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Abstract     

  This work describes two efficient and useful methods for solving fractional pantograph delay 

equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on 

orthogonal polynomials, which are the method of the operational matrix of the fractional derivative 

that depends on Bernstein polynomials and the operational matrix of the fractional derivative with 

Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph 

delay equation to a system of linear equations, and by using, the operational matrices, we get rid 

of the integration and differentiation operations, which makes solving the problem easier. The 

concept of Caputo has been used to describe fractional derivatives. Finally, some numerical 

examples are identified to show the utility and capability of the two proposed approaches. The 

Mathematica® 12 program has been relied upon in the calculations. 

Keywords: Bernstein polynomials, Legendre polynomials, Pantograph Delay Equations. 

1. Introduction 

Fractional calculus has recently been increasingly used due to its wide applications in real-world 

problems. It has been used as a powerful tool in various fields such as chemistry, physics, 

engineering, and applied sciences, where it can be seen in thermal modeling [1], networks [2], 

optics [3], optimal control [4], elasticity [5], fluid mechanics [6], and many other applications. The 

fractional nature of this class of problems makes the solution very difficult. As a result, many 

researchers and authors try to generalize and develop the current methods to simply apply them 

numerically or analytically and find approximate solutions to them. These methods include the 

Collocation method [7, 8], Adomian’s decomposition method [9–11], homotopy perturbation 

method [12, 13], and other methods [14–16]. 

Fractional delay differential equations (FDDEs) are used in a variety of technical systems, 

including characterizing propagation, transport development, or population gestures [17, 18]. The 

pantograph equation is one of the most important types of delay differential equations, and it is 

used to describe a wide range of phenomena. Various applications of these equations in practical 
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disciplines such as biology, physics, economics, and electrodynamics have been researched by 

many scholars [19–21]. Researchers have been interested in finding strategies to solve these kinds 

of problems and have presented a number of papers on the subject, where Rabiei and Ordok [22] 

introduce fractional-order Boubaker polynomials related to the Boubaker polynomials to achieve 

the numerical result for pantograph differential equations of fractional order in any arbitrary 

interval. Yuttanan et al. [23] presented a new class of functions called fractional-order generalized 

Taylor wavelets (FOGTW) for the nonlinear fractional delay and nonlinear fractional pantograph 

differential equations. In [24], a method utilizing the Chebyshev cardinal functions (CCFs) is 

formulated to find an accurate result for fractional pantograph delay differential equations; see 

more works [25–27].  Operational matrices are one of the most widely used numerical methods 

for solving fractional differential equations (FDEs) because they are based on polynomials, which 

are one of the simplest functions in terms of structure. As a result, the benefit of this method is that 

it transforms the problem into a set of algebraic equations. Using the operational matrix, we get 

rid of the derivations and integrals, making the solution easier and simpler. Studies that relied on 

operational matrices methods can be seen in [28–32]. 

   The main objective of this work is to apply the operational matrix method for derivatives that 

depend on Bernstein polynomials, as well as the operational matrix method, which depends on 

shifted Legendre polynomials, for solving fractional pantograph delay equations (FPDEs) with 

initial and boundary conditions. The rest of this paper is organized as follows: In Section 2, we 

provide some basic definitions of fractional calculus. In Section 3, Bernstein polynomials and their 

operational matrices (BOM) are introduced. Also, in Section 4, Shifted Legendre polynomials and 

their operational matrices (LOM) are considered. In Section 5, some numerical examples of 

pantograph equations with prime and boundary conditions will be solved by the proposed methods. 

Finally, we discuss our findings and conclusions. 

2.  Basic Definitions 

The Riemann-Liouville and Caputo operators [33] are the two most commonly used definitions in 

fractional calculus. This section will give the definitions and some of their properties. 

Definition 1: The Riemann–Liouville fractional integration of order α is defined as [33] 

𝐼𝛼𝑦(𝑥) = {
1

𝛤(𝛼)
∫

𝑥

0
 

𝑦(𝑠)

(𝑥−𝑠)1−𝛼 𝑑𝑠,        𝛼 > 0, 𝑥 > 0, 𝑦(𝑥),                                 𝛼 = 0    .                                                                                   

(1) 

For the Riemann–Liouville integral     

1.  𝐼𝛼1𝐼𝛼2𝑦(𝑥) = 𝐼𝛼1+𝛼2𝑦(𝑥), 

2.  𝐼𝛼(𝜆1𝑦(𝑥) + 𝜆2𝑔(𝑥)) = 𝜆1𝐼𝛼𝑦(𝑥) + 𝜆2𝐼𝛼𝑔(𝑥), 

3.  𝐼𝛼𝑥𝛽 =
𝛤(𝛽+1)

𝛤(𝛽+𝛼+1)
𝑥𝛼+𝛽 ,      𝛽 > −1, 

where 𝛼1 , 𝛼2, 𝜆1 𝑎𝑛𝑑 𝜆2 are constants.  

