On S*g-α-Open Sets In Topological Spaces

Sabiha I. Mahmood Jumana S.Tareq

Department of Mathematics/College of Science/ University of Al-Mustansiriyah

Received in : 9 April 2014, Accepted in: 1 September 2014

Abstract

In this paper, we introduce a new class of sets, namely, $s^{*}g^{-}\alpha$ -open sets and we show that the family of all s*g- α -open subsets of a topological space (X, τ) from a topology on X which is finer than τ . Also , we study the characterizations and basic properties of s*g- α open sets and s*g- α -closed sets. Moreover, we use these sets to define and study a new class of functions, namely , s*g- α -continuous functions and s*g- α -irresolute functions in topological spaces. Some properties of these functions have been studied.

Keywords: $s*g-\alpha$ -open sets, $s*g-\alpha$ -closed sets, $s*g-\alpha$ -clopen sets, $s*g-\alpha$ -continuous functions, $s*g-\alpha$ -irresolute functions.

Vol. 27 (3) 2014

Ibn Al-Haitham Jour. for Pure & Appl. Sci. Introduction

Levine, N. [1,2] introduced and studied semi-open sets and generalized open sets respectively. Njastad, O. [3], Mashhour, A.S. and et.al. [4], Andrijevic, D. [5] and Abd El-Monsef, M.E. and et.al [6] introduced α -open sets, pre-open sets , b-open sets and β -open sets respectively. Also, Arya, S.P. and Nour, T.M. [7], Maki, H. and et.al [8,9], Khan, M. and et.al [10] introduced and investigated generalized semi open sets, generalized α -open sets, α generalized open sets and s*g-open sets respectively. In this paper, we introduce a new class of sets, namely, $s^*g - \alpha$ -open sets and we show that the family of all $s^*g - \alpha$ -open subsets of a topological space (X,τ) from a topology on X which is finer than τ . This class of open sets is placed properly between the class of open sets and each of semi-open sets, α -open sets, preopen sets, b-open sets, β -open sets, generalized semi open sets, generalized α -open sets and α generalized open sets respectively. Also, we study the characterizations and basic properties of s*g- α -open sets and s*g- α -closed sets. Moreover, we use these sets to define and study a new class of functions, namely, $s^{*}g^{-}\alpha$ -continuous functions and $s^{*}g^{-}\alpha$ -irresolute functions in topological spaces. Some properties of these functions have been studied. Throughout this paper (X, τ) , (Y, σ) and (Z, η) (or simply X, Y and Z) represent non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned.

1.Preliminaries

First we recall the following definitions and Theorems .

Definition(1.1): A subset A of a topological space (X, τ) is said to be :

i) An semi-open (briefly s-open) set [1] if $A \subseteq cl(int(A))$.

ii) An α -open set [3] if $A \subseteq int(cl(int(A)))$.

iii) An pre-open set [4] if $A \subseteq int(cl(A))$.

iv) An b-open set [5] if $A \subseteq int(cl(A)) \bigcup cl(int(A))$.

v) An β -open set [6] if A \subseteq cl(int(cl(A))).

The semi-closure (resp. α -closure) of a subset A of a topological space (X, τ) is the intersection of all semi-closed (resp. α -closed) sets which contains A and is denoted by $cl_s(A)$ (resp. $cl_{\alpha}(A)$). Clearly $cl_s(A) \subseteq cl_{\alpha}(A) \subseteq cl(A)$.

Definition(1.2): A subset A of a topological space (X, τ) is said to be :

- i) A generalized closed (briefly g-closed) set [2] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- ii) A generalized semi-closed (briefly gs-closed) set [7] if $cl_s(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- iii) A generalized α -closed (briefly g α -closed) set [8] if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in X.
- iv) An α -generalized closed (briefly α g-closed) set [9] if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- v) An s*g-closed set [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.

The complement of a g-closed (resp. gs-closed , ga-closed , ag-closed , s*g-closed) set is called a g-open (resp. gs-open , ga-open , ag-open , s*g-open) set .

Definition(1.3): A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called :

i) semi-continuous (briefly s-continuous)[1] if $f^{-1}(V)$ is s-open set in X for every open set Vin Y

ii) α -continuous [11] if $f^{-1}(V)$ is α -open set in X for every open set V in Y.

iii) pre-continuous [4] if $f^{-1}(V)$ is pre-open set in X for every open set V in Y.

iv) b-continuous [12] if $f^{-1}(V)$ is b-open set in X for every open set V in Y.

v) β -continuous [6] if $f^{-1}(V)$ is β -open set in X for every open set V in Y.

- vi) generalized continuous (briefly g-continuous) [13] if $f^{-1}(V)$ is g-open set in X for every open set V in Y.
- vii) generalized semi continuous (briefly gs-continuous)[14] if $f^{-1}(V)$ is gs-open set in X for every open set V in Y.
- viii) generalized α -continuous (briefly g α -continuous) [8] if $f^{-1}(V)$ is g α -open set in X for every open set V in Y.
- ix) α -generalized continuous (briefly α g-continuous) [15] if $f^{-1}(V)$ is α g-open set in X for every open set V in Y.

x) s*g-continuous [16] if $f^{-1}(V)$ is s*g-open set in X for every open set V in Y.

Definition(1.4)[10],[17]: Let (X, τ) be a topological space and $A \subseteq X$. Then:-

i) The s*g-closure of A , denoted by $\text{cl}_{s^{\ast}g}(A)$ is the intersection of all s*g-closed subsets of X which

contains A .

ii) The s*g-interior of A , denoted by $int_{s*g}(A)$ is the union of all s*g-open subsets of X which are contained in A .

Theorem(1.5)[17]: Let (X,τ) be a topological space and $A,B \subseteq X$. Then:-

i)
$$A \subseteq cl_{s^*g}(A) \subseteq cl(A)$$
.

- ii) $int(A) \subseteq int_{s^*g}(A) \subseteq A$.
- iii) If $A \subseteq B$, then $cl_{s^*g}(A) \subseteq cl_{s^*g}(B)$.
- iv) A is s*g-closed iff $cl_{s*g}(A) = A$.
- **v**) $cl_{s*g}(cl_{s*g}(A)) = cl_{s*g}(A)$.
- vi) $X int_{s*g}(A) = cl_{s*g}(X A)$.
- vii) $x \in cl_{s^*g}(A)$ iff for every s^*g -open set U containing $x, U \cap A \neq \phi$.
- **viii)** $\bigcup_{\alpha \in \wedge} \operatorname{cl}_{s^*g}(U_{\alpha}) \subseteq \operatorname{cl}_{s^*g}(\bigcup_{\alpha \in \wedge} U_{\alpha})$.

