components than C(m).

Example (2.2)

Let $G = \{1, -1, i, -i\}$ and $H = \{e, (12), (13), (23), (123), (132)\}.$

Then G is a group w. r. t. the usual multiplication of numbers and H is the permutation group of degree three, with e as identity transformation.

Define $: G \otimes H$ by |(x) = e, " $x \hat{I}$ G. Then | is a group homomorphism. Define $m: H \otimes I$ [0, 1] by :

 $m(e) = 1, m((12)) = 0.5, m(x) = 0.3, "x \hat{I} H \setminus \{e, (12)\}.$

Then mis a fuzzy subgroup of H with level subgroups :

 $m_1 = \{e\}, m_{0.5} = \{e, (12)\}, m_{0.3} = H . But | = |^{-1}(m)$ is defined by : | (x) = 1 for every $x\hat{i}$ G. Hence, $|_1 = |_{0.5} = |_{0.3} = G$.

Now, we proceed to derive a necessary and sufficient condition for the distinctness of all the $|^{-1}(m_t)$. For t \hat{I} Im(m), we define : $F_{m}(t) = \{x \hat{I} G \mid m(x)\}$ $= t \}.$

Theorem (2.3)

Ibn Al-Haitham Journal for Pure and Applied Science مجلة إبن الهيثم للعلوم الصرفة و التطبيقية
No. 2 Vol. 25 Year 2012 2012 2012 السنة 2012 2012 السنة 2012 2013
Let $: G \otimes H$ be a group homomorphism and mis a fuzzy subgroup of H with Im(m)= $\{t_i \in \mathbb{R}\}$
$ \hat{\mathbf{j}} \mathbf{j} \mathbf{j}$ where J is a countable index set.
Then $\downarrow^{-1}(m_{j})$ are all distinct if and only if $\colon \downarrow(G) \cap F_{m}(t_{j}) \stackrel{1}{\longrightarrow} \mathcal{F}$, " j \hat{I} J.
Proof
Assume that $\int_{0}^{-1} (m_i)$, jî J, are all distinct. Let e [*] denote the identity
element in H. Since \downarrow is a homomorphism, $e^{\hat{i}} \downarrow$ (G).
Also , $t_0^3 t_j$ for every $j\hat{i}$ J and hence $m(e^*) = t_0$. Hence , $e^*\hat{i} F_m(t_0)$. Therefore, $f(G) \cap F_m$
$(t_j)^1 \not E$.
Now, suppose $ (G) \cap F_{m}(t_j) ^1$ Æ is empty for some $p > 0$.
Since $t_{p-1} > t_p$, we have $m_{p-1} i$ m_p and hence $i^{-1}(m_{p-1}) i^{-1}(m_p)$.
Now, $x \hat{i} \stackrel{f^{-1}}{=} (\mathfrak{m}_p) \mathrel{\blacktriangleright} (x) \hat{i} \mathrel{\mathfrak{m}_p} U \mathrel{F_{m}(t_j)} \mathrel{\vdash} (x) \hat{i} \mathrel{\mathfrak{m}_{p-1}}$
since $ (G) \cap F_{m}(t_j) = \mathcal{A}$. $\forall x \mid f_{p-1}$.
Hence, $ [(\mathfrak{m}_{p})] [(\mathfrak{m}_{p-1})]$ and therefore $ [[(\mathfrak{m}_{p})] = [(\mathfrak{m}_{p-1})]$.
This contradicts the assumption that $\int_{1}^{1} (m_{j})$ are all distinct.
Hence, $l(G) \cap F_{m(t_j)} \uparrow A = 1$, $j \downarrow J$.
Assume that $\int_{1}^{1} (m_{t_j})$'s are not all distinct. Then we can find p,q \hat{l} J such that $t_p^{-1} t_q$ and
$l^{-1}(m_p) = l^{-1}(m_q)$ (2)
We assume that $t_p < t_q$. Since $ (G) \cap F_m(t_p) $ is non-empty, there exists $x\hat{I}$ G such that
$(x) \hat{i} F_{m}(t_p)$. This implies that $m((x)) = t_p$.
Since $t_p < t_q$, we have, $ (x)\hat{l} m_p$ and $ (x)\hat{l} m_q$. Therefore :
x $\hat{l} \mid \hat{l} \mid (m_p)$ and x $\hat{l} \mid \hat{l} \mid (m_q)$. This contradicts (2). Therefore $\mid \hat{l} \mid (m_j)$ are all distinct.
Remark (2.4) It can be observed from the proof that the second part of the proof in the above theorem hold even when J is uncountable.
If i is a surjection, then $i(G) \cap F_{m}(t_j)^{1} \not\in j^{1}$, and hence $i^{-1}(m_{i_j})$ are all distinct.
Corollary (2.5)

