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Abstract   

      Time series analysis is the statistical approach used to analyze a series of data. Time series is 

the most popular statistical method for forecasting, which is widely used in several statistical and 

economic applications. The wavelet transform is a powerful mathematical technique that converts 

an analyzed signal into a time-frequency representation. The wavelet transform method provides 

signal information in both the time domain and frequency domain. The aims of this study are to 

propose a wavelet function by derivation of a quotient from two different Fibonacci coefficient 

polynomials, as well as a comparison between ARIMA and wavelet-ARIMA. The time series data 

for daily wind speed is used for this study. From the obtained results, the proposed wavelet-

ARIMA is the most appropriate wavelet for wind speed. As compared to wavelets the proposed 

wavelet is the most appropriate wavelet for wind speed forecasting, it gives us less value of MAE 

and RMSE. 

 

Keywords: ARIMA, Fibonacci Coefficient Polynomials, Proposed Wavelet, Time Series,  

Wavelet Transform. 

 

1. Introduction 

      Wavelet analysis is an approach for resolving difficult issues in mathematics, physics, and 

engineering. Wavelet transform is the improved form of Fourier transform since the Fourier 

transform is a helpful tool for studding the component of a stationary data. However, it is incapable 

to analyse non-stationary signals, whereas wavelet transform allows for the analysis of non-

stationary signal components [1]. Morlet, Arens, Fourgeau, Giard, and Grossman [2] were the first 

to use the name wavelet in their work in the early 1980s. Jean Morlet and Alex Grossman 

introduced the concept of wavelets in 1982. The mother wavelet is a family of functions formed 

by translating and dilation of a single function. Wavelets are mathematical functions that divide 

data into distinct frequency components and analyse each component with a resolution that 
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matches to its scale [3, 4]. Wavelets are commonly used in time series analysis [5, 6]. In (2013) 

Ramesh and Pachiyappan [7] proposed a hybrid predicts approach consisting of wavelet 

transforms and ANN to predict the wind speed. Study shows that the proposed method improves 

the predict accuracy of wind speed and justifies the application's ability to predict short-term wind 

speed. In (2013) Ramana et al. [8] introduced a wavelet neural networks, that is the mixture of 

wavelets analysis and neural networks for rainfall forecast Darjeeling station, India. Used discrete 

wavelet transforms. In (2013) Al Wadi et al. [9] used a maximal overlaps discrete wavelet 

transform (MODWT) to improve the accuracy of time series data forecasting. The findings 

demonstrate that combining MODWT with the ARIMA model improves predicting accuracy. In 

(2014) Chandra et al. [10] used Morlet and Mexican hat wavelets for wind speed predicting based 

on adaptive wavelet neural networks. The results of Morlet wavelet wind forecasting were the 

most accurate of all of these methods. In (2015) Kumar et al. [11] proposed a new technique for 

forecasting time series data based on ARIMA model and wavelet transform. As a result, the results 

demonstrated that combining ARIMA with wavelet is effective and efficient. In (2015) Ji, Cai, and 

Zhang [12] identified a wavelet transform in combination with a neuron fuzzy network to 

prediction the wind power interval. The efficacy of the neuron fuzzy network structure is 

demonstrated by the creation of prediction intervals based on wind power data. In (2016) Lamben 

et al. [13] proposed a new wavelet function named golden wavelet generated by fourth derivation 

of a quotient from two different Fibonacci coefficient polynomials distinct. The golden wavelet 

was applied the cardiac arrhythmia classification in ECG signals. The obtained results using the 

golden wavelet are better than these using other wavelet functions.  In (2016) Sang et al. [14] 

discussed four main problems in wavelet transform: inconsistent usage of continuous and discrete 

wavelet techniques, mother wavelet selection, temporal scale selection, and uncertain evaluation 

in wavelet-aided predicting. Finally, wavelet models have the potential to improve hydrological 

data set forecasting. In (2017) Saini and Ahja [15] used propagation trained artificial neural 

network and wavelet transform to Predict wind speed. The results of this study show the low value 

of root mean square of error and mean absolute of error, suggest that the proposed scheme can be 

used effectively to predict wind speed for a short period, i.e. one hour ahead of the forecast. In 