Theorem(1.6)[18]: Let $X \times Y$ be the product space of topological spaces X and Y. If $A \subseteq X$ and

 $B \subseteq Y$. Then $cl_{s^*g}(A) \times cl_{s^*g}(B) = cl_{s^*g}(A \times B)$.

2. Basic Properties Of s*g-α-open Sets

In this section we introduce a new class of sets, namely , $s^*g \cdot \alpha$ -open sets and we show that the family of all $s^*g \cdot \alpha$ -open subsets of a topological space (X, τ) from a topology on X which is finer than τ .

Definition(2.1): A subset A of a topological space (X, τ) is called an $s^*g - \alpha$ -open set if $A \subseteq int(cl_{s^*g}(int(A)))$. The complement of an $s^*g - \alpha$ -open set is defined to be $s^*g - \alpha$ -closed.

The family of all s*g- α -open subsets of X is denoted by $\tau^{s^{*g-\alpha}}$.

Clearly, every open set is an $s^{*}g$ - α -open, but the converse is not true. Consider the following example.

Example(2.2): Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$ be a topology on X. Then $\{a, b\}$ is an s*g- α -open set in X, since $\{a, b\} \subseteq int(cl_{s*g}(int(\{a, b\}))) = int(cl_{s*g}(\{a\}) = int(X) = X$. But $\{a, b\}$ is not open in X.

Remark(2.3): s*g-open sets and s*g- α -open sets are in general independent. Consider the following examples:-

Example(2.4): Let $X = \{a, b, c\}$ and $\tau = \{X, \phi\}$ be a topology on X. Then $\{b\}$ is an s*g-open set in X, but is not s*g- α -open set, since $\{b\} \not\subset int(cl_{s^*g}(int(\{b\}))) = int(cl_{s^*g}(\phi)) = \phi$. Also, in example (2.2) $\{a, b\}$ is an s*g- α -open set in X, but is not s*g-open, since $\{a, b\}^c = \{c\}$ is not s*g-closed set in X, since $\{a, c\}$ is an semi-open set in X and $\{c\} \subseteq \{a, c\}$, but $cl(\{c\}) = \{b, c\} \not\subset \{a, c\}$.

Theorem(2.5): Every s*g- α -open set is α -open (resp. α g-open, g α -open , pre-open , b-open , β -open) set .

Proof: Let A be any s*g- α -open set in X , then A \subseteq int(cl_{s*g}(int(A))) . Since int(cl_{s*g}(int(A))) \subseteq int(cl(int(A))), thus A \subseteq int(cl(int(A))) . Therefore A is an α -open set in X. Since every α -open set is α g-open (resp. g α -open , pre-open , b-open , β -open) set . Thus every s*g- α -open set is α -open (resp. α -open , g α -open , pre-open , b-open , β -open) set . **Remark(2.6):** The converse of Theorem (2.5) may not be true in general as shown in the

following example.

Example(2.7): Let $X = \{a, b, c\}$ & $\tau = \{X, \phi\}$ be a topology on X. Then the set $\{b, c\}$ is preopen (resp. α g-open, β -open, β -open) in X, but is not s*g- α -open set in X, since $\{b, c\} \not\subset int(cl_{s*\sigma}(int(\{b, c\}))) = int(cl_{s*\sigma}(\phi))) = \phi$.

Theorem(2.8): Every $s^*g - \alpha$ -open set is semi-open and gs-open set.

Proof: Let A be any $s^*g \cdot \alpha$ -open set in X, then $A \subseteq int(cl_{s^*g}(int(A)))$. Since $int(cl_{s^*g}(int(A))) \subseteq cl_{s^*g}(int(A)) \subseteq cl(int(A))$, thus $A \subseteq cl(int(A))$. Therefore A is a semi-open set in X. Since every semi-open set is gs-open set. Thus every $s^*g \cdot \alpha$ -open set is semi-open and gs-open set.

Remark(2.9): The converse of Theorem (2.8) may not be true in general as shown in the following example .

Example(2.10): Let $X = \{a, b, c\} \& \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\$ be a topology on X. Then the set $\{a, c\}$ is semi-open and gs-open set in X, but is not an $s^*g - \alpha$ -open set in X, since $\{a, c\} \not\subset int(cl_{s^*g}(int(\{a, c\}))) = int(cl_{s^*g}(\{a\}))) = int(\{a, c\}) = \{a\}.$

Remark(2.11): pre-open sets and α g-open sets are in general independent . Consider the following examples:-

Example(2.12): Let (R, μ) be the usual topological space. Then the set of all rational numbers Q is a pre-open set, but is not an αg -open set. Also, in Example (2.2) {b} is an αg -open set, since, $\{b\}^{c} = \{a, c\}$ is an αg -closed set, but is not a pre-open set, since $\{b\} \not\subset int(cl(\{b\})) = int(\{c, b\}) = \phi$.

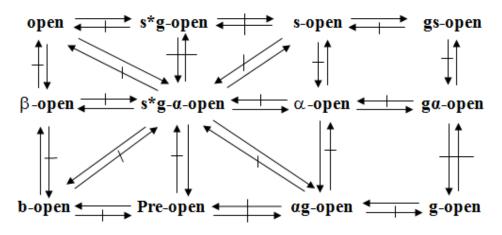
المجلد 27 العدد (3) عام 2014

Remark(2.13): g-open sets and $g\alpha$ -open sets are in general independent . Consider the following examples:-

Example(2.14): Let $X = \{a, b, c\} \& \tau = \{X, \phi, \{a\}, \{a, c\}\}$ be a topology on X. Then the set $\{a, b\}$ is a ga-open set in X, since $\{a, b\}^c = \{c\}$ is ga-closed, but is not a g-open set in X, since $\{a, b\}^c = \{c\}$ is not g-closed. Also, in Example (2.2) $\{c\}$ is a g-open set in X, since,

 $\{c\}^{c} = \{a,b\}$ is g-closed, but is not a ga-open set in X, since $\{c\}^{c} = \{a,b\}$ is not ga-closed.

