

Strongly (Comletely) Hollow Submodules I

I. M. A. Hadi and Gh. A. Humod

Department of Mathematics, College of Education Ibn-Al-Haitham, University of Baghdad
Received in: 15 March 2012 Accepted in: 21 May 2012

Abstract

Let R be a commutative ring with unity and let M be an R -module. In this paper we study strongly (completely) hollow submodules and quasi-hollow submodules. We investigate the basic properties of these submodules and the relationships between them. Also we study the be behavior of these submodules under certain class of modules such as compultiplication, distributive, multiplication and scalar modules. In part II we shall continue the study of these submodules.

Key Words: Strongly (completely)-hollow submodules, distributive modules, multiplication (comultiplication) modules, scalar modules.

Introduction

Throughout this paper, all rings are commutative rings with identity elements, and all modules are unital modules. In this article we study strongly (completely) hollow submodules which are introduced in [1], also we introduce quasi-hollow submodules. In section one of this paper we give the basic properties of these submodules. Also we give some results under the class of distributive modules and compultiplication modules. In section two, we investigate some properties of strongly, completely and quasi-hollow submodules under the class of multiplication modules. In section three we introduce some properties of strongly (completely) and quasi-hollow submodules under certain class of modules.

1- Strongly (Completely) Hollow and Quasi-Hollow Submodules
We begin this section with the following:
Definition: [1, 4.2]
Let $0 \neq \mathrm{L} \leq \mathrm{M}$, then L is called a strongly hollow submodule (briefly, SH-submodule) if for every $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}$ with $\mathrm{L} \leq \mathrm{L}_{1}+\mathrm{L}_{2}$ implies $\mathrm{L} \leq \mathrm{L}_{1}$ or $\mathrm{L} \leq \mathrm{L}_{2}$, we say that an R -module M is a strongly-hollow module if M is a strongly hollow submodule of itself.

Remark:

Let $0 \neq \mathrm{L} \leq \mathrm{M}, \mathrm{L}$ is a SH-submodule if for each $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{n}} \leq \mathrm{M}$ with $\mathrm{L} \leq \mathrm{L}_{1}+\mathrm{L}_{2}+\ldots+$ L_{n}, implies $\mathrm{L} \leq \mathrm{L}_{1}$ or $\mathrm{L} \leq \mathrm{L}_{2} \ldots$ or $\mathrm{L} \leq \mathrm{L}_{\mathrm{n}}$.
Definition: [1, 4.2]
Let $0 \neq \mathrm{L} \leq \mathrm{M}$, then L is called a completely hollow submodule (briefly, CH-submodule) if for any collection $\left\{\mathrm{L}_{\lambda}\right\}_{\lambda \in \Lambda}$ of R -submodules of M with $\mathrm{L}=\sum_{\lambda \in \Lambda} \mathrm{L}_{\lambda}$, implies $\mathrm{L}=\mathrm{L}_{\lambda}$ for some $\lambda \in \Lambda$.

We say that an R -module M is completely hollow (briefly, CH-module) if M is completely hollow of itself.
Remarks and Examples:

The Z as Z -module is not SH , not CH , and every submodule is not SH , not CH .

1. Z_{6} as Z -module is not SH , and every nonzero proper submodule is SH .
2. Q as Z -module is not SH , since there exist two proper submodules A, B of Q such that Q = A + B see [2, p.187, Exc.6(b)].
3. Let M be an R -module, and $\mathrm{N} \leq \mathrm{L} \leq \mathrm{M}$.

If L is SH then N need not be SH -submodule.
For example, $<\overline{2}>$ is SH (CH)-submodule of Z_{4} as Z -module. But $<\overline{0}>$ is not SH (not CH).
4. Let M be an R -module, and $0 \neq \mathrm{L} \leq \mathrm{W} \leq \mathrm{M}$.

If L is SH -submodule, then W need not be SH -submodule.
For example $\left\langle\overline{6}>\right.$ is $\mathrm{SH}(\mathrm{CH})$-submodule of Z_{48} as Z-module. But $<\overline{2}>$ is not SH (not CH), since $\langle\overline{2}\rangle \subseteq\langle\overline{8}\rangle+\langle\overline{6}\rangle$, and $\langle\overline{2}\rangle \nsubseteq\langle\overline{8}\rangle,\langle\overline{2}\rangle \nsubseteq\langle\overline{6}\rangle$.
5. Let M be an R -module, and $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}$. If L_{1} and L_{2} are SH-submodule, then $\mathrm{L}_{1}+\mathrm{L}_{2}$ need not be SH.
For example: In Z_{12} as Z -module, $\langle\overline{3}\rangle,\langle\overline{4}\rangle$ are SH -submodules of Z_{12}. But $\langle\overline{3}\rangle+\langle\overline{4}\rangle=\mathrm{Z}_{12}$ is not SH.
6. If M is a chained R -module, and $0 \neq \mathrm{N} \leq \mathrm{M}$. Then N is SH-submodule, where M is a chained module if the Lattic of submodules are linearly ordered by inclusion see [3].

Proof:

Let $0 \neq \mathrm{N} \leq \mathrm{M}$. Assume $\mathrm{N} \subseteq \mathrm{N}_{1}+\mathrm{N}_{2}$ where $\mathrm{N}_{1}, \mathrm{~N}_{2} \leq \mathrm{M}$. Since M is chained, either $\mathrm{N}_{1} \subseteq$ N_{2} or $\mathrm{N}_{2} \subseteq \mathrm{~N}_{1}$
If $N_{1} \subseteq N_{2}$, then $N_{1}+N_{2}=N_{2}$, so $N \subseteq N_{2}$.
If $N_{2} \subseteq N_{1}$, then $N_{1}+N_{2}=N_{1}$, so $N \subseteq N_{1}$.
Thus N is SH -submodule.
7. Every simple R-module M is SH and CH .
8. Every simple submodule N of an R -module is CH -submodule.
9. Every CH -module is SH -module.
10. The concept SH-submodule and CH-submodule are independent