(2018), Bunrit et al. [16] we applied multiresolution analysis of wavelet transform for commodities 

prices time series forecasting. The variances of errors from the proposed method of data sets are 

much less than the direct use of the actual series data for forecasting. Gossler et al. (2018) [17] 

published a comparison of Golden and Mexican hat wavelets, finding that Golden hat wavelets 

have double that much vanishing moment than Mexican hat wavelets. In (2021) Gossler et al. [18] 

comparison of Gaussian and golden wavelets were performed. The derivative of specified basis 

functions generates these wavelets. 

     The aims of this study are to propose a wavelet function by sixth derivation of a quotient from 

two different Fibonacci coefficient polynomials, as well as to compare ARIMA and wavelet-

ARIMA to determine the best-fitted model. 

      In this study, introduction, autoregressive integrated moving average model, wavelet transform 

and some of mother wavelets are introduced. Next, the proposed wavelet is introduced and then 

the results of these models are compared. Finally, conclusions are given. 
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2. Methodology 

2.1 Autoregressive integrated Moving Average Model (ARIMA) 

     The (ARIMA) is an appropriate model for the stationary time-series data. It is denoted 

by 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞), 𝑝 is the autoregressive order, 𝑞 is the moving average order, and 𝑑 is the 

differencing order. Box and Jenkins generalized this model in 1970 [19].  

   The general mathematical ARIMA model for non-stationary time series can be defined as [4]: 

 

𝜙(𝐵)(1 − 𝐵)𝑑𝑥𝑡 = 𝜇 + 𝜃(𝐵)𝑎𝑡                                                                                         (1)                                                   

Where: 

 𝑡: Indexes time. 

 B : The backshift operator. 

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 … . −𝜙𝑝𝐵𝑝 is the p-order autoregressive operator. 

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 … . −𝜃𝑞𝐵𝑞 is the q-order moving average operator. 

𝑎𝑡 : Error term at time t. 

𝑎𝑡 = 𝑁𝐼𝐷(0, 𝜎𝑎
2)                                                                                                                 (2)                                                                                 

Identification, parameter estimate, diagnostic checking, and forecasting are the four stages of the 

model building process. 

 

2.2 Wavelet Transform  

     A wave is typically characterized as a time-varying oscillating function, such as a sinusoid. The 

term wavelet refers to a small oscillation that decays quickly. The wavelets transform is first 

introduced for transient continuous signal time - frequency domain analysis, and subsequently 

expanded to the concept for multi-resolution wavelet transform utilizing filtering approximations 

[20]. 

A signal is represented by a wavelet transform in the form of specific short time intervals [21- 23]: 

𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
𝜓(𝑡−𝑏

𝑎
)                                                                                                            (3)                                                                           

Where: 𝜓(𝑡−𝑏

𝑎
) function parent, 𝑎 scale factor, 𝑏 time shift. 

Continuous and discrete wavelet transforms are the two types of wavelet transforms: 

Continuous wavelet transform is defined as follows: 

 𝑊𝑎,𝑏(𝑡) =
1

√|𝑎|
∫ 𝑥(𝑡)𝜓(𝑡−𝑏

𝑎
)𝑑𝑡

∞

−∞
                                                                                        (4)                                                                                              

The transmitted signal evaluated by the signal analysis that is scaled in the time domain 

coefficients. This signal is "compressed" for (𝑎 < 1) and "stretched" for (𝑎 > 1). 

Discrete wavelet transforms is defined as follows [16]  

𝑊𝑎,𝑏(𝑡) =
1

√|𝑎|
∑ 𝜓(𝑡−𝑏

𝑎
)𝑥(𝑡)𝑁

𝑘=1                                                                                           (5)            

Where, 𝑁 is normalization constant. 