The following diagram shows the relationships between s*g- α -open sets and some other open sets:



Proposition(2.15): A subset A of a topological space (X, τ) is s*g- α -open if and only if there exists an open subset U of X such that $U \subseteq A \subseteq int(cl_{s*g}(U))$.

Proof: \Rightarrow Suppose that A is a s*g- α -open set in X, then A \subseteq int(cl_{s*g}(int(A))). Since int(A) \subseteq A, thus int(A) \subseteq A \subseteq int(cl_{s*g}(int(A))). Put U = int(A), hence there exists an open subset U of X such that U \subseteq A \subseteq int(cl_{s*g}(U)).

Conversely, suppose that there exists an open subset U of X such that $U \subseteq A \subseteq int(cl_{s^*g}(U))$. Since $U \subseteq A \Rightarrow U \subseteq int(A) \Rightarrow cl_{s^*g}(U) \subseteq cl_{s^*g}(int(A)) \Rightarrow int(cl_{s^*g}(U)) \subseteq int(cl_{s^*g}(int(A)))$. Since $A \subseteq int(cl_{s^*g}(U))$, then $A \subseteq int(cl_{s^*g}(int(A)))$. Thus A is an s^*g - α -open set in X. **Lemma(2.16):** Let (X, τ) be a topological space. If U is an open set in X, then $U \cap cl_{s^*g}(A) \subseteq cl_{s^*g}(U \cap A)$ for any subset A of X.

Proof: Let $x \in U \cap cl_{s^*g}(A)$ and V be any s*g-open set in X s.t $x \in V$. Since $x \in cl_{s^*g}(A)$, then by Theorem ((1.5),vii), $V \cap A \neq \phi$. Since $U \cap V$ is an s*g-open set in X and $x \in V \cap U$, then $(V \cap U) \cap A = V \cap (U \cap A) \neq \phi$. Therefore $x \in cl_{s^*g}(U \cap A)$. Thus $U \cap cl_{s^*g}(A) \subseteq cl_{s^*g}(U \cap A)$ for any subset A of X.

Theorem(2.17): Let (X, τ) be a topological space. Then the family of all s*g- α -open subsets of X from a topology on X.

Proof:(i). Since $\phi \subseteq int(cl_{s^*g}(int(\phi)))$ and $X \subseteq int(cl_{s^*g}(int(X)))$, then $\phi, X \in \tau^{s^*g-\alpha}$.

(ii). Let $A, B \in \tau^{s^*g^{-\alpha}}$. To prove that $A \cap B \in \tau^{s^*g^{-\alpha}}$. By Proposition (2.15), there exists $U, V \in \tau$ such that $U \subseteq A \subseteq int(cl_{s^*g}(U))$ and $V \subseteq B \subseteq int(cl_{s^*g}(V))$. Notice that $U \cap V \in \tau$ and $U \cap V \subseteq A \cap B$. Now,

 $A \cap B \subseteq int(cl_{s^{*g}}(U)) \cap int(cl_{s^{*g}}(V)) = int(int(cl_{s^{*g}}(U)) \cap cl_{s^{*g}}(V))$

Vol. 27 (3) 2014

 $\subseteq int(cl_{s^{*g}}(int(cl_{s^{*g}}(U)) \cap V))$ (by Lemma (2.16)).

$$\subseteq \operatorname{int}(\operatorname{cl}_{s^*g}(\operatorname{cl}_{s^*g}(U) \cap V)) \subseteq \operatorname{int}(\operatorname{cl}_{s^*g}(\operatorname{cl}_{s^*g}(U \cap V)) \text{ (by Lemma (2.16))}. = \operatorname{int}(\operatorname{cl}_{s^*g}(U \cap V)) \text{ (by Theorem (1.5),v)}.$$

Thus $U \cap V \subseteq A \cap B \subseteq int(cl_{s^{*g}}(U \cap V))$. Therefore by Proposition (2.15), $A \cap B \in \tau^{s^{*g-\alpha}}$.

(iii). Let $\{U_{\alpha} : \alpha \in \land\}$ be any family of $s^*g \cdot \alpha$ -open subsets of X, then $U_{\alpha} \subseteq int(cl_{s^*g}(int(U_{\alpha})))$ for each $\alpha \in \land$. Therefore by Theorem ((1.5) viii), we get :

$$\begin{split} \bigcup_{\alpha \in \wedge} U_{\alpha} &\subseteq \bigcup_{\alpha \in \wedge} \operatorname{int}(\operatorname{cl}_{s^*g}(\operatorname{int}(U_{\alpha}))) \subseteq \operatorname{int}(\bigcup_{\alpha \in \wedge} \operatorname{cl}_{s^*g}(\operatorname{int}(U_{\alpha}))) \subseteq \operatorname{int}(\operatorname{cl}_{s^*g}(\bigcup_{\alpha \in \wedge} \operatorname{int}(U_{\alpha}))) \\ &\subseteq \operatorname{int}(\operatorname{cl}_{s^*g}(\operatorname{int}(\bigcup_{\alpha \in \wedge} U_{\alpha}))) \text{. Hence } \bigcup_{\alpha \in \wedge} U_{\alpha} \in \tau^{s^*g - \alpha} \text{.} \end{split}$$

Thus $\tau^{s^{*g-\alpha}}$ is a topology on X .

Propositions(2.18): Let (X, τ) be a topological space and B be a subset of X. Then the following statements are equivalent:

i) B is s*g- α -closed.

ii) $\operatorname{cl}(\operatorname{int}_{s^*g}(\operatorname{cl}(B))) \subseteq B$.

iii) There exists a closed subset F of X such that $cl(int_{s^{*g}}(F)) \subseteq B \subseteq F$.

Proof: (i) \Rightarrow (ii) . Since B is an s*g- α -closed set in X \Rightarrow X – B is an s*g- α -open set in X \Rightarrow X – B \subseteq int(cl_{s*g}(int(X – B))) \Rightarrow X – B \subseteq int(cl_{s*g}(X – cl(B))) . By Theorem ((1.5), vi) , we get X – int_{s*g}(cl(B)) = cl_{s*g}(X – cl(B)) . Hence X – B \subseteq int(X – int_{s*g}(cl(B))) \Rightarrow X – B \subseteq X – cl(int_{s*g}(cl(B))) \Rightarrow cl(int_{s*g}(cl(B))) \subseteq B . (ii) \Rightarrow (iii) .