 Definition 2: Caputo’s fractional derivative operator of order 𝛼 is defined as [33] 

 𝐷𝛼𝑦(𝑥) =
1

𝛤(𝑛−𝛼)
∫

𝑥

0
 

𝑦(𝑛)(𝑠)

(𝑥−𝑠)𝛼+1−𝑛
𝑑𝑠,                          𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁.                            (2)      
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The characteristics of Caputo derivative are 

1. 𝐷𝛼𝐼𝛼𝑦(𝑥) = 𝑦(𝑥), 

2. 𝐼𝛼𝐷𝛼𝑦(𝑥) = 𝑦(𝑥) − ∑𝑛−1
𝑖=0  𝑦(𝑖)(0)

𝑥𝑖

𝑖!
, 

3. 𝐷𝛼𝜆 = 0, 

 

Where 𝜆 is constant. 

In this study, the concept of Caputo was relied upon to define the fractional derivative. 

3.  Bernstein polynomials and their operational matrix [34,35] 

In this section, we will go over Bernstein's polynomial and some of its fundamental properties, as 

well as a description of an operational matrix with integer and fractional derivatives, and explain 

how to apply the approach (BOM) for solving the pantograph equation. 

3. 1. Bernstein polynomials 

The Bernstein polynomials of degree 𝑛  on the interval [0,1] are defined by  

  𝐵𝑖,𝑛(𝑥) = (𝑛 𝑖 )𝑥𝑖(1 − 𝑥)𝑛−𝑖,                  

for 𝑖 =  0, 1, … , 𝑛, where 

(𝑛 𝑖 ) =
𝑛!

𝑖! (𝑛 − 𝑖)!
 .                

Bernstein basis polynomials in a linear combination  𝐵𝑛(𝑥) = ∑𝑛
𝑖=0   𝑐𝑖𝐵𝑖,𝑛(𝑥) , are called a 

Bernstein polynomial or polynomial in Bernstein form of degree  , and 𝑐𝑖 are called Bernstein 

coefficients.   

Now we can approximate any polynomial of degree 𝑛 to the form of linear combination, as given 

below [34] 

 𝑦(𝑥) = ∑𝑛
𝑖=1   𝑐𝑖𝐵𝑖,𝑛 = 𝐶𝑇𝛷(𝑥),                                                                                                               (3) 

where 𝐶𝑇 = [𝑐0, 𝑐1, … , 𝑐𝑛], 

 𝛷(𝑥) = [𝐵0,𝑛, 𝐵1,𝑛, … , 𝐵𝑛,𝑛],𝑇  

or in the form of a matrix resulting from multiplying a square matrix (𝑛 + 1) × (𝑛 + 1) and vector 

(𝑛 +  1)  ×  1 : 

𝛷(𝑥) =𝐴𝑋,   

 𝐴 = [(−1)0(𝑛 0 ) (−1)1(𝑛 0 )(𝑛 − 0 1 )  … (−1)𝑛−0(𝑛 0 )(𝑛 − 0 𝑛 − 0 ) 0 (−1)0(𝑛 𝑖 )  … (−1)𝑛−𝑖(𝑛 𝑖 )(𝑛 −

𝑖 𝑛 − 𝑖 )  ⋮ ⋮ ⋱ ⋮  0 0 … (−1)0(𝑛 𝑛 ) ](𝑛+1)×(𝑛+1), 𝑋 = [1 𝑥 𝑥2  ⋮  𝑥𝑛 ]
(𝑛+1)×1

   .                    

We note that the ‖𝐴‖ ≠ 0, which indicates that the matrix 𝐴 is invertible.  

On the other hand, when using the Bernstein polynomials in the least-squares approximation, the 

fact that they are not orthogonal becomes a disadvantage. According to [35], one method for direct 

least-squares approximation by polynomials in Bernstein form relies on the construction of the 
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basis {𝑑0
𝑛(𝑥), 𝑑1

𝑛(𝑥), … , 𝑑𝑛
𝑛(𝑥)} that is "dual" to the Bernstein basis of degree 𝑛 on to [0,1]. The 

attribute that distinguishes this dual basis is 

 ∫
1

0
 𝑏𝑖

𝑛(𝑥)𝑑𝑗
𝑛(𝑥)𝑑𝑥 = {1     𝑓𝑜𝑟 𝑖 = 𝑗, 0     𝑓𝑜𝑟 𝑖 ≠ 𝑗,  

 for 𝑖, 𝑗 = 0,1, . . . . . . . , 𝑛, 

where 

 𝑑𝑗
𝑛(𝑥) = ∑𝑛

𝑘=0  𝜆𝑗𝑘𝐵𝑘
𝑛(𝑥), 𝑗 = 0,1, … , 𝑛,  

 𝜆𝑗𝑘 =
(−1)𝑗+𝑘

(𝑛 𝑗 )(𝑛 𝑘 )
∑𝑚𝑖𝑛(𝑗,𝑘)

𝑖=0   (2𝑖 + 1)(𝑛 + 𝑖 + 1 𝑛 − 𝑗 )(𝑛 − 𝑖 𝑛 − 𝑗 )(𝑛 + 𝑖 + 1 𝑛 − 𝑘 )(𝑛 −

𝑖 𝑛 − 𝑘 ),                              (4) 

for 𝑗, 𝑘 = 0,1, . . . . , 𝑛. 