The wavelet transform is based on the 𝜓 ∈ 𝐿2(𝑅) function, often known as the mother wavelet or 

wavelet. 

The following conditions are met by this function [1, 5, 11]: 

i.  𝐶𝜓 = ∫
|�̂�(𝜔)|

2

|𝜔|

∞

0
𝑑𝜔 < ∞                                                                                 (6)                                                                                         

Where, �̂� (𝜔) is the Fourier transform of 𝜓(𝑡). The admissibility condition assures that 

�̂� (𝜔) decrease to zero quickly as (𝜔 →  0). It is necessary �̂� (0) = 0  to verify that  𝐶𝜓 < ∞ . 
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∫ 𝜓(𝑡)
∞

−∞
𝑑𝑡 = 0                                                                                                                  (7)                                                                                                                        

ii. Wavelet function is that have unit energy [13, 24]. That is 

∫ |𝜓(𝑡)|2∞

−∞
𝑑𝑡 < ∞                                                                                                             (8) 

    

2.3 Haar wavelet  

    The Haar wavelet was the first mother wavelet introduced by Hungarian mathematician Alfred 

Haar in 1909 [3, 9, 25]. It is an orthogonal wavelet and only has one vanishing moment, making it 

inappropriate for smooth function reconstruction. 

The Haar wavelet function ψ(𝑡) can be described as [1, 26]: 

 ψ(𝑡) = {
1 0 ≤ 𝑡 < 1

2

−1 1
2

≤𝑡≤1

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                               (9)                                                                                                           

So, we get only two conditions and two equations 

ℎ0 + ℎ1 = √2                                                                                                                   (10)                                                                                                                                  

ℎ0
2 + ℎ1

2 = 1                                                                                                                  (11)                                                                                                                                  

The solution to these equations is 

 ℎ0 = ℎ1 =
1

√2
                                                                                                                   (12)                                                                                                                                 

 

2.4 Daubechies wavelet  

    The Daubechies wavelet is a discrete wavelet named by Belgian physicist Ingrid Daubechies [3, 

27]. The most commonly used Daubechies in practical applications are db2-db20 (even index only) 

a db2 is also called   Haar wavelet. It is an orthogonal wavelet family and the number of moments 

is equal to half the length of the support [28]. The conditions for Daubechies db4 wavelet lead for 

the following set of equations: 

ℎ0 + ℎ1 + ℎ2 + ℎ3 = √2                                                                                                (13)                                                                                                                  

ℎ1 + 2ℎ2 + 3ℎ3 = 0                                                                                                       (14)                                                                                                                       

ℎ0
2 + ℎ1

2 + ℎ2
2 + ℎ3

2 = 1                                                                                           (15)                                                                                                             

ℎ0ℎ2 + ℎ1ℎ3 = 0                                                                                                            (16)                                                                                                                            

 

2.5 Coiflet Wavelets 

    The Coiflet wavelet is a discrete wavelet proposed by Ingrid Daubechies at Ronald Coifman's 

request to have vanishing moment scaling functions. It is an orthogonal wavelet. This wavelet is 

not symmetric but near symmetric [3]. Its nature is more symmetric than the Daubechies wavelet 

[27].This wavelet function has (2𝑁) vanishing moments and its scaling function has (2𝑁 − 1) 

vanishing moments.  

The set of equations for coefficients for Coifet2 is: 

ℎ−2 + ℎ−1 + ℎ0 + ℎ1 + ℎ2 + ℎ3 = √2                                                                          (17)                                                                                           

−2ℎ−2 − ℎ−1 + ℎ1 + 2ℎ2 + 3ℎ3 = 0                                                                            (18) 

 ℎ−2
2 + ℎ−1

2 + ℎ0

2
+ ℎ1

2 + ℎ2
2 + ℎ3

2 = 1                                                                 (19)                                                                                    

ℎ−2ℎ0 + ℎ−1ℎ1 + ℎ0ℎ2 + ℎ1ℎ3 = 0                                                                               (20)                                                                                               

ℎ−2ℎ2 + ℎ−1ℎ3 = 0                                                                                                        (21)  
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2.6 Mexican Hat Wavelet  

    The Mexican wavelet is obtained after the second derivative of a Gaussian function. This 

wavelet is non-orthogonal and infinite support. This wavelet is symmetric and explicit expression 

of 𝜓(𝑡).  