Since $cl(int_{s^*g}(cl(B))) \subseteq B$ and $B \subseteq cl(B)$, then $cl(int_{s^*g}(cl(B))) \subseteq B \subseteq cl(B)$. Put F = cl(B), thus there exists a closed subset F of X such that $cl(int_{s^*g}(F)) \subseteq B \subseteq F$. (iii) \Rightarrow (i).

Suppose that there exists a closed subset F of X such that $cl(int_{s^{*g}}(F)) \subseteq B \subseteq F$. Hence

 $X-F \subseteq X-B \subseteq X-cl(int_{s^*g}(F)) = int(X-int_{s^*g}(F))$. Since $X-int_{s^*g}(F) = cl_{s^*g}(X-F)$, then $X-F \subseteq X-B \subseteq int(cl_{s^*g}(X-F))$. Hence X-B is an $s^*g-\alpha$ -open set in X. Thus B is an $s^*g-\alpha$ -closed set in X.

Definition(2.19): A subset A of a topological space (X, τ) is called an s*g- α -neighborhood of a point x in X if there exists an s*g- α -open set U in X such that $x \in U \subseteq A$.

Remark(2.20): Since every open set is an s*g- α -open set, then every neighborhood of x is an s*g- α -neighborhood of x, but the converse is not true in general. In example (2.2), {a,b} is an s*g- α -neighborhood of a point b, since $b \in \{a,b\} \subseteq \{a,b\}$. But {a,b} is not a neighborhood of a point b.

Propositions(2.21): A subset A of a topological space (X, τ) is s*g- α -open if and only if it is an s*g- α -neighborhood of each of its points.

Proof: \Rightarrow If A is s*g- α -open in X, then $x \in A \subseteq A$ for each $x \in A$. Thus A is an s*g- α neighborhood of each of its points .

Conversely, suppose that A is an s*g- α -neighborhood of each of its points. Then for each $x \in A$, there exists an s*g- α -open set U_x in X such that $x \in U_x \subseteq A$. Hence $\bigcup U_x \subseteq A$.

Since $A \subseteq \bigcup_{x \in A} U_x$, therefore $A = \bigcup_{x \in A} U_x$. Thus A is an s*g- α -open set in X, since it is a union of s*g- α -open sets.

Proposition(2.22): If A is an s*g- α -open set in a topological space (X, τ) and

 $A \subseteq B \subseteq int(A)$, then B is an s*g- α -open set in X.

Proof: Since A is an s*g- α -open set in X, then by Proposition (2.15), there exists an open subset U of X such that $U \subseteq A \subseteq int(cl_{s^*g}(U))$. Since $A \subseteq B \Rightarrow U \subseteq B$. But

 $\operatorname{int}(A) \subseteq \operatorname{int}(\operatorname{cl}_{s^*\sigma}(U)) \Rightarrow U \subseteq B \subseteq \operatorname{int}(\operatorname{cl}_{s^*\sigma}(U))$. Thus B is an s^*g - α -open set in X.

Proposition(2.23): If A is an s*g- α -closed set in a topological space (X, τ) and

 $cl(A) \subseteq B \subseteq A$, then B is an s*g- α -closed set in X.

Proof: Since $X - A \subset X - B \subset X - cl(A) = int(X - A)$, then by Proposition (2.22) X - B is an $s^*g - \alpha$ -open set in X. Thus B is an $s^*g - \alpha$ -closed set in X.

Theorem(2.24): A subset A of a topological space (X, τ) is clopen (open and closed) if and only if A is $s^{*}g^{-}\alpha$ -clopen ($s^{*}g^{-}\alpha$ -open and $s^{*}g^{-}\alpha$ -closed).

Proof: (\Rightarrow) . It is a obvious.

(\Leftarrow). Suppose that A is an s*g- α -clopen set in X, then A is s*g- α -open and s*g- α -closed in X.

Hence $A \subseteq int(cl_{s^{*g}}(int(A)))$ and $cl(int_{s^{*g}}(cl(A))) \subseteq A$. But by Theorem ((1.5), i, ii) we get,

 $cl_{s^{*}\sigma}(A) \subseteq cl(A)$ and $int(A) \subseteq int_{s^{*}\sigma}(A)$, thus : $A \subset int(cl(int(A)))$ and $cl(int(cl(A))) \subset A$. Since $int(A) \subseteq A \implies cl(int(A)) \subseteq cl(A)$ ----- (1) Since $int(cl(int(A))) \subseteq cl(int(A))$, thus ----- (2) $A \subseteq int(cl(int(A))) \subseteq cl(int(A)) \Rightarrow cl(A) \subseteq cl(int(A))$ ----- (a) Therefore from (1) and (2), we get cl(int(A)) = cl(A)----- (3) Similarly, since $A \subseteq cl(A) \Rightarrow int(A) \subseteq int(cl(A))$ Now, $int(cl(A)) \subseteq cl(int(cl(A))) \subseteq A$, thus $int(cl(A)) \subseteq int(A)$ ----- (4) Therefore from (3) and (4), we get int(cl(A)) = int(A)----- (b) Since $int(cl(A)) = int(A) \Longrightarrow cl(int(cl(A))) = cl(int(A)) = cl(A) (by (a))$.

Since $cl(int(cl(A))) \subseteq A$, then $cl(A) \subseteq A$, but $A \subseteq cl(A)$, therefore A = cl(A), hence A is a closed set in X.

Similarly, since $cl(int(A)) = cl(A) \implies int(cl(int(A))) = int(cl(A)) = int(A) (by (b))$.

Since A \subseteq int(cl(int(A))), then A \subseteq int(A), but int(A) \subseteq A, therefore A = int(A), hence A is an open set in X. Thus A is a clopen set in X.

Definition(2.25): Let (X, τ) be a topological space and $A \subseteq X$. Then

i) The s*g- α -closure of A, denoted by $cl_{s*e\alpha}(A)$ is the intersection of all s*g- α -closed subsets of X which contains A.

مجلة ابن الهيئم للعلوم الصرفة و التطبيقية 2014 (3) 27. Vol. 27

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

ii) The s*g- α -interior of A, denoted by $int_{s*e\alpha}(A)$ is the union of all s*g- α -open sets in X which are contained in A.