3. 2 Operational Matrix of Fractional Derivative for Bernstein Polynomial (BOM) 

In the beginning, we will present the operational matrix 𝐷 of derivatives for Bernstein 

polynomials, which is a square matrix of degree (𝑛 + 1) × (𝑛 + 1), then the derivative of the 

vector 𝛷(𝑥) is 

ⅆ𝛷(𝑥)

ⅆ𝑥
= 𝐷𝛷(𝑥),                                                                                                                                              (5) 

where 𝐷 is given in [34],  𝐷 = 𝐴𝜎𝐵∗, 

where 𝜎 is (𝑛 + 1) × (𝑛) matrix given in [35] as  𝜎 = [0 0 0 …  0 1 0 0 …  0 0 2 0 …  0 ⋮ ⋮ ⋮ ⋱
 0 0 0 0 …  𝑛 ]  

and, 𝐵∗ is (𝑛) × (𝑛 + 1) matrix define as      𝐵∗ = [𝐴[1]
−1 𝐴[2]

−1  ⋮  𝐴[𝑛]
−1  ]  ,                         

𝐴[𝑘]
−1  𝑖𝑠 𝑘𝑡ℎ  𝑟𝑜𝑤 𝑜𝑓 𝐴−1, 𝑘 = 1,2, ⋯ , 𝑛. 

 We can generalize Eq. (5) as follows 

ⅆ𝑛

ⅆ𝑥𝑛 𝛷(𝑥) = (𝐷)𝑛𝛷(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1, 2, . . ..                                                                                      (6) 

Let us now introduce the operational matrix of the fractional derivatives 𝐷(𝛼) , 𝛼 > 0, of size (𝑛 +
1) × (𝑛 + 1)  is defined by the concept of Caputo in [35] 

 𝐷(𝛼) = [∑𝑛
𝑗=⌈𝛼⌉  𝜔0,𝑗,0  ∑𝑛

𝑗=⌈𝛼⌉  𝜔0,𝑗,1  … ∑𝑛
𝑗=⌈𝛼⌉  𝜔0,𝑗,𝑛  ⋮ ⋮  ⋮

 ∑𝑛
𝑗=⌈𝛼⌉  𝜔𝑖,𝑗,0  ∑𝑛

𝑗=⌈𝛼⌉  𝜔𝑖,𝑗,1  … ∑𝑛
𝑗=⌈𝛼⌉  𝜔𝑖,𝑗,𝑛  ⋮ ⋮  ⋮

 ∑𝑛
𝑗=⌈𝛼⌉  𝜔𝑛,𝑗,0  ∑𝑛

𝑗=⌈𝛼⌉  𝜔𝑛,𝑗,1  … ∑𝑛
𝑗=⌈𝛼⌉  𝜔𝑛,𝑗,𝑛 ] 

here  𝜔𝑖,𝑗,𝑙 is given by: 

𝜔𝑖,𝑗,𝑙 = (−1)𝑗−𝑖(𝑛 𝑖 )(𝑛 − 𝑖 𝑗 − 𝑖 )
𝛤(𝑗 + 1)

𝛤(𝑗 + 1 − 𝑞)
∑

𝑛

𝑘=0

 𝜆𝑙𝑘𝜇𝑘𝑗,                                                               

where 𝜆𝑙𝑘 is given in Eq. (4) and 
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𝜇𝑘𝑗 = ∑

𝑛

𝑠=𝑘

  (−1)𝑠−𝑘(𝑛 𝑘 )(𝑛 − 𝑘 𝑠

− 𝑘 )
1

𝑗 − 𝛼 + 𝑠 + 1
.                                                                                

3. 3 The steps of applying the BOM method for solving the Delay-Pantograph equation 

In this paper, we consider the fractional neutral pantograph differential equation 

       𝐷𝛼𝑦(𝑥) = 𝑎(𝑥)𝑦(𝑝𝑥) + 𝑏(𝑥)𝐷𝛾𝑦(𝑝𝑥) + 𝑑(𝑥)𝑦(𝑥) + 𝑔(𝑥),                                       (7) 

 where 𝑥 ∈ [0,1],         0 < 𝛾 ≤ 𝛼 ≤ 2,         0 < 𝑝 < 1. 

𝑦(𝑥) is the unknown function,  

𝑎, 𝑏, 𝑑, 𝑔 ∈ 𝐶[0,1], with initial and boundary conditions. 

Now to apply the BOM method, we follow the steps below: 

I- We will approximate unknown function 𝑦 (𝑥) by Bernstein polynomials as (3), and we have 

 𝐷𝑦(𝑥) = 𝐶𝑇𝐷 𝛷(𝑥), 𝐷𝑦(𝑝𝑥) = 𝐶𝑇𝐷 𝛷(𝑝𝑥),…,  

𝐷𝑛𝑦(𝑥) = 𝐶𝑇𝐷𝑛 𝛷(𝑥), 𝐷𝑛𝑦(𝑝𝑥)𝐶𝑇𝐷𝑛 𝛷(𝑝𝑥), 

  𝐷𝛼𝑦(𝑥) = 𝐶𝑇𝐷(𝛼)𝛷(𝑥), 𝐷𝛼𝑦(𝑝𝑥) = 𝐶𝑇𝐷(𝛼)𝛷(𝑝𝑥), 

  𝑤ℎ𝑒𝑟𝑒 𝛼 𝑖𝑠 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒. 

II- We will substitute all initial or boundary conditions given in the problem. 

III- We use the roots of Chebyshev polynomials to help reduce interpolation errors as the 

collocation node, 

𝑥𝑖 =
1

2
+

1

2𝑐𝑜𝑠 ((2𝑖 + 1)
𝜋

2𝑛)
,   𝑖 = 0,1, … , 𝑛 − 1.                          

