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Abstract 
The paper establishes explicit representations of the errors and residuals of approximate 

solutions of triangular linear systems by Jordan elimination and of general linear algebraic 
systems by Gauss-Jordan elimination as functions of the data perturbations and the rounding 
errors in arithmetic floating-point operations. From these representations strict optimal 
componentwise error and residual bounds are derived. Further, stability estimates for the 
solutions are discussed. The error bounds for the solutions of triangular linear systems are 
compared to the optimal error bounds for the solutions by back substitution and by Gaussian 
elimination with back substitution, respectively. The results confirm in a very detailed form 
that the errors of the solutions by Jordan elimination and by Gauss-Jordan elimination cannot 
be essentially greater than the possible maximal errors of the solutions by back substitution 
and by Gaussian elimination, respectively. Finally, the theoretical results are illustrated by 
two numerical examples. 
 
Key words: Jordan elimination, data perturbations, error bounds, Gaussian elimination. 

 Introduction 

The Gauss-Jordan algorithm is ideally suited for vector computers [1]. This justifies the 
study of the numerical stability of the algorithm under data perturbations and rounding errors 
of floating-point arithmetic. It uses the same direct method of forward analysis as our 
rounding error analysis of Gaussian elimination in [2]. Both the solution of general linear 
systems by the Gauss-Jordan algorithm and of upper triangular linear system by Jordan 
elimination are analyzed[3]. The main results of the paper are optimal componentwise error 
and residual estimates, bounds for the stability of solutions and residuals, and upper bound for 
the errors of the solutions of Jordan elimination and Gauss-Jordan elimination in terms of the 
optimal error bounds for back substitution and Gaussian elimination respectively. The results 
will prove that the error of the Gauss-Jordan solution cannot be much greater than the 
possible maximal error of the solution by Gaussian elimination with back substitution. 
However, the residual bounds of the Gauss-Jordan solution can be big if the solution vector 
has components with big relative errors. 

The first step of the error analysis consists in the derivation of explicit analytical 
representations of the errors and residuals of approximate solutions of linear algebraic 
systems as functions of the data errors and the rounding errors of the arithmetic floating-
operations. Under standard assumptions on the data errors of the problem and the rounding 
errors of the floating-point arithmetic these error and residual representations readily yield 
strict componentwise and, save for terms of higher order in the accuracy constant η. optimal 
error and residual estimates for the solutions of upper triangular linear systems in the 
following theorem {The residual of the computed approximate solution vector x  of the 



 
 
 

Mathematics - 368 
 

 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية

 2012 السنة 25 المجلد 3 العدد

Ibn Al-Haitham Journal for Pure and Applied Science  

 No. 3 Vol. 25 Year 2012 

triangular linear system is bounded componentwise, optimally with respect to the error 
distributions by ,R

R
D

D TTTZxU ηηη +=≤− [2] 

Where U upper triangular linear system, η accuracy constant, 0<ηR< 4/(3n), ηD data 
accuracy, ηR rounding accuracy in application ηR<<ηD, matrix Z defined in the Jordan 
algorithm see [1] for the solution of regular triangular linear systems; 
             u11x1+ u12x2+…+ u1nxn = z1 

    Ux = Z: u22x2+…+ u2nxn = z2 

                unnxn = zn 

A general linear systems in the following theorem {the residuals of the approximate solutions 
x  of general linear systems by Gauss-Jordan elimination satisfy the componentwise optimal 
estimates ,myx ≤−Α [4]. Where Y is column vector,η accuracy constant 

A basic tool for the formulation of the error and residual bounds are the associated data, 
rounding, and total condition numbers i

R
i

D
i σσσ ,,  of the components of the computed 

solutions ix  and j
R
j

D
j TTT ,,  of the components of the associated residuals jyxA )( − . In 

addition, using these condition numbers, the stability constants D
i

R
iiw σσ /= of the solutions 

and D
j

R
jj TT /=ψ of the residuals are formed which measure the ratio of the contribution to the 

total error bound due to  the rounding errors in floating-point operations on the one hand and 
the data perturbations on the other hand. The size of the possible residuals can be assessed by 
means of the residual stability constants ψj, for Jordan solutions n, ,… 2, 1, =i,0≠ix  of upper 

triangular linear systems the upper bound 
R

R
m

R
m

D
j

R
j

j T
T

ηρ
ρψ

−
≤=

1
, j= 1, 2, …, n,whewe ρm

R is the 

maximal relative rounding condition number of the solution vector, ηR rounding aceurauy  
[4]. 