Theorem(2.26): Let (X, τ) be a topological space and $A, B \subseteq X$. Then:-

i) $int(A) \subseteq int_{s^*ga}(A) \subseteq A$ and $A \subseteq cl_{s^*ga}(A) \subseteq cl(A)$.

ii) $\operatorname{int}_{s^*e\alpha}(A)$ is an $s^*g \cdot \alpha$ -open set in X and $\operatorname{cl}_{s^*e\alpha}(A)$ is an $s^*g \cdot \alpha$ -closed set in X.

iii) If $A \subseteq B$, then $int_{s^*g\alpha}(A) \subseteq int_{s^*g\alpha}(B)$ and $cl_{s^*g\alpha}(A) \subseteq cl_{s^*g\alpha}(B)$.

iv) A is s*g- α -open iff int_{s*oq} (A) = A and A is s*g- α -closed iff cl_{s*oq} (A) = A.

v) $\operatorname{int}_{s^*g\alpha}(A \cap B) = \operatorname{int}_{s^*g\alpha}(A) \cap \operatorname{int}_{s^*g\alpha}(B)$ and $\operatorname{cl}_{s^*g\alpha}(A \cup B) = \operatorname{cl}_{s^*g\alpha}(A) \cup \operatorname{cl}_{s^*g\alpha}(B)$.

vi) $\operatorname{int}_{s^*g\alpha}(\operatorname{int}_{s^*g\alpha}(A)) = \operatorname{int}_{s^*g\alpha}(A)$ and $\operatorname{cl}_{s^*g\alpha}(\operatorname{cl}_{s^*g\alpha}(A)) = \operatorname{cl}_{s^*g\alpha}(A)$.

vii) $x \in int_{s^*g\alpha}(A)$ iff there is an s^*g - α -open set U in X s.t $x \in U \subseteq A$.

viii) $x \in cl_{s^*e\alpha}(A)$ iff for every $s^*g \cdot \alpha$ -open set U containing x, $U \cap A \neq \phi$.

Proof: It is obvious .

Proposition(2.27): Let X and Y be topological spaces . If $A \subseteq X$ and $B \subseteq Y$. Then $A \times B$ is an s*g- α -open set in X × Y if and only if A and B are s*g- α -open sets in X and Y respectively. **Proof:** \Leftarrow Since A and B are s*g- α -open sets in X and Y respectively, then by definition (2.1), we get $A \subseteq int(cl_{s^*g}(int(A)))$ and $B \subseteq int(cl_{s^*g}(int(B)))$. Hence

 $A \times B \subseteq int(cl_{s^{*g}}(int(A))) \times int(cl_{s^{*g}}(int(B))) = int(cl_{s^{*g}}(int(A)) \times cl_{s^{*g}}(int(B))) \quad . \quad Since$ $cl_{s^{*g}}(A) \times cl_{s^{*g}}(B) = cl_{s^{*g}}(A \times B)$, then $A \times B \subseteq int(cl_{s^{*g}}(int(A \times B)))$. Thus $A \times B$ is an s*g- α open set in X×Y. By the same way, we can prove that A and B are s*g- α -open sets in X and Y respectively if $A \times B$ is an s^*g - α -open set in $X \times Y$.

3. $s^{*}g^{-\alpha}$ - Continuous Functions and $s^{*}g^{-\alpha}$ - Irresolute Functions

In this section, we introduce a new class of functions, namely, $s*g-\alpha$ -continuous functions and $s^*g - \alpha$ -irresolute functions in topological spaces and study some of their properties.

Definition(3.1): A function $f: (X, \tau) \to (Y, \sigma)$ is called s*g- α -continuous if $f^{-1}(V)$ is an s*g- α -open set in X for every open set V in Y.

Proposition(3.2): A function $f: (X,\tau) \to (Y,\sigma)$ is s*g- α -continuous iff $f^{-1}(V)$ is an s*g- α closed set in X for every closed set V in Y.

Proof: It is Obvious .

Proposition(3.3): Every continuous function is $s^*g - \alpha$ -continuous.

Proof: Follows from the definition (3.1) and the fact that every open set is $s^*g - \alpha$ -open. **Remark(3.4):** The converse of Proposition (3.3) may not be true in general as shown in the following example:

Example(3.5): Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\} \& \sigma = \{Y, \phi, \{a\}, \{a, c\}\} \Rightarrow$

$$\tau^{s^{*g-\alpha}} = \{\mathbf{X}, \mathbf{\phi}, \{\mathbf{a}\}, \mathbf{\phi}\}$$

 $\{a,b\},\{a,c\}\}$. Define $f:(X,\tau) \rightarrow (Y,\sigma)$ by : f(a) = a, f(b) = b & $f(c) = c \implies f$ is not continuous, but f is s*g- α -continuous, since $f^{-1}(Y) = X$, $f^{-1}(\phi) = \phi$, $f^{-1}(\{a,c\}) = \{a,c\}$, and $f^{-1}(\{a\}) = \{a\}$ are $s^*g - \alpha$ -open sets in X.

Remark(3.6): s*g-continuous functions and s*g- α -continuous functions are in general independent. Consider the following examples:-

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Example(3.7): Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi\}$ & $\sigma = \{Y, \phi, \{a\}\} \Rightarrow \tau^{s^*g - \alpha} = \tau$ and $\tau^{s^*g} = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by : f(a) = a, f(b) = b & $f(c) = c \Rightarrow f$ is s*g-continuous, but f is not s*g- α -continuous, since $\{a\}$ is open set in Y, but $f^{-1}(\{a\}) = \{a\}$ is not s*g- α -open in X. Also, in Example (3.5) f is s*g- α -

continuous, but is not s*g-continuous , since $\{a,c\}$ is open set in Y , but $f^{-1}(\{a,c\}) = \{a,c\}$ is not s*g-open in X .

Theorem(3.8): Every s*g- α -continuous function is α -continuous (resp. α g-continuous , ga-continuous , pre-continuous , b-continuous , β -continuous) function .

Proof: Follows from the Theorem (2.5).

Remark(3.9): The converse of Theorem (3.8) may not be true in general. Observe that in Example (3.7) f is pre-continuous (resp. b-continuous, β -continuous, α -continuous, α -continuous) function, but f is not s*g- α -continuous.

Theorem(3.10): Every s*g- α -continuous function is semi-continuous function and gs-continuous function.