If Im(m) = {t_j | jÎ J } and | (G) $\cap F_{m}(t_{j}) \stackrel{1}{\not=} AE$, " jÎ J, then : C(| ⁻¹(m)) ° | ⁻¹(C(m)). In particular, if J = {1, 2, ..., n} and t₁ > t₂ > ... > t_n then : C(| ⁻¹(m)) ° | ⁻¹(m₁) | | ⁻¹(m₂) | ... | | ⁻¹(m_n). **Proof :**

The result follows from theorem (2.3).

Ibn Al-Haitham Journal for Pure and Applied Science	مجلة إبن الهيثم للعلوم الصرفة و التطبيقية
No 2 Vol 25 Vear 2012	العدر 2 المحلد 25 السنة 2012

3.Homomorphic images of fuzzy groups.

In this section, we study the relationship between C(I) and C(I). And prove that if I is a fuzzy subgroup of G with $Im(I) = \{t_j \mid j=1, 2, ..., n\}$ such that $t_1 > t_2 > ... > t_n$ and if $I : G \otimes H$ is a surjective group homomorphism,

then the chain $|(|_{t_1}) \mid |(|_{t_2}) \mid \dots \mid |(|_{t_n})$ contains all level subgroups of |(|).

In the following proposition, we remove the restriction on the finiteness of | Im (|)|.

Proposition (3.1)

If i is a surjection, 1 has sup-property and $\{ | _{t_j} | j | J \}$ is the collection of all level subgroups of 1, then $\{ | (| _{t_j}) | j | J \}$ is the collection of all level subgroups of | (|).

Proof

Let $m = \frac{1}{1} (1)$ and $t \hat{1} [0, 1]$.

Then u î m $\models m(u) \ ^{3} t \models \sup \{ | (x) | x \ ^{1} | \ ^{-1}(u) \}^{3} t.$

Since I has sup-property ,this implies that $|(x_0)|^3 t$, for some $x_0 \hat{I}$

 $| ^{-1}(u)$. Then $x_0 \hat{i} |_t$ and hence $| (x_0) = u \hat{i} | (|_t)$.

Therefore, we have $m i (|t_t|)$.

Now, if $u\hat{l} \mid (l_t)$ then $u = \mid (x)$ for some $x\hat{l} \mid t$ and hence.

 $m(u) = \sup\{ |z| |z|^{-1}(u) \} = \sup\{ |z| |z|^{-1}(u) \} = \sup\{ |z| |z|^{-1}(u) \} = \sup\{ |z|^{-1}$

(Since $\hat{x} \mid t$). Therefore $\hat{u} \mid m_t$ and hence $|(\mid t) \mid m_t$.

Thus we have $\mathbf{m}_t = | (\mathbf{l}_t)$ for every $t\hat{\mathbf{l}} = [0, 1]$(3)

In particular, $m_{ij} = |(l_{ij}), "j\hat{l}$ J. Hence all $|(l_{ij})$'s are level subgroups of m = |(l) Also, it follows from (3) and the assumption that these are the only level subgroups of m.

The following example shows that surjectiveness of 1, in the above proposition, is essential.

Example (3.2)

Let $G = \{1, -1\}$ and $H = \{1, -1, i, -i\}$.

Define $: G \otimes H$ by (x) = x, "xÎ G. Then : is a non-surjective group homomorphism. Define $I : G \otimes [0, 1]$ by I(1) = 0.3 and I(-1) = 0.1.

Then I is a fuzzy subgroup of G having sup-property. The level subgroups of I are $I_{0.3} = \{1\}$ and $I_{0.1} = G$. Now, m = I(I) is defined by :

m(1) = 0.3, m(-1) = 0.1, m(i) = m(-i) = 0. Hence the level subgroups of mare $m_{0.3} = \frac{1}{10.3}$ = {1}, $m_{0.1} = \frac{1}{10.1}$ and $m_0 = H$. Therefore,

 $\{ | (|_{0,3}), | (|_{0,1}) \}$ does not contain all level subgroups of m. We observe from the following example that surjectiveness of | does not guarantee the distinctness of all | (|_{ti}).