IV- We substitute the approximate polynomial 𝑦(𝑥) and its derivatives in Eq. (7) to get the system 

of algebraic equations that we can solve using computer programs like Mathematica and thus get 

the vector values 𝐶𝑇. As a result, we will get an approximate solution to the problem. 

4. The shifted Legendre polynomials and their operational matrix [36]  

Shifted Legendre polynomials will be discussed in this Section. Then we will describe the method 

(LOM) and how to use it to solve the problem. 

4. 1. Legendre polynomials 

Legendre polynomials are known for the interval [-1,1] and can be calculated using the regression 

relationship as following 

𝐿𝑖+1(𝑧) =
2𝑖 + 1

𝑖 + 1
𝑧𝐿𝑖(𝑧) −

𝑖

𝑖 + 1
𝐿𝑖−1(𝑧),   𝑖 = 1,2, …                                                                 (8) 

where 𝐿0(𝑧) = 1 𝑎𝑛𝑑 𝐿1(𝑧) = 𝑧.  

Substitute the variable 𝑧 = 2𝑥 − 1 for these polynomials in the interval [0,1], and create the so-
called shifted Legendre polynomial, let 𝑃𝑖  (𝑥) be a symbol for the shifted Legendre polynomial. 
𝑃𝑖  (𝑥) is calculated as follows:  
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𝑃𝑖+1(𝑥) =
(2𝑖 + 1)(2𝑥 − 1)

(𝑖 + 1)
𝑃𝑖(𝑥) −

𝑖

𝑖 + 1
𝑃𝑖−1(𝑥) ,           𝑖 = 1,2, …,                                         (9) 

here 𝑃0(𝑥) = 1 and  𝑃1(𝑥) = 𝑥.        

The following formulations of the shifted Legendre polynomial of degree 𝑖 analytic form are found 

in the source [36]: 

𝑃𝑖(𝑥)

= ∑

𝑖

𝑘=0

  (−1)𝑖+𝑘
(𝑖 + 𝑘)!

(𝑖 − 𝑘)!

𝑥𝑘

(𝑘!)2
.                                                                                                     (10) 

Whereas:   𝑃𝑖(1) = 1   𝑎𝑛𝑑  𝑃𝑖(0) = (−1)𝑖. The requirement of orthogonality is: 

            ∫
1

0
 𝑃𝑖(𝑥)𝑃𝑗(𝑥)𝑑𝑥 = {

1

2𝑖+1
     𝑓𝑜𝑟 𝑖 = 𝑗, 0     𝑓𝑜𝑟 𝑖 ≠

𝑗.                                                                                 

The shifted Legendre polynomials' power series is written as follows: 

𝑃𝑖(𝑥) = ∑

𝑖

𝑘=0

  (−1)𝑖+𝑘(𝑖 + 𝑘 𝑘 )(𝑖 𝑘 )𝑥𝑘.                                                                                                    

Now we can approximate any function based on shifted Legendre polynomial as follows: 

𝑦(𝑥) = ∑

∞

𝑗=0

  𝑐𝑗𝑃𝑗(𝑥), 

where  

𝑐𝑗 = (2𝑗 + 1) ∫
1

0

 𝑦(𝑥)𝑃𝑗(𝑥)𝑑𝑥,     𝑗 = 1,2, …                

 

Only the first (𝑛 +  1) terms of shifted Legendre polynomials are considered in practice. Next, 

there is 

 

𝑦(𝑥) = ∑

𝑛

𝑗=0

  𝑐𝑗𝑃𝑗(𝑥)

= 𝐶𝑇𝛷(𝑥),                                                                                                              (11) 

where 

 𝐶𝑇 = [𝑐0, … , 𝑐𝑛], 𝑡ℎ𝑒 𝑠ℎ𝑖𝑓𝑡𝑒𝑑 𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 , 𝛷(𝑥) =
[𝑃0(𝑥), 𝑃1(𝑥), … , 𝑃𝑛(𝑥)]𝑇   𝑡ℎ𝑒 𝑠ℎ𝑖𝑓𝑡𝑒𝑑 𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟.                               

4. 2. Operational Matrix of Fractional Derivative for Shifted Legendre Polynomials (LOM)  

The operational matrix of derivatives defined based on shifted Legendre polynomials is denoted 

by 𝐷(1) of degree (𝑛 + 1) × (𝑛 + 1) and can be expressed in the following form [36] 
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𝐷(1) = (𝑑𝑖𝑗) = {2(2𝑗 + 1),      𝑓𝑜𝑟 𝑗 = 𝑖 − 𝑘, 0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  {𝑘 = 1,3, … , 𝑛,      𝑖𝑓 𝑛 𝑜𝑑𝑑.  𝑘 =

1,3, … , 𝑛 − 1,      𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛.    