For examples:
(a) The Z -module $\mathrm{Z}_{\mathrm{p}^{\infty}}$ is SH-submodule of itself; that is $\mathrm{Z}_{\mathrm{p}^{\infty}}$ is SH-module by Remark 1.4 (7), $\mathrm{Z}_{\mathrm{p}^{\infty}}$ is not CH-module. Since $\mathrm{Z}_{\mathrm{p}^{\infty}}=\sum_{\mathrm{i} \in \mathrm{Z}_{+}}\left\langle\frac{1}{\mathrm{p}^{\mathrm{i}}}+\mathrm{Z}>\right.$, and $\left.\mathrm{Z}_{\mathrm{p}^{\infty}} \neq<\frac{1}{\mathrm{p}^{\mathrm{i}}}+\mathrm{Z}\right\rangle$ for any $\mathrm{i} \in \mathrm{Z}_{+}$.
(b) Let M be the vector space \mathbb{R}^{2} over \mathbb{R}. Let $\mathrm{N}=\mathbb{R}_{(1,0)}$. N is simple submodule of M . Since $\operatorname{dim} \mathrm{N}=1$. So by Remark 1.4 (9), N is CH . On the other hand, $\mathrm{N} \subseteq \mathbb{R}_{(1,1)}+\mathbb{R}{ }_{(1, \text {, }}$ ${ }_{1)}=\mathbb{R}^{2}=\mathrm{M}$, and $\mathrm{N} \nsubseteq \mathbb{R}_{(1,1)}, \mathrm{N} \nsubseteq \mathbb{R}_{(1,-1)}$. That is N is not SH-submodule.

As we have seen by Example 1.4 (11) (b), simple submodule need not be SH. However under the class of distributive (or comultiplication) modules, every simple submodule is SH . Before proving this result, recall that the following definitions

An R-module M is called distributive if the Lattic of its submodules is distributive, that is $\quad \mathrm{L} \cap(\mathrm{N}+\mathrm{K})=(\mathrm{L} \cap \mathrm{N})+(\mathrm{L} \cap \mathrm{K})$.
Equivalently, $L+(N \cap K)=(L+N) \cap(L+K)$ for all submodules L, N, and K of M see [4].
An R-module M is called comultiplication if every $\mathrm{L} \leq \mathrm{M}$ is of the form $\mathrm{L}=(\mathrm{O}: \mathrm{I})=$ $\underset{M}{\operatorname{ann}} I$ for some $I \leq R$. Equivalently, $L=(O \underset{M}{:(O: L} \underset{R}{ }))=\underset{M}{\operatorname{ann}} \underset{R}{\operatorname{ann}} L$, see [5].
where $(\mathrm{O}: \mathrm{I})=\{\mathrm{m} \in \mathrm{M}: \operatorname{Im}=(0)\},(\mathrm{O}: \mathrm{L})=\{\mathrm{r} \in \mathrm{R}: \mathrm{rL}=(0)\}$.

Ibn Al-Haitham Journal for Pure and Applied Science						مجلة إبن الهيثم للعوم الصرفة و التطبيقبة					
No.	3	Vol.	25	Year	2012	2012	السنة	25	المجلد	3	العدد

Examples:

1. $\mathrm{Z}_{\mathrm{p}^{\infty}}$ as Z -module is comultiplication, since for each $\mathrm{L} \leq \mathrm{Z}_{\mathrm{p}^{\infty}} \mathrm{L}=\left\langle\frac{1}{\mathrm{p}^{\mathrm{i}}}+\mathrm{Z}\right\rangle$, then ${\underset{Z_{p}}{ }}_{\operatorname{ann}} \operatorname{ann}_{Z} L=L$ for some $i \in Z_{+}$.
2. Z as Z -module is not comultiplication, since if $\mathrm{L}=3 \mathrm{Z}$, then $\underset{\mathrm{Z}}{\operatorname{ann}} \operatorname{ann}_{\mathrm{Z}} 3 \mathrm{Z}=\mathrm{Z} \neq 3 \mathrm{Z}$.
3. Z_{n} as Z -module is comultiplication.

Proof:

Let $\mathrm{L} \leq \mathrm{M}$. Then $\mathrm{L}=<\overline{\mathrm{m}}>$ and m / n, that is $\mathrm{n}=\mathrm{mk}$ for some $\mathrm{k} \in \mathrm{Z}$. Hence $\operatorname{ann}_{\mathrm{Z}}<\overline{\mathrm{m}}>=<\mathrm{k}>$ and $\underset{\mathrm{Z}}{\mathrm{ann}}<\mathrm{k}>=<\overline{\mathrm{m}}>=\mathrm{L}$. Thus $\mathrm{L}=\underset{\mathrm{Z}_{\mathrm{n}}}{\operatorname{ann}} \operatorname{ann}_{\mathrm{Z}} \mathrm{L}$.

Recall that a non-zero submodule N of an R -module M is said to be second submodule of M if for each $\mathrm{r} \in \mathrm{R}$, the homothety r^{*} on N is either zero or surjective. Equivalently, $\mathrm{rN}=$ $<0>$ or $\mathrm{rN}=\mathrm{N}$ for each $\mathrm{r} \in \mathrm{R}$, see [6].
where the homothety r^{*} is an R-endomorphism on N, means $r^{*}(x)=r x$ for each $x \in N$.
A submodule N of an R -module M is said to be strongly irreducible (briefly, SIsubmodule) if for any $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}, \mathrm{L}_{1} \cap \mathrm{~L}_{2} \subseteq \mathrm{~N}$, then $\mathrm{L}_{1} \subseteq \mathrm{~N}$ or $\mathrm{L}_{2} \subseteq \mathrm{~N}$, see [7].

Examples:

1. 6 Z is not SI-submodule of Z as Z -module since $6 \mathrm{Z} \supseteq 2 \mathrm{Z} \cap 3 \mathrm{Z}$, but $6 \mathrm{Z} \nsupseteq 2 \mathrm{Z}, 6 \mathrm{Z} \nsupseteq 3 \mathrm{Z}$.
2. It is clear that every submodule of chained module is SI.

We state the following proposition which is needed in the next two results.

Proposition:

Let M be a comultiplication R-module, and $\mathrm{N} \leq \mathrm{M}$ such that $\underset{\mathrm{R}}{\operatorname{ann}} \mathrm{N}$ is prime ideal. Then N is a SH -submodule.