Example (3.3)

Let $G = P_3$ and H be the subgroup {e, (12)} of P_3, where P_3 denotes the permutation group of degree three.

Ibn Al-Haitham Journal for Pure and Applied Science							مجلة إبن الهيثم للعلوم الصرفة و التطبيقية					
No.	$\left(\begin{array}{c}2\end{array}\right)$	Vol.	25	Year	2012	TI -	2012	السنة (25	المجلد (2	العد

Define
$$i : G \otimes H$$
 by :
 $i (x) = - \begin{pmatrix} e & x\hat{i} \{e, (123), (132)\} \\ (12) & x\hat{i} \{(12), (13), (23)\} \end{pmatrix}$

Then \downarrow is a surjective group homomorphism. Define $| : G \otimes [0, 1]$ by :

$$= \begin{cases} 0.5 & \text{if } x = (12) \\ 0.2 & \text{"xî } G \{e, (12)\} \\ 0.9 & \text{if } x = e \end{cases}$$

Then I is a fuzzy subgroup of G having sup-property. The level subgroups of I are $|_{0.9} = \{e\}, |_{0.5} = \{e,(12)\}, |_{0.2} = G$. Now, |(I) is given by |(I)(e) = 0.9, |(I)((12)) = 0.5 and hence $|(I_{0.9}) = \{e\}, |(I_{0.5}) = |(I_{0.2}) = H$.

In the following theorem we obtain a necessary and sufficient condition for the distinctness of all $| (|_{t_i})$.

Theorem (3.4)

If $|:G \otimes H$ is a surjective group homomorphism and | is a fuzzy subgroup of G having sup-property and Im($| = \{t_j | j \mid j \mid J\}$ where J is a countable index set. Then $\{| (| t_j), j \mid J\}$, are all distinct if and only if | is |-invariant. **Proof**

Suppose $|(|_{t_j})$'s are all distinct. Since $t_j > t_{j+1}$ |j| J we have $|_{t_j} |i|_{t_{j+1}}$, and hence, $|(|_{t_j})|i| |(|_{t_{j+1}})$.

Let x, yî G such that |(x) = |(y). Let $|(t_{t_p})$ be the smallest $|(t_{t_j})$ which contains |(x). If p = 0.

Then $|(x) = |(y) \hat{1} | |(|_{t_0})$ and hence

|(x) = |(y) = |(e). If $p^{-1}(0)$. Then $|(x), |(y)\hat{|}| |(|t_{p}|)$ and

$$|(x), |(y) \ddot{|}| (|_{t_{p-1}})$$
. Hence x, y $\hat{|}|_{t_p}$ and x , y $\ddot{|}|_{t_{p-1}}$.

Therefore $| (x) = | (y) = t_p$.

Thus, in both cases, we have , |(x) = |(y)|, and hence | is |-invariant. Conversely, Assume that | is |-invariant. Then for any $z \hat{|}$ H,

 $| (I)(z) = I(x) , "x \hat{I} | ^{-1}(z)....(4)$

If $|(l_{tj})$'s are not distinct then there exists t_p , $t_q \hat{l}$ Im(l) such that $t_p \hat{l} t_q$ and $|(l_{tp}) = |(l_{tq}) \hat{l}$. Since t_p , $t_q \hat{l}$ Im(l), there exist x, y \hat{l} G such that $|(x) = t_p$, and $|(y) = t_q$. Hence by (4), we have :

 $\stackrel{!}{\mid}({\mid})(\stackrel{!}{\mid}(x))=t_p$ and $\stackrel{!}{\mid}({\mid})(\stackrel{!}{\mid}(y))=t_q$.

Therefore $t_p, t_q \hat{I}$ Im(| (I)) and hence it follows that $| | (I_{t_p})^{1} | (I_{t_q})$.

Ibn Al-Haitham Journal for Pure and Applied Science	مجلة إبن الهيثم للعلوم الصرفة و التطبيقية
No. 2 Vol. 25 Year 2012	العد 2 المجلد 25 السنة 2012

This is a contradiction. Hence $|(|_{t_i}), j\hat{|}$ J, are all distinct.