Proof: Follows from the Theorem (2.8).

Remark(3.11): The converse of Theorem (3.10) may not be true in general as shown in the following example:

Example(3.12): Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\$ & $\sigma = \{Y, \phi, \{a\}, \{a, c\}\}\$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by : f(a) = a, f(b) = b & $f(c) = c \Longrightarrow$ f is semi-continuous and gs-continuous, but f is not s*g- α -continuous, since $\{a, c\}$ is open in Y, but $f^{-1}(\{a, c\}) = \{a, c\}$ is not s*g- α -open in X, since $\{a, c\} \not\subset int(cl_{s*g}(int(\{a, c\}))) = int(\{a, c\}) = \{a\}$.

Remark(3.13): Pre-continuous functions and α g-continuous functions are in general independent. Consider the following examples:-

Example(3.14): Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, c\}\}$ & $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by : f(a) = a, f(b) = c & $f(c) = b \implies f$ is α g-continuous, but f is not pre-continuous, since $\{b\}$ is open set in Y, but $f^{-1}(\{b\}) = \{c\}$ is not pre-open set in X, since

 $\{c\} \not\subset int(cl(\{c\})) = int(\{b,c\}) = \phi.$

Example(3.15): Let $X = Y = \Re$, $\tau = \mu$ = usual topology & $\sigma = \{\Re, \phi, \{Q\}\}$. Define $f : (\Re, \mu) \to (\Re, \sigma)$ by : f(x) = x for each $x \in \Re \Rightarrow f$ is not α g-continuous, since Q is open in Y, but $f^{-1}(\{Q\}) = Q$ is not α g-open set in X. But f is pre-continuous.

Remark(3.16): g-continuous functions and $g\alpha$ -continuous functions are in general independent. Consider the following examples:-

Example(3.17): Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$ & $\sigma = \{Y, \phi, \{b\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by : f(a) = a, f(b) = c & $f(c) = b \Rightarrow f$ is g-continuous, but f is not $g \alpha$ -continuous, since $\{b\}$ is open set in Y, but $f^{-1}(\{b\}) = \{c\}$ is not $g \alpha$ -open set in X, since $\{c\}^c = \{a, b\}$ is not $g \alpha$ -closed set in X.

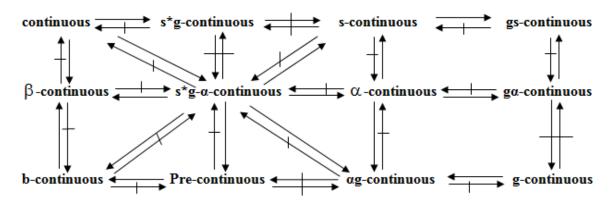
Example(3.18): Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, c\}\}$ & $\sigma = \{Y, \phi, \{b\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by : f(a) = b, f(b) = b & $f(c) = a \Rightarrow f$ is $g\alpha$ -continuous, but f is not g-continuous, since $\{b\}$ is open set in Y, but $f^{-1}(\{b\}) = \{a, b\}$ is not g-open set in X, since $\{a, b\}^c = \{c\}$ is not g-closed in X.

التطبيقية	فة ه	الصر	للعله د	الميثم	ات	محلة
	J	<u> </u>			U7:	

المجلد 27 العدد (3) عام 2014

Vol. 27 (3) 2014

The following diagram shows the relationships between $s^*g-\alpha$ -continuous functions and some other continuous functions:



Proposition(3.19): If $f: (X, \tau) \to (Y, \sigma)$ is $s^*g - \alpha$ -continuous, then $f(cl_{s^*g\alpha}(A)) \subseteq cl(f(A))$ for every subset A of X.

Proof: Since $f(A) \subseteq cl(f(A)) \Rightarrow A \subseteq f^{-1}(cl(f(A)))$. Since cl(f(A)) is a closed set in Y and f is s*g- α -continuous, then by (3.2) $f^{-1}(cl(f(A)))$ is an s*g- α -closed set in X containing A. Hence $cl_{s*g\alpha}(A) \subseteq f^{-1}(cl(f(A)))$. Therefore $f(cl_{s*g\alpha}(A)) \subseteq cl(f(A))$.

Theorem(3.20: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function . Then the following statements are equivalent:-

i) f is s*g- α -continuous.

- ii) For each point x in X and each open set V in Y with $f(x) \in V$, there is an s*g- α -open set U in X such that $x \in U$ and $f(U) \subseteq V$.
- iii) For each subset A of X, $f(cl_{s^*g\alpha}(A)) \subseteq cl(f(A))$.

iv) For each subset B of Y, $cl_{s^*g\alpha}(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

Proof: (i) \Rightarrow (ii). Let $f: X \to Y$ be an s*g- α -continuous function and V be an open set in Y s.t $f(x) \in V$. To prove that, there is an s*g- α -open set U in X s.t $x \in U$ and $f(U) \subseteq V$. Since f is s*g- α -continuous, then $f^{-1}(V)$ is an s*g- α -open set in X s.t $x \in f^{-1}(V)$. Let $U = f^{-1}(V) \Rightarrow f(U) = f(f^{-1}(V)) \subseteq V \Rightarrow f(U) \subseteq V$.

(ii) \Rightarrow (i). To prove that $f: X \to Y$ is $s^*g \cdot \alpha$ -continuous. Let V be any open set in Y. To prove that $f^{-1}(V)$ is an $s^*g \cdot \alpha$ -open set in X. Let $x \in f^{-1}(V) \Rightarrow f(x) \in V$. By hypothesis there is an $s^*g \cdot \alpha$ -open set U in X s.t $x \in U$ and $f(U) \subseteq V \Rightarrow x \in U \subseteq f^{-1}(V)$. Thus by Theorem ((2.26),vii) $f^{-1}(V)$ is an $s^*g \cdot \alpha$ -open set in X. Hence $f: X \to Y$ is an $s^*g \cdot \alpha$ -continuous function.

 $(ii) \rightarrow (iii).$

Suppose that (ii) holds and let $y \in f(cl_{s^*g\alpha}(A))$ and let V be any open neighborhood of y in Y. Since $y \in f(cl_{s^*g\alpha}(A)) \Rightarrow \exists x \in cl_{s^*g\alpha}(A)$ s.t f(x) = y. Since $f(x) \in V$, then by (ii) \exists an s^*g - α -open set U in X s.t $x \in U$ and $f(U) \subseteq V$. Since $x \in cl_{s^*g\alpha}(A)$, then by Theorem ((2.26),viii) $U \cap A \neq \phi$ and hence $f(A) \cap V \neq \phi$. Therefore we have $y \in cl(f(A))$. Hence $f(cl_{s^*g\alpha}(A)) \subseteq cl(f(A))$.