Proof:

Let $N \subseteq L_{1}+L_{2}$, where $L_{1}, L_{2} \leq M$. Since M is comultiplication, $L_{1}=\underset{M}{\operatorname{ann}} I_{1}, L_{2}=\underset{M}{\operatorname{ann}} I_{2}$ for some ideals I_{1} and I_{2} of R. Then $N \subseteq \underset{M}{\operatorname{ann}} I_{1}+\underset{M}{\operatorname{ann}} I_{2} \subseteq \operatorname{ann}_{M}\left(I_{1} \cap I_{2}\right)$, that is $N \subseteq \underset{M}{\operatorname{ann}}\left(I_{1} \cap\right.$ I_{2}). So $\underset{R}{\operatorname{ann}} N \supseteq \underset{R}{\operatorname{ann}} \operatorname{ann}_{M}\left(I_{1} \cap I_{2}\right) \supseteq I_{1} \cap I_{2}$. But $\underset{R}{\operatorname{ann}} N$ is prime so $\underset{R}{\operatorname{ann}} N$ is SI-ideal, hence
 $\subseteq \mathrm{L}_{1}$ or $\quad \mathrm{N} \subseteq \mathrm{L}_{2}$, that is N is SH .

The following result is given in [1]. However we get it directly by Proposition 1.7.

Corollary:

Let M be a comultiplication R -module, and $\mathrm{N} \leq \mathrm{M}$. Then

1. N is a second submodule implies N is SH .
2. N is a finitely generated second submodule, implies N is CH .

Proof:

(1) Since N is second, then $\underset{R}{ } N$ is a prime ideal by [6]. Hence the result is obtained by Proposition 1.7.
(2) By part (1) N is SH. But N is finitely generated, so $N=\sum_{i=1}^{n} R x_{i}$ for some x_{1}, \ldots, x_{n}. Hence $\mathrm{N} \subseteq \mathrm{Rx}_{\mathrm{i}}$ for some $\mathrm{i}=1, \ldots, \mathrm{n}$. But $\mathrm{Rx}_{\mathrm{i}} \subseteq \mathrm{N}$. Thus $\mathrm{N}=\mathrm{Rx}_{\mathrm{i}}$.

مجلة إبن الهيثّم للعلوم الصرفة و التطبيقية					
2012	السنة	25	المجلد	3	دا

Corollary:

Let M be a comultiplication R -module, and let N be a simple submodule. Then N is SH .

Proof:

It is clear that every simple submodule is second, hence the result follows by corollary 1.8 (1).

Recall that an R-module M is said to be prime if $\underset{R}{\operatorname{ann}} M=\underset{R}{\operatorname{ann}} N$ for every non-zero submodule N of M ., see [8].
If M is a prime R -module, then ${\underset{\mathrm{R}}{ }}_{\operatorname{ann}}^{\mathrm{M}}$ is prime by [8].
An R-module M is called a quasi-prime if $\underset{R}{\operatorname{ann}} \mathrm{~N}$ is a prime for each non-zero submodule N of M, see [9, Definition 1.2.1].
Notice that every prime R-module M is quasi-prime by [9, Remark 1.2.2].

Corollary:

Let M be a comultiplication prime (or quasi-prime) R-module. Then every non-zero submodule is SH .

Proof:

Since M is prime (or quasi-prime) implies $\underset{R}{ } \operatorname{ann}_{\mathrm{R}} \mathrm{N}$ is prime ideal for each non-zero submodule N of M. Hence the result follows from Proposition 1.7.

Proposition:

Let M be a distributive R -module, and $\langle 0\rangle \neq \mathrm{N} \leq \mathrm{M}$. If N is a simple submodule of M , then N is SH .

Proof:

Assume N is simple, $\mathrm{N} \leq \mathrm{L}_{1}+\mathrm{L}_{2}$ where $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}$. Hence
$\mathrm{N}=\mathrm{N} \cap\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)$
$=\left(\mathrm{N} \cap \mathrm{L}_{1}\right)+\left(\mathrm{N} \cap \mathrm{L}_{2}\right)$, since M is distributive.
Then ($\mathrm{N} \cap \mathrm{L}_{1}=<0>$ or $\mathrm{N} \cap \mathrm{L}_{1}=\mathrm{N}$) and ($\mathrm{N} \cap \mathrm{L}_{2}=<0>$ or $\mathrm{N} \cap \mathrm{L}_{2}=\mathrm{N}$). But $\mathrm{N} \neq 0$. So we have only three possible cases
(1) $\mathrm{N} \cap \mathrm{L}_{1}=\langle 0\rangle, \mathrm{N} \subseteq \mathrm{L}_{2}$.
(2) $\mathrm{N} \cap \mathrm{L}_{2}=\langle 0\rangle, \mathrm{N} \subseteq \mathrm{L}_{1}$.
(3) $\mathrm{N} \subseteq \mathrm{L}_{1}, \mathrm{~N} \subseteq \mathrm{~L}_{2}$.

Thus either $\mathrm{N} \subseteq \mathrm{L}_{1}$ or $\mathrm{N} \subseteq \mathrm{L}_{2}$; that is N is SH .

Remark:

The condition M is distributive or comultiplication is necessary condition in Proposition 1.11 and Corollary 1.9.

As we have seen in Remark $1.4(11)(\mathrm{b}), \mathrm{N}=\mathbb{R}_{(1,0)}$ and N is simple but not SH . Moreover the vector space \mathbb{R}^{2} over \mathbb{R} is not distributive since $\mathbb{R}^{2}=\mathbb{R}_{(1,1)}+\mathbb{R}_{(1,-1)}$ and $N \cap \mathbb{R}^{2}=N$, but $\left(N \cap \mathbb{R}_{(1,1)}\right)+\left(N \cap \mathbb{R}_{(1,-1)}\right)=\{(0,0)\}$. Thus \mathbb{R}^{2} is not distributive.
Also \mathbb{R}^{2} is not comultiplication R -module. For if $\mathrm{L}=\mathbb{R}_{(1,1)}$, then ann $\mathrm{L}=\{0\}$ and $\underset{\square^{2}}{\operatorname{ann}}\{0\}=\square^{2}$, thus $L \neq \underset{\square^{2}}{\operatorname{ann}} \operatorname{ann} L$.

Now we introduce the following concept.

Definition:

Let $\langle 0\rangle \neq \mathrm{L} \leq \mathrm{M}$, L is called a quasi-hollow submodule (briefly qH-submodule) if for each $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}$ with $\mathrm{L}=\mathrm{L}_{1}+\mathrm{L}_{2}$, then $\mathrm{L}=\mathrm{L}_{1}$ or $\mathrm{L}=\mathrm{L}_{2}$.
An R -module M is said a quasi-hollow module if M is a quasi-hollow submodule.