If 1R
R
m <ηρ . An analagus estimate holds for general linear system. 

The magnitudes of the possible maximal errors are measured componentwise, using the 
total condition numbers j,iσ  and G,iσ , i= 1, 2, …, n, by 10, ii

R
iR

R
iD

D
ii σσσησησησ +=+=  

The term 
D

D
i ησ  is the bound for the contribution of the data perturbations to the total 

error of the solution, the term R
1
iR

0
i , ησησ  bound the contributions by eliminations in the lower 

and in the upper triangle of the coefficient matrix, respectively establishes the estimate. 
( )

]3[,, 1
,

2

0
,,

0
,,

Rjim

RGjD
D

GiRjiD
D

ji

Gpq

q

ηησ

ησησησησ

+

+≤+  

For solutions 0,0 ,, ≠≠ Giji xx  i = 1, 2, …, n, For sufficient small accuracy constant 

),max( RD ηηη =  the constant q is close to  1. 

1. The Gauss-Jordan Method 
The following error analysis deals with the Gauss- Jordan algorithm for solving linear 

systems   
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…(1) 

We shall assume that A=( iKa ) is nonsingular and that rows and columns of A have 
been ordered such that A possesses a triangular factorization. In [5] we have shown how error 
and residual estimates are used when pivoting is taken into account.  

Let A1 = (A, y ) =( 1
iKa  )be the n×n+1 coefficient matrix of the linear system (1). The 

Gauss-Jordan algorithm successively eliminates by means of the pivotal equation t the 
unknown xt where the vector x= (xℓ, xℓ+1, …, xn) of (1) is obtained simply by 

niuwx iiii ,...,1  ,/ ==  from all other equations i= 1, 2, …., n, i≠t, for t=1,…, n. The 
coefficients t

ikt aA )(=  of the reduced linear systems thus obtained are specified by the 
equations  

1,...,1
,,...,1,1

+=
=−=+

n
kniumaa tkit

t
ik

t
ik                                                                                                      

…(2) 

Using the coefficients utk of the pivot equation t and the row multipliers mit, defined by  

;1;0;1,...1
;,...,,2,1,

,
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.….(3) 

For t=1, …, n. In this way, 

ntt
knikiat

ik

,...,1,,...,1
,,...,1,,01

=
==≠=+

                                                                                                       

…..(4) 
That is, in the first t columns of the matrix At+1 all off- diagonal entries are zero. Hence 

the coefficient matrix An+1 has the form An+1= ( D , w ) with an n-by-n diagonal matrix D and 
the vector w where  

niaw

wWuudiagD
n

nii

inn

,...,1,

),();,...,(
1

1,

11

==

==
+
+

                                                                                                

…..(5)      
From the associated reduced linear system 

,,...,1,
:

niw
xuwDx

i

iii

=
==                                                                                                             

…..(6) 

The solution vector x=(x1,…, xn) of  (1) is obtained simply by ix = iw /uii,i=1,…,n, [6] 

The residual of the computed approximate solution vector x  of the triangular linear 
system is bounded componentwise, optimally with respect to the error distribution by 

R
R

D
D

T TTZXU ηηη +=≤−  
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If  0x ≠  for i = 1,. . . ,n and 1m <ηρ , the absolute and relative error of the approximate solution 
x  satisfy componentwise, in first order optimal error estimates holds.  

,
1 ηρ

ησ

m

i
ii xx

−
≤−  

n,., . 1,. i ,
1

=
−

≤
−

ηρ
ηρ

m

i

i

ii

x
xx  [5]                                                                                                      

…..(7)  

Lemma: The vector of data condition numbers is bounded from below by: 
           R

RD x ησσ −≥ 2 ;[2] 

The rounding condition numbers can be written in the form n
R
n x≥σ . 