Ibn Al-Haitham Jour. for Pure & Appl. Sci. (iii) → (ii).

Let $x \in X$ and V be any open set in Y containing f(x). Let $A = f^{-1}(V^c) \Rightarrow x \notin A$. Since $f(cl_{s^*g\alpha}(A)) \subseteq cl(f(A)) \subseteq V^c \Rightarrow cl_{s^*g\alpha}(A) \subseteq f^{-1}(V^c) = A$. Since $x \notin A \Rightarrow x \notin cl_{s^*g\alpha}(A)$ and

by Theorem ((2.26),viii) there exists an s*g- α -open set U containing x such that $U \cap A = \phi$ and hence $f(U) \subseteq f(A^c) \subseteq V$.

 $(\mathrm{iii}) \rightarrow (\mathrm{iv}) \, .$

Suppose that (iii) holds and let B be any subset of Y. Replacing A by $f^{-1}(B)$ we get from (iii) $f(cl_{s^*g\alpha}(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$. Hence $cl_{s^*g\alpha}(f^{-1}(B)) \subseteq f^{-1}(cl(B))$. (iv) \rightarrow (iii).

Suppose that (iv) holds and let B = f(A) where A is a subset of X. Then we get from (iv) $cl_{s^*g\alpha}(A) \subseteq cl_{s^*g\alpha}(f^{-1}(f(A))) \subseteq f^{-1}(cl(f(A)))$. Therefore $f(cl_{s^*g\alpha}(A)) \subseteq cl(f(A))$.

Definition(3.21): A function $f: (X, \tau) \to (Y, \sigma)$ is called $s^*g \cdot \alpha$ -irresolute if the inverse image of every $s^*g \cdot \alpha$ -open set in Y is an $s^*g \cdot \alpha$ -open set in X.

Proposition(3.22): Every s*g- α -irresolute function is s*g- α -continuous.

Proof: It is Obvious .

Remark(3.23): The converse of Proposition (3.22) may not be true in general as shown in the following example:

Example(3.24): Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ &

 $\sigma = \{Y, \phi, \{a\}, \{a, c\}\} \implies$

 $\tau^{s^{*g-\alpha}} = \tau \text{ and } \sigma^{s^{*g-\alpha}} = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\} \text{ . Define } f : (X, \tau) \to (Y, \sigma) \text{ by } \text{ : } f(a) = a \text{ ,}$

 $f(b) = b \& f(c) = c \Longrightarrow f \text{ is } s^*g \cdot \alpha \text{ -continuous, but } f \text{ is not } s^*g \cdot \alpha \text{ -irresolute since } \{a, b\} \text{ is an } s^*g \cdot \alpha \text{ -open set in } Y$, but $f^{-1}(\{a, b\}) = \{a, b\} \text{ is not } s^*g \cdot \alpha \text{ -open set in } X$.

Remark(3.25): continuous functions and $s*g-\alpha$ -irresolute functions are in general independent

Consider the following examples:-

Example(3.26): Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ & $\sigma = \{Y, \phi, \{a\}\}$. Also ,

 $\tau^{s^*g^{-\alpha}} = \{X, \phi, \{a\}, \{b, c\}\} \& \ \sigma^{s^*g^{-\alpha}} = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\} \ \text{Define} \ f: (X, \tau) \to (Y, \sigma) \ \text{by}: f(a) = a,$

 $f(b) = b \& f(c) = c \Longrightarrow f$ is continuous, but f is not s*g- α -irresolute, since {a,b} is s*g- α -open

set in Y, but $f^{-1}(\{a,b\}) = \{a,b\}$ is not $s^*g - \alpha$ -open set in X.

Example(3.27): Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$ & $\sigma = \{Y, \phi, \{a, b\}\}$. Also, $\tau^{s^*g-\alpha} = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}\$ & $\sigma^{s^*g-\alpha} = \{Y, \phi, \{a, b\}\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by :

f(a) = a, f(b) = b & $f(c) = c \Rightarrow f$ is s*g- α -irresolute, but f is not continuous, Since {a,b} is open in Y, but $f^{-1}(\{a,b\}) = \{a,b\}$ is not open in X.

Theorem(3.28): Let $f: (X, \tau) \to (Y, \sigma)$ be a function . Then the following statements are equivalent:-

(i) f is $s^{*}g - \alpha$ -irresolute.

(ii) For each $x \in X$ and each $s^*g \cdot \alpha$ -neighborhood V of f(x) in Y, there is an $s^*g \cdot \alpha$ - neighborhood

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

U of x in X such that $f(U) \subseteq V$.

(iii) The inverse image of every $s^*g - \alpha$ -closed subset of Y is an $s^*g - \alpha$ -closed subset of X. **Proof:** (i) \Rightarrow (ii). Let $f: X \rightarrow Y$ be an s*g- α -irresolute function and V be an s*g- α neighborhood of f(x) in Y. To prove that, there is an s*g- α -neighborhood U of x in X such that $f(U) \subseteq V$. Since f is an s*g- α -irresolute then, $f^{-1}(V)$ is an s*g- α -neighborhood of x in X. Let $U = f^{-1}(V) \Rightarrow f(U) = f(f^{-1}(V)) \subseteq V \Rightarrow f(U) \subseteq V$.

(ii) \Rightarrow (i). To prove that $f: X \rightarrow Y$ is s*g- α -irresolute. Let V be an s*g- α -open set in Y. To prove that $f^{-1}(V)$ is an s*g- α -open set in X. Let $x \in f^{-1}(V) \Rightarrow f(x) \in V \Rightarrow V$ is an s*g- α -neighborhood of f(x). By hypothesis there is an s*g- α -neighborhood U_x of x such that $f(U_x) \subseteq V \Rightarrow U_x \subseteq f^{-1}(V), \forall x \in f^{-1}(V) \Rightarrow \exists an s^*g - \alpha \text{ -open set } W_x \text{ of } x \text{ such that}$ $W_{x} \subseteq U_{x} \subseteq f^{-1}(V), \forall x \in f^{-1}(V) \Rightarrow \bigcup_{x \in f^{-1}(V)} W_{x} \subseteq f^{-1}(V). \text{ Since } f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} \{x\} \subseteq \bigcup_{x \in f^{-1}(V)} W_{x}$ $\Rightarrow f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} W_{x} \Rightarrow f^{-1}(V) \text{ is an } s^{*}g^{-}\alpha \text{ -open set in } Y, \text{ since its a union of } s^{*}g^{-}\alpha \text{ -open set in } Y$

sets. Thus $f: X \to Y$ is an s*g- α -irresolute function.