The vector's derivative 𝛷(𝑥) can be written as follows 

𝑑𝛷(𝑥)

𝑑𝑥
= 𝐷(1)𝛷.                                                                                                                                         (12) 

We can generalize Equation (12) as 

𝑑𝑛𝛷(𝑥)

𝑑𝑥𝑛
= (𝐷(1))

𝑛
𝛷(𝑥),          𝑛 = 1, 2, . . . . . .                                                                                     (13) 

Let us now represent the fractional derivative operational matrix  𝐷(𝛼), 𝛼 > 0 , of size 

 (𝑛 + 1) × (𝑛 + 1) defined by the Caputo concept in the source [36] as follows:  

 𝐷𝛼 = [0 0 ⋯  0 ⋮ ⋮  ⋯  ⋮  0 0 ⋯  0 ∑⌈𝛼⌉
𝑘=⌈𝛼⌉  𝜃⌈𝛼⌉,0,𝑘  ∑

⌈𝛼⌉
𝑘=⌈𝛼⌉  𝜃⌈𝛼⌉,1,𝑘  ⋯ ∑

⌈𝛼⌉
𝑘=⌈𝛼⌉  𝜃⌈𝛼⌉,𝑛,𝑘  ⋮ ⋮

 ⋯  ⋮  ∑𝑖
𝑘=⌈𝛼⌉  𝜃𝑖,0,𝑘  ∑𝑖

𝑘=⌈𝛼⌉  𝜃𝑖,1,𝑘  ⋯ ∑𝑖
𝑘=⌈𝛼⌉  𝜃𝑖,𝑛,𝑘  ⋮ ⋮  ⋯  ⋮

 ∑𝑛
𝑘=⌈𝛼⌉  𝜃𝑛,0,𝑘  ∑𝑛

𝑘=⌈𝛼⌉  𝜃𝑛,1,𝑘  ⋯ ∑𝑛
𝑘=⌈𝛼⌉  𝜃𝑛,𝑛,𝑘  ],      

where 𝜃𝑖,𝑗,𝑘 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 

𝜃𝑖,𝑗,𝑘 = (2𝑗 + 1) ∑

𝑗

𝑙=0

 
(−1)𝑖+𝑗+𝑘+𝑙(𝑖 + 𝑘)! (𝑙 + 𝑗)!

(𝑖 − 𝑘)! 𝑘! 𝛤(𝑘 − 𝛼 + 1)(𝑗 − 𝑙)! (𝑙!)2(𝑘 + 𝑙 − 𝛼 + 1)
. 

It is worth noting that the initial ⌈𝛼⌉ rows in 𝐷(𝛼)are all zero. 

4.3 The steps of applying the LOM method for solving the Delay-Pantograph equation 

I- We will approximate unknown function 𝑦 (𝑥) by Legendre polynomials as Eq. (11), and we 

have 

 𝐷𝑦(𝑥) = 𝐶𝑇𝐷 𝛷(𝑥), 𝐷𝑦(𝑝𝑥) = 𝐶𝑇𝐷 𝛷(𝑝𝑥),…,  

𝐷𝑛𝑦(𝑥) = 𝐶𝑇𝐷𝑛 𝛷(𝑥), 𝐷𝑛𝑦(𝑝𝑥)𝐶𝑇𝐷𝑛 𝛷(𝑝𝑥), 

  𝐷𝛼𝑦(𝑥) = 𝐶𝑇𝐷(𝛼)𝛷(𝑥), 𝐷𝛼𝑦(𝑝𝑥) = 𝐶𝑇𝐷(𝛼)𝛷(𝑝𝑥), 

  𝑤ℎ𝑒𝑟𝑒 𝛼 𝑖𝑠 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒. 

II- We will substitute all initial or boundary conditions given in the problem. 

III- We use the roots of Chebyshev polynomials can help reduce interpolation errors as the 

collocation node, 

𝑥𝑖 =
1

2
+

1

2𝑐𝑜𝑠 ((2𝑖 + 1)
𝜋

2𝑛)
,   𝑖 = 0,1, … , 𝑛 − 1.                          

IV- We substitute the approximate polynomial 𝑦(𝑥) and its derivatives in Eq. (7) to get the system 

of algebraic equations that we can solve using computer programs like Mathematica and thus get 

the vector values 𝐶𝑇 as a result, we will get an approximate solution to the problem. 

5. Illustrative examples 



IHJPAS. 36 (3) 2023 

389 
 

In this Section, some numerical examples are given to demonstrate the applicability and accuracy 

of the proposed method. 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎® 12  is used for all numerical calculations. 

Example 1: - Consider the following fractional neutral pantograph differential equation 

𝐷𝛼𝑦(𝑥) = −𝑦(𝑥) + 0.1𝑦(0.8𝑥) + 0.5𝐷𝛼𝑦(0.8𝑥) + 𝑔(𝑥), 𝑥 ∈ (0,1],                            (14)               

 𝑦(0) = 0, 𝑤𝑖𝑡ℎ 0 < 𝛼 ≤ 1. 

Now to solve Eq. (14) by (BOM), the exact solution to this problem for 𝛼 = 0.8 is 𝑦(𝑥) = 𝑥3.8 

with (𝑥) =  2.211894885744887𝑥3 + 0.9571706039258614𝑥3.8 , and with 𝑛 = 2, by 

applying the suggested method in Section (3-2), we have 

 𝐷0.8 = [−1.14334 − 1.55 − 0.276996 1.17281 0.872243 − 1.55 −
0.0294677 0.677756 1.82699  ] 

By applying the condition given in the problem and following the solution steps mentioned in 

Section )3-3), a system of algebraic equations will be produced, and by solving this system, we 

get the values of 𝑐0 = 0, 𝑐1 = 0.0118614, 𝑐2 = 0.472083, the approximate solution is 𝑦(𝑥) =
0.0237227𝑥 + 0.44836𝑥2. 