Jordan elimination in comparison with back substitution 
1. The behaviour of the errors of approximated solutions of triangular linear systems by 
Jordan elimination (J) will now be compared with that of solutions by Gaussian with back 
substitution (G) in linear algebra, Jordan elimination brings a matrix to reduced row echelon 
form, whereas gaussian elimination takes it only as for as row echelon form. Every matrix has 
a reduced row echelon form, and this algorithm is guaranteed to produced it see [6]. It will be 
shown that the vectors of data and rounding condition number R

j
D
j σσ ,  of the Jordan solutions 

can be bounded from above by the corresponding condition numbers R
G

D
G σσ ,  of the solutions 

by back substitution. This result means that the errors of the computed Jordan solutions jx  
cannot be essentially bigger than the possible maximal errors of the corresponding computed 
solutions Gx  by back substitution.  
2. when triangular linear systems are solved by back substitution the associated solution and 

residual stability constants Giw , , Gj ,ψ of the solutions  Gix ,   are bounded below and above 
by 
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…..(8) 

These estimates are obtained from the error and residual bounds in [2] 
3. Solving a triangular linear system both by Jordan elimination and by back substitution 

gives two approximations jx , Gx  for the searched solution vector x see [7].  
These two approximations satisfy the error estimates of residual of the computed approximate 
solution vector x  of the triangular linear system is bounded componentwise, optimally with 
respect to the error distributions by RRD

D
T TTzxu ηηη +=≤− in first order optimal 

estimates, that is,  
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for i =1, …,n, where 

1. 1≠ηρ Gm              
2. 1≠ηρ Jm  
3. ρi, is defined 

i

i
i x

σ
ρ =  , i = 1, . . ., n.  

4. 0, ≠jix  
5. 0, ≠Gix  

For comparing the error behavior of the two algorithms .We need the following result 

Lemma[8]: Let the two approximate solutions jx , Gx  have non-vanishing components 

and let the maximal relative total condition numbers of these solution be bounded by (ρm,j+ 

ρm,G)η<
2
1  

Then the componentwise estimates  
jGGj xqxxqx ≤≤ ,  

are valid using the constant  

01,01 and
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11

1/1

≠−≠−

>







−

−
−

−=

ηρηρ
ηρ

ηρ
ηρ

ηρ

Gj
G

G
j

jq

mm

m

m

m

m  

Lemma: Let the two approximate solutions Gj xx , have 
nonvanishing components and let the maximal relative total 
condition numbers of these solutions be bounded by (ρm,j + ρMG) 
η<

2
1   then the component wise estimates 

jGGj xqXXqX ≤≤ ,  are valid     

Theorem: (under the assumption of above Lemma the estimates  
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 when. Rη  is so small that the denominators are positive,[8]    

 
Solution of general linear system by Gauss- Jordan elimination  

       The solution of general linear systems yx =Α  by Gauss- Jordan elimination will be 
analyzed. In the context of rounding error analysis the algorithm is considered as being 
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composed of Gaussian forward elimination and a subsequent solution of the upper triangular 
linear system zUx =  by Jordan elimination see [3].  
The computed trapezoidal factors 1,UL  of A1= (A, y) or, under data perturbations, 

)y ,A( A1 =  satisfy, according to [2, 1. (13)], the relation GFAUL += 11                                                     
…..(10) 
With an error matrix FG. Using trapezoidal factorization A1=LU1 of the  n-by-(n+1) 
coefficient matrix, one readily derives from (10) the equation  

GFAULLU +∆=∆+∆ 111                                                                                                         
….(11) 

Since 01 =−=
∧

zUxxU                                                                                                                
…(12) 
 GFAULLU +∆=∆+∆ 111  Implies the representation   ˆ)(ˆ 1

1
1 xFALxU G+∆=∆

−                      
…(13) 

This result establishes the dependence of the errors 1U∆  of the n-by-(n+1) coefficient 
matrix 1U of the upper triangular linear system, which has to be solved by Jordan elimination, 
upon the data errors and the rounding errors in forward elimination, where FG denotes the 
errors matrix of forward elimination in and FJ the errors matrix of the solution by Jordan 
elimination. 