Remark:

Let $<0\rangle \neq \mathrm{L} \leq \mathrm{M}, \mathrm{L}$ is a quasi-hollow submodule if for each $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{n}}$ with $\mathrm{L}=\mathrm{L}_{1}+$ $\ldots+\mathrm{L}_{\mathrm{n}}$, then $\mathrm{L}=\mathrm{L}_{1}$ or \ldots or $\mathrm{L}=\mathrm{L}_{\mathrm{n}}$.

Remarks and Examples:

1. It is clear that every CH -submodule is qH -submodule. The converse is not true. For example the Z -module $\mathrm{Z}_{\mathrm{p}^{\infty}}$ is qH -module (qH -submodule of itself) since there is no $\mathrm{L}_{1} \varsubsetneqq \mathrm{M}$ and $\mathrm{L}_{2} ¥ \mathrm{M}$ such that $\mathrm{Z}_{\mathrm{p}^{\infty}}=\mathrm{L}_{1}+\mathrm{L}_{2}$. But by Remark 1.4(11)(b) $\mathrm{Z}_{\mathrm{p}^{\infty}}$ is not CH.
2. Every simple submodule of an R -module is qH -submodule.
3. Every SH-submodule is qH -submodule.

The converse is not true in general, for example in the vector space \mathbb{R}^{2} over \mathbb{R}, $\mathrm{N}=\mathbb{R}_{(1,0)}$ is simple submodule, so by Remark $1.15(2)$, N is qH , but it is not SH by Remark 1.4(11)(b).
4. If M is chained, then every submodule is qH .

Proof:

It follows by Remark 1.4(7) and Remark 1.15(3).
5. Let M be an R -module. Then M is a qH -module if and only if M is SH if and only if M is hollow.
where M is hollow if every proper submodule N of M is small.
That is there is no proper submodule W of M such that $\mathrm{N}+\mathrm{W}=\mathrm{M}$.
Equivalently, for every submodules N, W such that $\mathrm{N} \leqq \mathrm{M}, \mathrm{W} \leqq \mathrm{M}$ implies $\mathrm{N}+\mathrm{W} \leqq \mathrm{M}$.
6. Let M be CH (qH or SH) R-module, then there is no submodules N, W of M such that $\mathrm{M}=\mathrm{N} \oplus \mathrm{W}$.
7. Consider Z_{48} as Z-module. Each of $\langle\overline{2}\rangle,\langle\overline{4}\rangle,\langle\overline{8}\rangle$ and Z_{48} is not qH , not SH. Each of $\langle\overline{3}\rangle,\langle\overline{6}\rangle,\langle\overline{12}\rangle,\langle\overline{24}\rangle$ is qH and SH.
8. Consider $\mathrm{M}=\mathrm{Z}_{4} \oplus \mathrm{Z}_{2}$ as Z -module.

Each of $\left\langle\overline{0}>\oplus \mathrm{Z}_{2}, \mathrm{Z}_{4} \oplus<\overline{0}>,<\overline{2}>\oplus<\overline{0}>\right.$ is qH and SH, and each of $\mathrm{Z}_{2} \oplus \mathrm{Z}_{4},<\overline{2}>\oplus \mathrm{Z}_{2}$ is not qH , not SH .
9. Let $<0\rangle \neq \mathrm{L} \leq \mathrm{M}$ as R -module. Let $\mathrm{N} \leq \mathrm{L}$. If L is qH -submodule, then N need not be qH . For example, Z -module Z_{48} where $<\overline{3}>$ is qH , but $<\overline{0}>$ is not qH .
10. Let $<0\rangle \neq \mathrm{L} \leq \mathrm{W} \leq \mathrm{M}$ as R -module. If L is qH , then W need not be qH . For example, $\mathrm{M}=\mathrm{Z}_{4} \oplus \mathrm{Z}_{2}$ as Z -module, where $<\overline{0}>\oplus \mathrm{Z}_{2}$ is qH and $<\overline{0}>\oplus \mathrm{Z}_{2} \subseteq<\overline{2}>\oplus \mathrm{Z}_{2}$. But $<\overline{2}>\oplus \mathrm{Z}_{2}$ is not qH .
11. If L_{1}, L_{2} are $q H$ of an R-module M, then $L_{1}+L_{2}$ need not be $q H$. For example, $\mathrm{L}_{1}=<\overline{0}>\oplus \mathrm{Z}_{2}, \mathrm{~L}_{2}=\mathrm{Z}_{4} \oplus<\overline{0}>$ are qH of $\mathrm{M}=\mathrm{Z}_{4} \oplus \mathrm{Z}_{2}$ as Z-module. But $\mathrm{L}_{1}+\mathrm{L}_{2}=\mathrm{M}$ is not qH.
12. Let R be a ring. If A and B are $q H(S H)$-ideals. Then $A B$ need not be $q H(S H)$-ideals of R. For example $\left\langle\overline{2}>\right.$ and $<\overline{3}>$ are $\mathrm{qH}(\mathrm{SH})$-ideals of the ring Z_{6}. But $\langle\overline{2}>\cdot\langle\overline{3}>=<\overline{0}>$ is not SH, not qH.

Now we find that under the class of distributive of modules, the concepts, qH submodules and SH-submodules are equivalent, as the following proposition shows:

Proposition:

Let M be distributive R-module, and $0 \neq \mathrm{N} \leqq \mathrm{M}$. Then N is SH-submodule if and only if N is qH -submodule.

Ibn Al-Haitham Journal for Pure and Applied Science						مجلة إبن الهيثم للعلوم الصرفة و التط					
No.	3	Vol.	25	Year	2012	2012	السنة	25	المجلد	3	العدد

Proof:

(\Rightarrow) Clear by Remark 1.15(3).
(\Leftarrow) Assume N is qH-submodule. Let $\mathrm{N} \subseteq \mathrm{L}_{1}+\mathrm{L}_{2}$ where $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}$. Then $\mathrm{N}=\mathrm{N} \cap\left(\mathrm{L}_{1}+\right.$ L_{2}), so $N=\left(N \cap L_{1}\right)+\left(N \cap L_{2}\right)$, since M is distributive. Then $N=N \cap L_{1}$ or $N=N \cap L_{2}$ since N is qH . It follows that either $\mathrm{N} \subseteq \mathrm{L}_{1}$ or $\mathrm{N} \subseteq \mathrm{L}_{2}$. Hence N is a SH-submodule.