 If 𝑛 = 15, we have the following approximate solution: 𝑦(𝑥) = 9.543602968653811 ×
10−17 + 0.000006511676397407056𝑥 − 0.0007034719961872769𝑥2 +
0.03467000244609836𝑥3 + 1.4120584194534938𝑥4 − 1.2900408484650545𝑥5 +
2.1428840263535394𝑥6 − 2.118319283516632𝑥7 − 0.6752474254279832𝑥8 +
6.081788398525532𝑥9 − 10.489702105988727𝑥10 + 10.517845113990916𝑥11 −
7.003103640066911𝑥12 + 3.1968135804363556𝑥13 − 0.9498166132520964𝑥14 +
0.14086738703346668𝑥15. 

Table 1 shows the absolute error|𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑎𝑝𝑝.| value for the some 𝑥 ∈ (0,1] at 𝑛= 9, 11, 13, and 

15. 

Table 1:  The absolute error of Ex. 1 for 𝑛=9,11,13,15 by (BOM) 

𝒙 𝒏 = 𝟗 𝒏 = 𝟏𝟏 𝒏 = 𝟏𝟑 𝒏 = 𝟏𝟓 

0.1 1.21756×10-7 2.92165×10-8 6.77509×10-8 3.19953×10-8 

0.2 1.07484×10-7 3.66589×10-8 7.85818×10-8 3.32075×10-8 

0.3 1.40511×10-7 5.90616×10-8 5.80438×10-8 2.87904×10-8 

0.4 3.05621×10-7 6.14799×10-8 2.5095×10-8 1.82177×10-8 

0.5 5.54154×10-8 2.54537×10-8 9.48675×10-9 4.38442×10-9 

0.6 2.92554×10-7 3.27859×10-8 2.82086×10-8 6.08513×10-10 

0.7 3.1252×10-7 8.2099×10-8 3.73298×10-8 1.17502×10-8 

0.8 6.18788×10-8 1.2187×10-7 3.22221×10-8 1.2558×10-9 

0.9 2.07441×10-7 1.90066×10-7 1.81549×10-8 1.60439×10-8 

  

In order to use the LOM approach to solve example 1, we must follow the steps outlined in section 

(4-3). If we assume 𝑛 = 2, we get  

 𝐷0.8 = [0 0 0 1.81521 0.495057 − 0.206274 − 0.495057 4.08422 1.06084 ] 

 The approximate solution 𝑦(𝑥) = 0.0237227𝑥 + 0.44836𝑥2, and the value of 𝑐0 =
0.161315, 𝑐1 = 0.236041, 𝑐2 = 0.0747266. If 𝑛 = 15, the approximate solution   

𝑦(𝑥) = −5.917880389286895 × 10−17 + 0.000004941255572793077𝑥 −
0.0005604595883997804𝑥2 + 0.030640435190110164𝑥3 + 1.4662615402598584𝑥4 −
1.7082026330161135𝑥5 + 4.183434690591156𝑥6 − 8.78814674633918𝑥7 +
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14.437646065525456𝑥8 − 18.130978138638397𝑥9 + 17.216360479207815𝑥10 −
12.200969372917305𝑥11 + 6.3079153582312015𝑥12 − 2.277429378098255𝑥13 +
0.5224877022689723𝑥14 − 0.058464614185574325𝑥15.  

We present Table 2, in which we will show the absolute error value of 𝑛=9,11,13, and 15 

 

Table 2: The absolute error of Ex. 1 for 𝑛=9,11,13,15 by (LOM) 

𝒙 𝒏 = 𝟗 𝒏 = 𝟏𝟏 𝒏 = 𝟏𝟑 𝒏 = 𝟏𝟓 

0.1 1.21719×10-7 2.88811×10-8 2.34826×10-9 1.72445×10-8 

0.2 1.07453×10-7 3.60137×10-8 1.13909×10-8 1.44977×10-8 

0.3 1.40539×10-7 5.78547×10-8 9.88362×10-9 1.44738×10-8 

0.4 3.05492×10-7 6.08407×10-8 9.05138×10-9 1.08162×10-8 

0.5 5.55965×10-8 2.58773×10-8 3.71809×10-8 1.03386×10-9 

0.6 2.92938×10-7 3.09694×10-8 6.09679×10-8 8.16747×10-9 

0.7 3.1172×10-7 8.21428×10-8 6.37435×10-8 1.17671×10-8 

0.8 6.3123×10-8 1.21236×10-7 5.67603×10-8 5.21886×10-9 

0.9 2.09417×10-7 1.93688×10-7 6.72274×10-8 5.09303×10-9 

 

In Figure 1, we show a plot of both the exact solution and the approximate solution of the two 

proposed methods for 𝑛=15. 

 

Figure 1: The comparison of the exact solution and the approximate solution of (BOM, LOM) methods for Ex. 1 at 

𝑛=15 

Also, in Figure 2, logarithmic plots of the greatest absolute error of the approximate solution are 

given using Bernstein or Legendre polynomials with operational matrices to solve example 1 from 

𝑛 = 2 to 𝑛 = 15. 
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Figure 2:  Logarithmic plots for the 𝑀𝐴𝐸𝑛  of Ex. 1 form 𝑛=2 to 𝑛=15 

We note from the above results that the two proposed methods are efficient because their results 

are highly accurate compared to the results of the exact solution, as shown in Figure 1. Also, we 

can see the efficiency of the two proposed methods in Figure 2, which shows the decrease in 

absolute error when the value of 𝑛 is increased. 