 
Comparsion of Gauss-Jordan elimination with Gaussian 

elimination  
The behavior of the error of the solution of general linear system by Gaussian 

elimination on the one hand and Gauss-Jordan elimination on the other hand will be compared 
with each other. In both cases we assume the same perturbed data ., yA Then for both 

methods also computed triangular factors uL, of A and computed coefficients ZU ,  of the 
upper triangular factor system are the same. The vector of data and rounding condition 
numbers of Gaussian elimination are specified by (see [8, 64]). 

The solution vector Gj xx , of the two method satisfy error estimates of the form  

.,,1,
1

,
1

ni
mx

xx
m

xx i

i

iii
ii =

−
≤

−
−

≤− ηη ρ
ηρ

ρ
ησ  

The following equation shows that the total condition numbers  

( ),,max,,,1,,,, RD
R

ji
RD

ji
D

ji ni ηηησ
η
ησ

η
ησ ==+=   

Of the Gauss – jordan algorithm can be bounded from above by for corresponding total 
condition number σi,G of Gaussian elimination for sufficiently small accuracy constant η, the 
condition number σi,j is, in essence, less than or equal to ( )in −+1

2
3  − times σi,j because the 

constant q and the denominator are close to 1.The condition number σi constitute , save for 
terms of higher order in η, optimal bounds  for the absolute errors .iii xxx −=∆ Hence, the 
result say that for sufficiently small η the absolute errors ∆xi,j of the solutions by Gauss-
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Jordan elimination cannot be, in absolute value, essentially grater than ( ) timesin −−+1
2
3  the 

possible maximal errors nxxx iGiGi ,,,1,,, −=∆  of the solution by Gaussian elimination. 

 

Numerical example  
      The results of the paper are now illustrated by simple numerical example. The first 
example is the upper triangular linear system 
0.826354 x1+0.432175 x2+0.613256 x3+0.614227 x4  = 0.722872  

0.000547x2+0.814712 x3+0.816328 x4 =0.15424 

0.915316 x3+0.814275 x4 =0.109844                                                                                       ….(14) 

0.982176 x4 =0.602286 

Of Peters-Wilkinson [2].Table 1 contains the condition numbers, stability constants and the 
solution by Jordan elimination which were computed in high accuracy and then rounded to 6 
decimal digits. Table 2 shows the corresponding results of the solution by back substitution.      

Since the data condition numbers D
i

D
i τρ ,  in essence, depend on the problem only but not 

on the algorithm these condition numbers coincide in both algorithms in the first 6 digits. The 
residual condition number 3343, =R

jiτ   of the Jordan solution and the corresponding residual 
stability constant 1699,1 =jψ  (see table 1) are much bigger in this example than those of the 
solution by back substitution where 3.1

,
≤

Gj
ψ  for j=1,…, 4. (see table 2) 

 In contrast, the relative rounding condition numbers of the solutions and thus the 
solution stability constants iw do not differ much for the two algorithms. 

2. The second example is a linear system with the 5×5  Hilbert matrix A of Wilkinson [10, 
III, 34] and the right-hand side 1. 

)1,1,1,1,1(,;1
10

!10*50
5,...,1,

8 =






+

=Α
=

t

ki
y

ki
                                                                                         

….(15) 

The first 6 digit of the solution, the condition numbers and stability constants for Gauss-
Jordan elimination and Gaussian elimination, all computed in high accuracy, are found in 
table 3 and table 4. 

The matrix A is ill-conditioned so that the relative data and rounding condition numbers 
R
i

D
i ρρ ,  are big in value. The relative error of the computed solution may effect up to 6 decimal 

digits.  

Nevertheless, the maximal residual stability constant 5.15, =jiψ of Gauss-Jordan elimination is 

only about 5.3- times bigger than the maximal residual stability constant 9.2,4 =Gψ of Gaussian 

elimination.  
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The relative rounding condition numbers R
iρ of the two algorithms are practically equal. 

Therefore also the stability constants wi  of the two algorithms coincide in the leading decimal 
digits.  