We observe that the proof of the second part does not require the countability of J. Hence we have following result.

Ø

Corollary (3.5)

If $: G \otimes H$ is a surjective group homomorphism and | is an |-invariant fuzzy subgroup of G having sup-property then :

 $C(|(I))^{\circ}(C(I))$.

Proof

The result follows from theorem (3.4).

Corollary (3.6)

Let $: G \otimes H$ is a surjective group homomorphism and I be a fuzzy subgroup of G with Im(I) = {t_i | i=1, 2, ..., n} where $t_1 > t_2 > ... > t_n$. Then :

(i) $\{i \ (l \ t_i) | i = 1, 2, ..., n\}$ contains all level subgroups of $i \ (l \)$.

(ii) { $| (|_{t_i}), i=1,2,...,n$ } are all distinct if and only if | is -invariant.

(iii) If | is | -invariant then Im (| (|)) = Im(|) and

 $C(||(|))^{\circ}|(||_{t_1})||||_{t_2})|||...|||_{t_n}).$

Proof

It is straight forward.

Remark (3.7)

Theorems (2.3) and (3.4) give us methods to obtain the chains of level subgroups of homomorphic images and pre-images of an arbitrary fuzzy group from that of the given fuzzy group .

۵

More specifically if \downarrow (G) $\bigcup F_{m}(t)^{-1}$ Æ for every t \hat{I} Im(m),

then $C(|^{-1}(m)) \circ |^{-1}(C(m))$. Further, if | is a surjection and | is |-invariant, then $C(|(1)) \circ |(C(1))$.

References

- 1. Guptaa K.C and Sarmab B.K.,(1999) "nilpotent fuzzy groups", fuzzy set and systems, <u>101</u>, :167-176,.
- 2. Das.P.S., 1981 'Fuzzy groups and level subgroups'', J. Math. Anal. And appl. 84: 264-269,
- 3. Mukherjee N.P. ,(1948) "Fuzzy normal subgroups and Fuzzy cosets ", Infor. Sci , <u>34</u>: 225-239.
- 4. Abou-Dareb, A, T.,(2000)" On Almost Quasi-Frobenius Fuzzy rings ", M. Sc. Thesis, University of Baghdad.
- 5. Malik D. S. and Mordeson J. N. (1991)," Fuzzy subgroups of abelian groups", Chinese, J. Math., <u>19</u>, No. 2.
- 6. Bhattacharya P., (1987)" Fuzzy subgroups:sume characterization", J. Math. Anal. And appl. <u>128</u>: 241-252.

7. Mordeson J.N., (1996) "L-subspaces and L-subfields ".

8. Martines L.,(1995) "Fuzzy subgroups of fuzzy groups and fuzzy ideals of fuzzy rings", J. Math. Losangeles, <u>3</u>, No. 4.

Ibn Al-Haitham Journal for Pure and Applied Science	مجلة إبن الهيثم للعلوم الصرفة و التطبيقية
No. 2 Vol. 25 Year 2012	العد 2 المجلد 25 السنة 2012

9. Ajmal N. ,1994 "homomorphism of fuzzy groups, correspondence theorem and fuzzy quotient groups ", Fuzzy sets and systems. <u>61</u> : 329-339.

حول الزمر الضبابية و زمر التشاكل

لمى ناجي محمد توفيق مهيوب محمد قائد قسم الرياضيات i كلية التربية أبن الهيثم i جامعة بغداد استلم البحث في: 9 كانون الاول 2009 قبل البحث في: 14كانون الاول 2010

الخلاصة

يهتم هذا البحث بدراسة تأثير تشاكل الزمر في سلاسل الزمر الجزئية المستوية من الزمر الضبابية وأثبتنا الشروط الضرورية و اللازمة للحصول على سلاسل الزمر الجزئية المستوية لصور التشاكل (الصور العكسية) لأي زمرة ضبابية اختيارية بالوقت نفسه تمكنا بوساطة تلك النظريات من إيجاد سلاسل الزمر الجزئية المستوية لصورة التشاكل والصورة العكسية لها في أي زمرة ضبابية اختيارية .

الكلمات المفتاحية : الزمر الضبابية ، تشاكل الزمر