 In order to show which of the two methods is more efficient, we present Table 3, in which we 

will show the absolute error values of the two proposed methods at 𝑛 = 15 

Table 3: The absolute error |𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑎𝑝𝑝.| of (BOM, LOM) for Ex. 1 at 𝑛=15 

 𝒙 Absolute error (B) Absolute error (L) 

0.1 3.19953×10-8 1.72445×10-8 

0.2 3.32075×10-8 1.44977×10-8 

0.3 2.87904×10-8 1.44738×10-8 

0.4 1.82177×10-8 1.08162×10-8 

0.5 4.38442×10-9 1.03386×10-9 

0.6 6.08513×10-10 8.16747×10-9 

0.7  1.17502×10-8 1.17671×10-8 

0.8 1.2558×10-9 5.21886×10-9 

0.9 1.60439×10-8 5.09303×10-9 

     

 We notice from Table 3 that the values of Legendre's absolute error are less than those of 

Bernstein’s absolute error, which indicates that (LOM) method is more efficient than (BOM) 

method in solving example 1.  

Example 2: Consider the following fractional pantograph equation 

𝐷2𝑦(𝑥) + 𝐷
3

2𝑦(𝑥) + 𝑦(𝑥) = 𝑦 (
𝑥

2
) +

3𝑥2

4
+ 4√

𝑥

𝜋
+ 2, 𝑥 ∈ [0,1],                                                 (15)                  

subject to  𝑦(0) = 0,   𝑦(1) = 1, and the exact solution to this problem is 𝑦(𝑥) =  𝑥2. 

When applying the (BOM) method for solving Eq. (15) at 𝑛 = 2, we have 

 𝐷
3

2 = [
24

35√𝜋
 

24

7√𝜋
 

136

35√𝜋
 −

48

35√𝜋
 −

48

7√𝜋
 −

272

35√𝜋
 

24

35√𝜋
 

24

7√𝜋
 

136

35√𝜋
 ],   

We also obtained the values of the unknown vector 𝐶𝑇, which are as follows  𝑐0 = 1.18599 ×
10−17, 𝑐1 = 0.00228219, 𝑐2 = 1.  
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We also come up with the following approximate solution: 

   𝑦(𝑥) = 1.18599 × 10−17 + 0.00456438𝑥 + 0.995436𝑥2. If 𝑛 = 20, we have the following 

approximate solution: 

 𝑦(𝑥) = −2.786853970684164 × 10−15 − 0.000030030531854295995𝑥 +

1.006670875743893𝑥2 − 0.31622314969631304𝑥3 + 7.39417733179431𝑥4 −

101.22636028238139𝑥5 + 882.5852080762097𝑥6 − 5099.047105444493𝑥7 +

19465.37892066044𝑥8 − 44677.52886989678𝑥9 + 27582.502303316025𝑥10 +

211915.94892108513𝑥11 − 939140.5398020139𝑥12 + 2196019.891017601𝑥13 −

3463946.68783369𝑥14 + 3900531.650722769𝑥15 − 3162032.689661729𝑥16 +

1810684.418812781𝑥17 − 696899.7151342098𝑥18 + 162020.35868317497𝑥19 −

17212.384417226098𝑥20. 

       Table 4 shows the absolute error|𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑎𝑝𝑝.| value for the some 𝑥 ∈ [0,1] at 𝑛= 14,16,18, 

and 20 

Table 4:  The absolute error of Ex. 2 for 𝑛=14,16,18,20 by (BOM) 

𝒙 𝒏 = 𝟏𝟒 𝒏 = 𝟏𝟔 𝒏 = 𝟏𝟖 𝒏 = 𝟐𝟎 

0.1 3.3016×10-6 2.0304×10-6 1.679×10-6 1.42028×10-6 

0.2 5.64738×10-6 3.96901×10-6 2.44675×10-6 1.92033×10-6 

0.3 5.90691×10-6 4.01465×10-6 3.34437×10-6 2.143×10-6 

0.4 6.08868×10-6 4.68942×10-6 2.963×10-6 2.48202×10-6 

0.5 6.6422×10-6 3.86708×10-6 3.25554×10-6 2.06817×10-6 

0.6 4.61383×10-6 4.11001×10-6 2.54331×10-6 1.97996×10-6 

0.7 4.97604×10-6 2.68729×10-6 2.29425×10-6 1.58232×10-6 

0.8 2.62815×10-6 2.43508×10-6 1.62869×10-6 9.01401×10-7 

0.9 2.04652×10-6 1.1369×10-6 6.75106×10-7 3.45435×10-7 

 

To solve example 2 using the (LOM) technique, we must follow the steps indicated in section (4-

3). If we take n=2, we get  

 𝐷
3

2 = [0 0 0 0 0 0 
16

√𝜋
 

48

5√𝜋
 −

16

7√𝜋
 ], 

We also obtain the values of the unknown vector 𝐶𝑇, which are as follows 𝑐0 = 0.334094, 𝑐1 =

0.5, 𝑐2 = 0.165906. and their approximate solution is  

 𝑦(𝑥) = 2.77555756 × 10−17 + 0.00456438𝑥 + 0.995436𝑥2. 