Corollary:

Let M be distributive R-module, and $<0>\neq \mathrm{N} \varsubsetneqq \mathrm{M}$. If N is CH -submodule, then N is SH . Proof:

It follows by Remark 1.15(1) and previous proposition.
Remark:
Let M be an R -module, $\mathrm{N} \subseteq \mathrm{K} \subseteq \mathrm{M}$. If N is $\mathrm{SH}(\mathrm{qH})$-submodule in M , then N is $\mathrm{SH}(\mathrm{qH})$ in K.
Proof: It is clear
The converse of this remark is true under the class of distributive module as follows:

Proposition:

Let M be a distributive R -module. Let $\mathrm{N} \subseteq \mathrm{K} \subseteq \mathrm{M}$. Then N is $\mathrm{SH}(\mathrm{qH})$-submodule in M if and only if N is $\mathrm{SH}(\mathrm{qH})$ in K .

Proof:

$(\Rightarrow$) It follows by previous remark.
(\Leftarrow) Assume N is SH -submodule in K . Let $\mathrm{N} \subseteq \mathrm{L}_{1}+\mathrm{L}_{2}$ where $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}$. Since $\mathrm{N} \subseteq \mathrm{K}$ then $\mathrm{N}=\mathrm{N} \cap \mathrm{K} \subseteq\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right) \cap \mathrm{K}$

$$
=\left(\mathrm{L}_{1} \cap \mathrm{~K}\right)+\left(\mathrm{L}_{2} \cap \mathrm{~K}\right) \text {, since } \mathrm{M} \text { is distributive }
$$

So $N \subseteq\left(L_{1} \cap K\right)+\left(L_{2} \cap K\right)$. Then $N \subseteq L_{1} \cap K$ or $N \subseteq L_{2} \cap K$, since N is SH in K.
Then $\mathrm{N} \subseteq \mathrm{L}_{1}$ or $\mathrm{N} \subseteq \mathrm{L}_{2}$. Thus N is SH in M .
By a similar proof, if N is qH in K , then N is qH in M .
Now we turn our attention to image and inverse image of SH, qH and CH -submodules.

Proposition:

Let M and M^{\prime} be R -modules and N be a SH-submodule of M . If $f: \mathrm{M} \longrightarrow \mathrm{M}^{\prime}$ be an R epimorphism, then $f(\mathrm{~N})$ is SH-submodule of M'.

Proof:

Let $f(\mathrm{~N}) \subseteq \mathrm{L}_{1}+\mathrm{L}_{2}$ where $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}^{\prime}$. Then $\mathrm{N} \subseteq f^{-1} f(\mathrm{~N}) \subseteq f^{-1}\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right)$. But
$f^{-1}\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right)=f^{-1}\left(\mathrm{~L}_{1}\right)+f^{-1}\left(\mathrm{~L}_{2}\right)$ see $[2,3.1 .10(\mathrm{c})]$, so $\mathrm{N} \subseteq f^{-1}\left(\mathrm{~L}_{1}\right)+f^{-1}\left(\mathrm{~L}_{2}\right)$, then $\mathrm{N} \subseteq f^{-}$ ${ }^{1}\left(\mathrm{~L}_{1}\right)$ or $\mathrm{N} \subseteq f^{-1}\left(\mathrm{~L}_{2}\right)$. It follows $f(\mathrm{~N}) \subseteq f f^{-1}\left(\mathrm{~L}_{1}\right)=\mathrm{L}_{1}$ or $f(\mathrm{~N}) \subseteq f f^{-1}\left(\mathrm{~L}_{2}\right)=\mathrm{L}_{2}$. Hence $f(\mathrm{~N})$ $\subseteq \mathrm{L}_{1}$ or $\quad f(\mathrm{~N}) \subseteq \mathrm{L}_{2}$.

The condition f is an epimorphism is necessary in Proposition 1.20, for example, Let $f: \mathrm{Z}_{12} \longrightarrow \mathrm{Z}_{12}, f(\mathrm{x})=4 \mathrm{x}$ fo each $\mathrm{x} \in \mathrm{Z}_{12}$, where Z_{12} considered as Z -module. It is clear that f is not epimorphism. Let $\mathrm{N}=\langle\overline{3}\rangle$, N is a SH submodule of Z_{12}. But $f(\mathrm{~N})=\langle\overline{0}\rangle$ is not SH.

1.21 Corollary:

Let N be a SH-submodule of an R -module M . Let $\mathrm{L} \varsubsetneqq \mathrm{N}$, then N / L is SH-submodule of M/L.

Corollary:

Let $\mathrm{M} \cong \mathrm{M}$ ' be R -module, if $\mathrm{N} \leq \mathrm{M}$. Then N is a SH-submodule of M iff $f(\mathrm{~N})$ is a SHsubmodule of M^{\prime}.

Proposition:

Let M and M^{\prime} be R -modules and $f: \mathrm{M} \longrightarrow \mathrm{M}^{\prime}$ be an isomorphism, Let $<0>\neq \mathrm{N} \leq \mathrm{M}$. If N is $\mathrm{qH}(\mathrm{CH})$-sbmodule of M , then $f(\mathrm{~N})$ is $\mathrm{qH}(\mathrm{CH})$-submodule of M^{\prime}.

Ibn Al-Haitham Journal for Pure and Applied Science						مجلة إبن الهيثم للعلوم الصرفة و التط					
No.	3	Vol.	25	Year	2012	2012	السنة	25	المجلد	3	العدد

Proof:

If N is qH-submodule of M. Assume $f(N)=W_{1}+W_{2}$ for some $W_{1}, W_{2} \leq M^{\prime}$. Since f is isomorphism, so $\mathrm{W}_{1}=f\left(\mathrm{~L}_{1}\right), \mathrm{W}_{2}=f\left(\mathrm{~L}_{2}\right)$ for some $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}$. Thus $f(\mathrm{~N})=f\left(\mathrm{~L}_{1}\right)+f\left(\mathrm{~L}_{2}\right)$. But $f\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right)=f\left(\mathrm{~L}_{1}\right)+f\left(\mathrm{~L}_{2}\right)$, see [2, 3.1.10(a)]. Then $f(\mathrm{~N})=f\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right)$. Since f is monomorphism, we get $\mathrm{N}=\mathrm{L}_{1}+\mathrm{L}_{2}$. It follows that $\mathrm{N}=\mathrm{L}_{1}$ or $\mathrm{N}=\mathrm{L}_{2}$. Hence $f(\mathrm{~N})=f\left(\mathrm{~L}_{1}\right)$ $=\mathrm{W}_{1}$ or $\quad f(\mathrm{~N})=f\left(\mathrm{~L}_{2}\right)=\mathrm{W}_{2}$. By a similar proof, N is CH -submodule of M implies $f(\mathrm{~N})$ is CH of M^{\prime}.