(i) \Leftrightarrow (iii). It is a obvious.

Corollary(3.29): Let (X_1, τ_1) and (X_2, τ_2) be topological spaces. Then the projection functions

 $\pi_1: X_1 \times X_2 \to X_1$ and $\pi_2: X_1 \times X_2 \to X_2$ are s*g- α -irresolute functions.

Proof: Let U be an s*g- α -open set in X₁, then $\pi_1^{-1}(U) = U \times X_2$. Since U is s*g- α -open in X_1 and X_2 is s*g- α -open in X_2 , then by Proposition (2.27) $U \times X_2$ is s*g- α -open in $X_1 \times X_2$. Thus

 $\pi_1: X_1 \times X_2 \to X_1$ is an $s^*g\text{-}\alpha$ -irresolute function . Similaly we can prove that $\pi_2: X_1 \times X_2 \to X_2$

is $s^{*}g - \alpha$ -irresolute function.

However the following theorem holds . The proof is easy and hence omitted .

Theorem(3.30): If $f: (X, \tau) \to (Y, \sigma)$ and $f: (Y, \sigma) \to (Z, \eta)$ are functions, then:-

i) If f and g are both s*g- α -irresolute functions, then so is $g \circ f$.

ii) If f is s*g- α -irresolute and g is s*g- α -continuous, then $g \circ f$ is s*g- α -continuous.

iii) If f is s*g- α -continuous and g is continuous, then $g \circ f$ is s*g- α -continuous.

References

- 1. Levine, N. (1963) Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, 36-41.
- **2**. Levine, N.(1970)Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2), 89-96.
- **3**. Njasta, O. (1965) On some classes of nearly open sets, Pacific J. Math. 15, 961-970.
- 4. Mashhour, A.S.; Abd El-Monsef, M.E. and El-Deeb, S.N. (1982) On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt, 51, 47-53.
- 5. Andrijevic, D. (1996) On b-open sets, Mat. Vesnik, 48 (1-2), 59-64.
- 6. Abd El-Monsef, M.E; El-Deeb, S.N. and Mahmoud, R.A. (1983) β -open sets and β continuous Mappings, Bull. Fac. Sci. Assuit Univ. 12, 77-90.

- 7 . Arya,S.P. and Nour,T.M. (1990) Characterizations of s-normal spaces , Indian J. Pure Appl. Math. 21 (8) , 717-719 .
- **8**. Maki,H. ; Devi ,R. and Balachandran,K. (1993) Generalized α-closed sets in topology , Bull.Fukuoka Univ. Ed. Part III, 42_, 13-21.
- 9 . Maki,H. ; Devi,R. and Balachandran,K. (1994) Associated topologies of generalized αclosed sets and α-generalized closed sets , Mem. Fac. Sci. Kochi Univ. Ser.A.Math. 15_, 51-63.
- 10 . Khan, M. ; Noiri, T . and Hussain, M .(2008) On s*g-closed sets and s*-normal spaces , 48 , 31-41 .
- 11 . Mashhour, A.S.; Hasanein, I.A and El-Deeb, S.N. (1983) α -continuous and α -open mappings ,
 - Acta Math Hung. 41 (3-4), 213-218.
- 12 . Ekici, E. and Caldas, M. (2004) Slightly γ -continuous functions , Bol. Soc. Parana Mat. 22

(2), 63-74.

- 13 . Balachandran,K.; Sundaram,P. and Maki,H. (1991) On generalized continuous maps in topological spaces ,Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 12, 5-13.
- 14. Devi,R. ; Balachandran,K. and Maki,H. (1995) Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J. Pure Appl. Math. 26 (3), 271-284.
- 15 . Gnanambal, Y. (1997) On generalized preregular closed sets in topological spaces , Indian J. Pure Appl .Math. 28(3), 351-360 .
- 16. S. I. and Afrah M .(2010) S*-separation axioms, Iraqi Journal of Science, University of Baghdad, 51(1), 145-153.
- 17. S. I. (2014) On Weak D_{s*g}-Sets And Associative Separation Axioms, Ibn Al-Haitham Journal for Pure and Applied Science, (to appear).
- **18**. S. I., (2014) Another Type Of Compactness In Bitopological Spaces, Journal of Al Rafidain University College, (to appear).

حول المجموعات المفتوحة - \mathbf{g} - \mathbf{g} في الفضاءات التبولوجية

صبيحة إبراهيم محمود جمانة سري طارق قسم الرياضيات / كلية العلوم / الجامعة المستنصرية

HIPAS

استلم في 9 نيسان 2014 ، قبل في 1 أيلول 2014

الخلاصة

قدمنا في هذا البحث صنفا جديدا من المجموعات أسميناها بالمجموعات المفتوحة من النمط - $g = x^*$ - $g = \alpha$ في من ثم اثبتنا ان عائلة كل المجموعات الجزئية المفتوحة من النمط - $g = g = \alpha$ من الفضاء التبولوجي (X, τ) تشكل تبولوجي على X الذي هو انعم من τ . كذلك در سنا المكافئات والخواص الأساسية المجموعات المفتوحة من النمط - $g = g = \alpha$ والمجموعات المغلقة من النمط - $g = g = \alpha$. فضلا عن ذلك استخدمنا هذه المجموعة في تعريف ودر اسة صنف جديد من الدوال في الفضاءات التبولوجية أسميناه بالدوال المستمرة من النمط - $g = g = g = \alpha$ والدوال المحيرة من النمط - $g = g = \alpha$

الكلمات المفتاحية: المجموعات المفتوحة من النمط --α s*g ، المجموعات المغلقة من النمط -α s*g - الدوال المستمرة من النمط--α , s*g الدوال المحيرة من النمط--α . s*g