If 𝑛 = 20, the approximate solution will be as follows: 

 𝑦(𝑥) = −7.827619401012162 × 10−17 − 0.000030068562737359008𝑥 +

1.0066701273460272𝑥2 −  0.3161559593254199𝑥3 + 7.391520839002448𝑥4 −

101.1675850252221𝑥5 + 881.7639994208571𝑥6 − 5091.2533573008905𝑥7 +

19412.68134451585𝑥8 − 44415.30443366349𝑥9 + 26600.722236690082𝑥10 +

214722.2039331961𝑥11 − 945315.3904772103𝑥12 + 2206507.388919022𝑥13 −

3477652.419776158𝑥14 + 3914177.755634204𝑥15 − 3172189.258528861𝑥16 +

1816152.725780014𝑥17 − 698910.3552130745𝑥18 + 162471.92620954153𝑥19 −

17259.100690250787𝑥20. 
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Table 5 shows the absolute error|𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑎𝑝𝑝.| value for the some 𝑥 ∈ [0,1] at 𝑛= 14,16,18, and 

20 

Table 5:  The absolute error of Ex. 2 for 𝑛=14,16,18,20 by (LOM) 

𝒙 𝒏 = 𝟏𝟒 𝒏 = 𝟏𝟔 𝒏 = 𝟏𝟖 𝒏 = 𝟐𝟎 

0.1 3.30159×10-6 2.03041×10-6 1.67929×10-6 1.41633×10-6 

0.2 5.64737×10-6 3.96904×10-6 2.44733×10-6 1.91244×10-6 

0.3 5.9069×10-6 4.0147×10-6 3.34525×10-6 2.13118×10-6 

0.4 6.08866×10-6 4.68948×10-6 2.96416×10-6 2.4665×10-6 

0.5 6.64218×10-6 3.86716×10-6 3.25698×10-6 2.04886×10-6 

0.6 4.6138×10-6 4.11011×10-6 2.54504×10-6 1.95697×10-6 

0.7 4.97601×10-6 2.6874×10-6 2.29617×10-6 1.55857×10-6 

0.8 2.62812×10-6 2.43526×10-6 1.63045×10-6 8.94486×10-7 

0.9 2.04649×10-6 1.13714×10-6 6.78982×10-7 4.05584×10-7 

 

In Figure 3, we show a plot of both the exact solution and the approximate solution of the two 

proposed methods of example 2 for 𝑛=20. 

 

Figure 3: The comparison of the exact solution and the approximate solution of (BOM, LOM) methods for Ex. 2 at 

𝑛=20 

 

In Figure 4, logarithmic plots of the greatest absolute error of the approximate solution are given 

using Bernstein or Legendre polynomials with operational matrices to solve example 2 from 𝑛 = 

2 to 𝑛 = 20. 
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Figure 4:  Logarithmic plots for the 𝑀𝐴𝐸𝑛  of Ex. 2 form 𝑛=2 to 𝑛=20 

The two proposed approaches are efficient, as seen by the above results because their results are 

accurate when compared to the precise solution's results, as shown in Figure 1. Figure 2 

demonstrates the decrease in absolute error when the value of 𝑛 is increased, demonstrating the 

efficacy of the two proposed techniques. 

Table 6 illustrates the absolute error numbers for (BOM, LOM) methods at 𝑛 = 20 to determine 

which of the two strategies is superior for solving example 2. 

Table 6: The absolute error |𝑦𝑒𝑥𝑎𝑐𝑡 − 𝑦𝑎𝑝𝑝.| of (BOM, LOM) for Ex. 2 at 𝑛=20 

 𝒙 Absolute error (B) Absolute error (L) 

0.1 1.42028×10-6 1.41633×10-6 

0.2 1.92033×10-6 1.91244×10-6 

0.3 2.143×10-6 2.13118×10-6 

0.4 2.48202×10-6 2.4665×10-6 

0.5 2.06817×10-6 2.04886×10-6 

0.6 1.97996×10-6 1.95697×10-6 

0.7 1.58232×10-6 1.55857×10-6 

0.8 9.01401×10-7 8.94486×10-7 

0.9 3.45435×10-7 4.05584×10-7 

 

We notice from the above table that the greatest absolute error we acquired in the method (BOM) 

is 2.48202×10-6, but in the method (LOM) is 2.4665×10-6, indicating that the method (LOM) is the 

best in solving Ex. 2. 

6. Conclusion 

In this study, we propose the methods of operational matrices that depend on Bernstein 

polynomials and Shifted Legendre polynomials for fractional derivatives in solving fractional 

delay pantograph equations. The numerical results of the approximate solutions in examples 1 and 

2 were given accuracy when compared with the exact solutions, proving the effectiveness and 

efficiency of the proposed methods. Figures 2 and 4 showed the absolute error of the two examples 

for more than 𝑛, where when the values of 𝑛 increase, the value of the absolute error decreases, 

which shows the accuracy and success of the proposed methods. Tables 3 and 6 show that the 

method (LOM) is the best solution for the two examples. Mathematica®12 program was used to 

find the numerical results. 
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