Proposition:

Let $f: \mathrm{M} \longrightarrow \mathrm{M}^{\prime}$ be an isomorphism R -module. If K is $\mathrm{SH}(\mathrm{qH}$ or CH$)$-submodule of M^{\prime}, then $f^{-1}(\mathrm{~K})$ is $\mathrm{SH}(\mathrm{qH}$ or CH$)$-submodule of M .

Proof:

Assume K is SH in M^{\prime}. Let $f^{-1}(\mathrm{~K}) \subseteq \mathrm{L}_{1}+\mathrm{L}_{2}$ where $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}$. Then $f f^{-1}(\mathrm{~K}) \subseteq f\left(\mathrm{~L}_{1}+\right.$ $\left.\mathrm{L}_{2}\right)=f\left(\mathrm{~L}_{1}\right)+f\left(\mathrm{~L}_{2}\right)$, see $\left[2,3.1 \cdot 10(\right.$ a) $]$. Since f is epimorphism $\mathrm{K}=f f^{-1}(\mathrm{~K}) \subseteq f\left(\mathrm{~L}_{1}\right)+f\left(\mathrm{~L}_{2}\right)$. So $\mathrm{K} \subseteq f\left(\mathrm{~L}_{1}\right)$ or $\mathrm{K} \subseteq f\left(\mathrm{~L}_{2}\right)$. Thus $f^{-1}(\mathrm{~K}) \subseteq f f^{-1}\left(\mathrm{~L}_{1}\right)=\mathrm{L}_{1}$ or $f^{-1}(\mathrm{~K}) \subseteq f f^{-1}\left(\mathrm{~L}_{2}\right)=\mathrm{L}_{2}$. Since f is monomorphism. Hence $f^{-1}(\mathrm{~K}) \subseteq \mathrm{L}_{1}$ or $f^{-1}(\mathrm{~K}) \subseteq \mathrm{L}_{2}$.
By a similar proof, K is $\mathrm{qH}(\mathrm{CH})$ of M^{\prime}, then $f^{-1}(\mathrm{~K})$ is $\mathrm{qH}(\mathrm{CH})$.
The condition that f is an isomorphism is necessary in Proposition 1.24. For example, Consider the Z -module Z and let $\pi: \mathrm{Z} \longrightarrow \mathrm{Z} /<4>\simeq \mathrm{Z}_{4}$ be the natural projection. Let $\mathrm{K}=\langle\overline{2}\rangle \subseteq \mathrm{Z}_{4}, \mathrm{~K}$ is $\mathrm{SH}(\mathrm{qH}$ or CH$)$ of Z_{4}. But $\pi^{-1}(\mathrm{k})=2 \mathrm{Z}$ is not SH (not qH , not CH) in Z .

Now we give the next result of this section.

Proposition:

Let $\mathrm{M}_{1}, \mathrm{M}_{2}$ be R-modules. Let $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$, and let $\langle 0\rangle \neq \mathrm{K} \subseteq \mathrm{M}_{1} \oplus \mathrm{M}_{2}$. If $\mathrm{K}=\mathrm{N} \oplus \mathrm{W}$ for some $\mathrm{N} \leq \mathrm{M}_{1}, \mathrm{~W} \leq \mathrm{M}_{2}$ such that K is $\mathrm{SH}(\mathrm{qH})$-submodule. Then N is $\mathrm{SH}(\mathrm{qH})$ of M_{1} and W is $\mathrm{SH}(\mathrm{qH})$ of M_{2}.

Proof:

Assume $\mathrm{K}=\mathrm{N} \oplus \mathrm{W}, \mathrm{K}$ is a SH submodule in $\mathrm{M}, \mathrm{K}=(\mathrm{N} \oplus<0>)+(<0>\oplus \mathrm{W})$, so $K=N \oplus<0>$ or $K=<0>\oplus W$ since K is SH of M. If $K=N \oplus<0>$. We claim that N is SH of M_{1}. Assume $\mathrm{N} \subseteq \mathrm{L}_{1}+\mathrm{L}_{2}$ where $\mathrm{L}_{1}, \mathrm{~L}_{2} \leq \mathrm{M}_{1}$. So $\mathrm{K} \subseteq\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right) \oplus<0>$.
Then $\mathrm{K} \subseteq\left(\mathrm{L}_{1} \oplus<0>\right)+\left(\mathrm{L}_{2} \oplus<0>\right)$. Then $\mathrm{K} \subseteq \mathrm{L}_{1} \oplus<0>$ or $\mathrm{K} \subseteq \mathrm{L}_{2} \oplus<0>$. Thus $\mathrm{N} \oplus<0>\subseteq \mathrm{L}_{1} \oplus<0>$ or $\mathrm{N} \oplus<0>\subseteq \mathrm{L}_{2} \oplus<0>$. Hence $\mathrm{N} \leq \mathrm{L}_{1}$ or $\mathrm{N} \leq \mathrm{L}_{2}$. Then N is SH of M_{1}.
Similarly, if $\mathrm{K}=<0>\oplus \mathrm{W}$, then W is SH of M_{2}.
By a similar proof, if K is qH , then N, W are qH in $\mathrm{M}_{1}, \mathrm{M}_{2}$ respectively.
The converse of Proposition 1.25 is not true in general.
For example in Z-module $\mathrm{M}=\mathrm{Z}_{4} \oplus \mathrm{Z}_{6}$. If $\mathrm{K}=\langle\overline{2}\rangle \oplus\langle\overline{3}\rangle$, then K is not SH (not qH). But $<\overline{2}>$ is $\mathrm{SH}(\mathrm{qH})$ in Z_{4} and $<\overline{3}>$ is $\mathrm{SH}(\mathrm{qH})$ in Z_{6}.

2- $\mathbf{S H}$ and $\mathbf{q H}(\mathbf{C H})$-Submodules and Multiplication Modules

In this section, we introduce some properties of SH and $\mathrm{qH}(\mathrm{CH})$ submodles in the class of multiplication modules.
Recall that an R-module M is called multiplication if every $\mathrm{N} \leq \mathrm{M}$, N is of the form $\mathrm{N}=\mathrm{IM}$ for some ideal $I \leq R$. Equivalently, $N=(N: M) \cdot M$, where $(N: M)=\{r \in R, r M \subseteq N\}$, see [4].