Conclusion  
Error and residual bounds can be computed numerically together with the solutions of 

the linear systems. The calculated condition numbers and stability constants of the solutions 
by Gauss-Jordan elimination as well as by Gaussian elimination are determined. The 
examples show in accordance with the theoretical results that the numerical solutions by the 
two methods are of comparable accuracy in spite of the ill-conditioning of the two problems. 
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Table(1): condition numbers, stability constants and solution of the Jordan algorithm 
for triangular linear system (15). 

i  iχ  D
iρ  R

iρ  iw  D
iτ  R

iτ  iΨ  

1 0.413155 4639 7207 1.55 1.97 3343 1699 

2 0.614928 5955 3313 0.56 1.00 3.20 3.19 

3 -0.425517 5.13 4.56 0.89 0.99 2.28 2.28 

4 0.613216 2.00 1.00 0.50 1.21 0.60 0.50 

 

Table(2): condition numbers, stability constants and solution by back substitution of the 
triangular linear system (15). 

i  iχ  D
iρ  R

iρ  iw  D
iτ  R

iτ  iΨ  

1 0.413155 4639 5531 1.19 1.97 2.54 1.29 

2 0.614928 5955 7100 1.19 1.00 1.19 1.19 

3 -0.425517 5.13 4.56 0.89 0.99 1.28 1.28 

4 0.613216 2.00 1.00 0.50 1.21 0.60 0.50 

Table(3): condition numbers, stability constants and solution of the “Gauss –Jordan” 
algorithm for the linear system Ax=y. 

i  iχ  D
iρ  R

iρ  iw  D
iτ  R

iτ  iΨ  

1 1.65344 1.07 1.36 1.27 1.29 2.00 15.5 

2 -2.31481 8.69 1.11 1.28 5.05 1.61 15.3 

3 9.25926 7.33 9.38 1.28 8.90 1.32 14.8 

4 -1.38889 6.34 8.13 1.28 7.72 1.12 14.5 

5 6.94444 5.59 7.18 1.28 6.82 9.69 14.2 

Table(4): condition numbers, stability constants and solution of “Gaussian elimination” 
of the linear system Ax=y. 

i  iχ  D
iρ  R

iρ  
iw  D

iτ  R
iτ  iΨ  

1 1.65344 1.07 1.36 1.27 1.29 1.93 1.50 

2 -2.31481 8.69 1.11 1.28 1.05 2.63 2.50 

3 9.25926 7.33 9.38 1.28 8.90 2.47 2.77 

4 -1.38889 6.34 8.13 1.28 7.72 2.21 2.86 

5 6.94444 5.59 7.18 1.29 6.82 1.99 2.92 
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 مناقشة تحليل الأخطاء لكاوس جوردن للحذف لمنظومة المعادلات الخطية
 

 
 شوقي عبد المطلب عباس 

 جامعة بغداد ،كلية العلوم ، قسم الرياضيات 
2012ايار    21 قبل البحث في:  2012كانون الثاني   22استلم البحث في:  

 

 الخلاصة
جوردن  ةوالبواقي للحلول التقريبية للأنظمة الخطية المثلثية بطريقيتعلق هذا البحث بالتمثيلات الصريحة للأخطاء        

للبيانات  ةجوردن للحذف توصف على أنها دال –. أن حل المعادلات الجبرية الخطية بطريقه كاوس ةلعاماللحذف والطريقة 
الأساسي المتصل بالأخطاء ومن هذه التمثيلات تم اشتقاق الجزء  ةوعمليات أخطاء التدوير لحساب الفارزة السائب ةالقلق

 وتحديد البواقي.

ن تخمين الاستقرار للحلول قد تم شرحه في هذا البحث. كما حددت قيود الأخطاء للحلول ومقارنتها مع أفضل الحدود إ
النتائج وبشكل مفصل ان الحلول الحذف لكاوس على التوالي. وتؤكد  ةللأخطاء التي احتسبت بالتعويض المتراجع وطريق

جوردن للحذف هي ليست أساساً أعظم من الأخطاء الكبيرة المحتملة بطريقه  –كاوس  ةبطريقتي جوردن للحذف وطريق
 النتائج النظرية بمثالين عددين. تالتعويض المتراجع والحذف لكاوس على التوالي. ولقد وضح
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