Proposition:

Let M be a faithful finitely generated multiplication R -module, $\mathrm{N} \leq \mathrm{M}$. Then the following statements are equivalent:
(1) N is $\mathrm{SH}(\mathrm{qH})$-submodule.

Ibn Al-Haitham Journal for Pure and Applied Science						مجلة إبن الهيثم للعلوم الصرفة و التط					
No.	3	Vol.	25	Year	2012	2012	السنة	25	المجلد	3	العدد

(2) $\left(\mathrm{N}_{\mathrm{R}}: \mathrm{M}\right)$ is $\mathrm{SH}(\mathrm{qH})$-ideal.
(3) $\mathrm{N}=\mathrm{IM}$, I is $\mathrm{SH}(\mathrm{qH})$-ideal for some $\langle 0\rangle \neq \mathrm{I} \leq \mathrm{R}$.

Proof:

$\mathbf{(1)} \Rightarrow \mathbf{(2)}$ Assume N is a SH-submodule of M, and let $(N: M) \subseteq I_{1}+I_{2}$ where I_{1}, I_{2} are ideals of R. Then $\left(N_{R}: M\right) \cdot M \subseteq\left(I_{1}+I_{2}\right) \cdot M$. But $\left(I_{1}+I_{2}\right) \cdot M=I_{1} M+I_{2} M$ since M is finitely generated. It follows $(N: M) \cdot M \subseteq I_{1} M+I_{2} M$. But $\left(N_{\dot{R}}: M\right) \cdot M=N$ since M is multiplication. Then $\mathrm{N} \subseteq \mathrm{I}_{1} \mathrm{M}+\mathrm{I}_{2} \mathrm{M}$, so either $\mathrm{N} \subseteq \mathrm{I}_{1} \mathrm{M}$ or $\mathrm{N} \subseteq \mathrm{I}_{2} \mathrm{M}$, that is $(\mathrm{N}: \mathrm{R}) \cdot \mathrm{M} \subseteq \mathrm{I}_{1} \mathrm{M}$ or $(\mathrm{N}: \mathrm{R}) \cdot \mathrm{M} \subseteq$ $I_{2} M$. Thus $\left(N_{R}: M\right) \subseteq I_{1}$ or $(N: M) \subseteq I_{2}$ by [10, Theorem 3.1]. Hence $(N: M)$ is a SH-ideal of R.

By a similar proof, $(\mathrm{N}: \mathrm{R})$ is qH -ideal if N is qH .
(2) \Rightarrow (3) Assume $(N: M)$ is SH-ideal. Put $I=(N: M)$. Since M is multiplication, then $\mathrm{N}=(\underset{\mathrm{R}}{ }: \mathrm{M}) \cdot \mathrm{M}$. Hence $\mathrm{N}=\mathrm{IM}$, and I is a SH-ideal. Similarly I is a qH -ideal.
(3) \Rightarrow (1) Assume that $N=I M$ for some SH-ideal I of R, and let $N \subseteq L_{1}+L_{2}$ where $L_{1}, L_{2} \leq$ M. But $L_{1}=I_{1} M, L_{2}=I_{2} M$ since M is multiplication for some ideals I_{1}, I_{2} of R. So $\mathrm{IM} \subseteq \mathrm{I}_{1} \mathrm{M}+\mathrm{I}_{2} \mathrm{M} \subseteq\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \cdot \mathrm{M}$, since M is finitely generated. Then $\mathrm{IM} \subseteq\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \cdot \mathrm{M}$, so $\mathrm{I} \subseteq \mathrm{I}_{1}+$ I_{2} by [10, Theorem 3.1].
So that either $\mathrm{I} \subseteq \mathrm{I}_{1}$ or $\mathrm{I} \subseteq \mathrm{I}_{2}$, which implies $\mathrm{IM} \subseteq \mathrm{I}_{1} \mathrm{M}$ or $\mathrm{IM} \subseteq \mathrm{I}_{2} \mathrm{M}$. Hence $\mathrm{N} \subseteq \mathrm{L}_{1}$ or $\mathrm{N} \subseteq$ L_{2}. Thus N is SH .
Similarly N is qH .
The condition M is faithful is necessary in Proposition 2.1. Fot example, the Z-module Z_{6} is finitely generated multiplication, but not faithful, let $\mathrm{N}=\langle\overline{2}\rangle, \mathrm{N}$ is SH^{2} of Z_{6}, but $(\mathrm{N}: \mathrm{Z})=\left(<\overline{2}>{ }_{\dot{Z}} \mathrm{Z}_{6}\right)=2 \mathrm{Z}$ is not SH of Z .

Corollary:

Let M be a finitely generated faithful multiplication R-module. Then every non-zero submodule of M is $\mathrm{SH}(\mathrm{qH})$ if and only if every non-zero ideal of R is $\mathrm{SH}(\mathrm{qH})$.

Proposition:

Let M be a faithful finitely generated multiplication R -module. Then R satisfies acc(dcc) on SH-ideals if and only if M satisfies acc(dcc) on SH-submodules.

Proof:

\Rightarrow We take the case of acc.
Let $\mathrm{L}_{1} \subseteq \mathrm{~L}_{2} \ldots$ be an ascending chain of SH-submodules of M . Since L_{i} is SH-submodule, then $\left(L_{i}: M\right)$ is SH-ideal for each $i=1,2, \ldots$ by Proposition 2.1 , and $\left(L_{1}: M\right) \subseteq\left(L_{R}: M\right) \subseteq \ldots$ by [10,Theorem 3.1]. But R satisfies acc on any ascending chain of SH-ideals. So ther exists n $\in Z_{+}$such that $\left(L_{n}: M\right)=\left(L_{R}+1_{R}: M\right)=\ldots$ Then $\left(L_{n}: M\right) \cdot M=\left(L_{R}+1: M\right) \cdot M=\ldots$. Thus $\mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{n}+1}=\ldots$ for some $\mathrm{n} \in \mathrm{Z}_{+}$. Hence M satisfies acc on SH-submodules.
\Leftarrow The proof is similar.

SH, qH(CH)-Submodules and Other Related Concepts

Recall that an R-module M is called scalar if for each $f \in \operatorname{End}_{R}(M)$, there exists $r \in R$ such that $f(x)=r x$ for all $x \in M$, see [11].

Proposition:

Let M be a scalar R-module and R is $\mathrm{SH}-$ ring, then $\operatorname{End}_{\mathrm{R}}(\mathrm{M})$ is SH-ring.

Ibn Al-Haitham Journal for Pure and Applied Science						مجلة إبن الهيثّم للعلوم الصرفة و التطبيقية					
No.	3	Vol.	25	Year	2012	2012	اللمنة	25	المجلد	3	العدد

Proof:

Since M is a scalar R-module, then $\operatorname{End}_{R}(M) \simeq R / \underset{R}{ } \operatorname{ann} M$, see [12, Lemma 3.6.1]. Since R is SH-ring, then $\mathrm{R} / \underset{\mathrm{R}}{\operatorname{ann}} \mathrm{M}$ is SH-ring by Corollary 1.21. Thus $\operatorname{End}_{\mathrm{R}}(\mathrm{M})$ is SH-ring by Corollary 1.22.

Corollary:

Let M be a finitely generated multiplication module over SH-ring. Then $\operatorname{End}_{R}(M)$ is SHring.

Proof:

Since M is finitely generated multiplication, then M is scalar, see [11]. Hence the result is obtained by Proposition 3.1.

Next we shall prove in the class of comultiplication prime modules, every submodule of M is $\mathrm{SH}(\mathrm{qH})$-module. But first we prove the following proposition and lemma.

Proposition:

Let M be a comultiplication R-module. If M is prime (quasi-prime or second). Then M is hollow.
Proof:
Since M is prime (quasi-prime or second), then $\underset{R}{\operatorname{ann}} M$ is prime, see [8], [9], [6]. And $\operatorname{End}_{R}(M)$ is domain, see [5, Corollary 3.21]. Hence M is hollow, see [5, Theorem 3.24].

Lemma:

Let M be a comultiplication R -module and $\mathrm{N} \leq \mathrm{M}$. Then N is a comultiplication Rmodule.

Proof:

Let $\mathrm{W} \leq \mathrm{N}$. So W is a submodule of M . Then there exists $\mathrm{I} \leq \mathrm{R}$ such that $\mathrm{W}=\underset{\mathrm{M}}{\mathrm{ann}} \mathrm{I}$. We claim that $\mathrm{W}=\underset{\mathrm{N}}{\operatorname{ann}} \mathrm{I}$. To prove our assertion. Let $\mathrm{m} \in \mathrm{W}($ so, $\mathrm{m} \in \mathrm{N}$). Hence $\mathrm{mI}=0$, so $m \in \underset{N}{\operatorname{ann}} I$. Now let $m \in \underset{N}{a n n} I$, so $m \in N$ and $m I=0, m \in M$. Thus $m \in \underset{M}{a n n} I$. Then $w=$ $\operatorname{ann}_{\mathrm{N}} \mathrm{I}$. Henc N is comultiplication.

Theorem:

Let M be a comultiplication prime R-module. Then every non-zero submodule of M is a SH(qH) R-module.

Proof:

Since M is comultiplication prime, then by Proposition 3.3, M is hollow. Let N be a nonzero submodule of M , then N is comultiplication by Lemma 3.4. But M is prime implies N is a prime R-module. Thus N is a hollow R-module by Proposition 3.3. Hence N is $\mathrm{qH}(\mathrm{SH})$-Rmodule, see Remark 1.15(5).

Corollary:

Let M be a comultiplication prime R -module. Then every non-zero submodule of M is qH-sumodule of M .

References

1. Abuhlail, J.Y. (2011) Zariski Topologies for Coprime and Second Submodules, Deanshib of Scientific Research at King Fahad University of Peroleum and Minerals February 4.
2. Kasch, F. (1982) Modules and Rings, Acadimic Press, London.
3. Osofsky, B.L. (1991) A Contruction of Non Standard Uniserial Modules Over Valuation Domains, Bulletin Amer. Math.Soc., 25:89-97.
4. Barnard, A. (1981) Multiplication Modules, J.Algebra, 71:174-178.

5. Ansari Toroghy, H. and Farshadifar, F. (2007) The Dual Notion of Multiplication Modules, Taiwanese J.Math., 11(4):1189-1201.
6. Yassemi, S. (2001) The Dual Notion of Prime Submodules, Arch.Math. (Brno) 37:273-278.
7. Bourbaki, N. (1998) Commutative Algebra, Springer-Verlag.
8. Desale, G. and Nicholson,W.K. (1981) Endoprimitive Rings, J.Algebra, 7:546-560.
9. Muntaha. A.AL. (1999) Quasi-Prime Modules and Quasi-Prime Submodules, M.Sc. Thesis, College of Education Ibn-Al-Haitham, University of Baghdad.
10. Abd El-Bast, Z. and Simith, P.F. (1988) Multiplication Modules, Commun.Algebra, 16 (4):755-779.
11. Najad, B. (2004) Scalar Reflexive Modules, Ph.D. Thesis, College of Science, University of Baghdad.
12. Eman, A. (2006) On Ikeda-Nakayama Modules, Ph.D. Thesis, College of Education Ibn-Al-Haitham, University of Baghdad.

Ibn Al-Haitham Journal for Pure and Applied Science						مجلة إبن الهيثم للعلوم الصرفة و التطبيقية					
No.	3	Vol.	25	Year	2012	2012	السنة	25	المجلد	3	العدد

المقاسات الجزئية المجوفة (التامة) بقوة

انعام محمد علي هادي، غالب أحمد حمود
قسم الرياضيات ، كلية التربية ـ ابن الـيثّم ، جامعة بـغاد
استلم البحث في :15 اذار2012 قبل البحث في:21 ايار 2012

الخلاصة

لتكن R حلقة ابدالية ذا محايد. وليكن M مقاساً على R . في هذا البحث درسنا المفاهيم: المقاسات الجزئية المجوفة بقوة (التامة) والمقاسات الجزئية شبه المجو فة وقدمنا الخو اص المتعلقة بهم والعلاقات فيما بينهم. كذلك درسنا سلوك هذه الدقاسات الجزئية في أصناف معينة من اللققاسات ، مثل المقاسات النوزيعية، والمقاسات الجدائية المضادة، والمقاسات الجدائية و المقاسات القياسية.

الكلمــات المفتاحيـة: المقاسـات الجزئيـة المجوفـة (التامـة) بقـوة، المقاسـات التوزيعيـة، المقاســات الجدائيـة (الجدائيــة المضادة)، المقاسات القياسية.