 

The analytic formula of 𝜓(𝑡) for Mexican hat wavelet [3, 10] as follows: 

𝜓(𝑡) = (1 − 𝑡2)𝑒−0.5𝑡2                                                                                                  (22)  

                                                                                                              

2.7 Golden Hat Wavelet 

     Gossler et al (2018) [17], proposed a Golden Hat function generated by FCPs as the fourth 

derivative of the quotient between 𝑝0(𝑡) = 1 and  𝑝2(𝑡) = 𝑡2 + 𝑡 + 2, expressed by the equation: 

𝜓(𝑡) =
24(5𝑡4+10𝑡3−10𝑡2−15𝑡−1)

(𝑡2+𝑡+2)5                                                                                        (23)                                                                                                    

The researcher named the new wavelet function  𝜓(𝑡) as golden wavelet, because of the relation 

between Fibonacci sequences and the golden ratio. 

 

2.8 Proposed A New Wavelet Function  

    The researcher proposed a new wavelet function generated by Fibonacci coefficient polynomials 

(FCPs). 

 

2.8.1 Fibonacci Coefficient Polynomials 

     Fibonacci coefficient polynomials (FCPs) introduced by Garth Mills and Mitchell (2007), and 

they are building by Fibonacci sequences. The Fibonacci sequence one of the most well-known 

mathematical formulas. The sum of the two numbers that precede it determines the next number 

in the sequence. The sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 [29]. 

We define polynomial sequence  {𝑝𝑛(𝑡)}𝑛=0
∞   by setting   𝑝0(𝑡) = 1 and 

 𝑝𝑛(𝑡) = ∑ 𝐹𝑘+1𝑡𝑛−𝑘𝑛
𝑘=0   , 𝑛 ≥ 1                                                                                     (24)                                                                                                 

 𝑝𝑛(𝑡) is called Fibonacci coefficient polynomial (FCP) of order 𝑛 [30, 31]. 

The Fibonacci numbers 𝐹𝑘 are the terms of the sequence  

𝐹𝑘 = 𝐹𝑘−1 + 𝐹𝑘−2  , 𝑘 ≥ 2                                                                                               (25)                                                                                                            

With initial terms are 𝐹0 = 0 and  𝐹1 = 1. 

 

2.8.2 Proposed Wavelet 

    The researcher proposed a new wavelet function generated by (FCPs) by the sixth derivative of 

the quotient between   𝑝0(𝑡)  and  𝑝2(𝑡). The proposed wavelet is:  

𝜓(𝑡) =
5040𝐴+25200𝐵

𝐶7                                                                                                         (26)                                                                                                                   

Where 

 𝐴 = − 𝑡6 + 3𝑡5 + 3𝑡2 − 1                                                                                              (27)                                                                                                        

 𝐵 =  𝑡4 + 3 𝑡3 − 𝑡                                                                                                           (28)                                                                                                                     

 𝐶 = 𝑡2 + 𝑡 + 2                                                                                                                 (29)                                                                                                  

A wavelet 𝜓(𝑡) has 𝑁 vanishing moments with a fast decay if and only if there exists 𝑔(𝑡) with a 

fast decay such that [17]: 
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 𝜓(𝑡) = (−1)𝑁 𝑑𝑁

𝑑𝑡𝑁
 𝑔(𝑡)                                                                                                  (30)                                                                                                            

Where 𝑔(𝑡) is a function of quotient between   𝑝0(𝑡) and  𝑝2(𝑡). 

 

2.8.3 Conditions of Proposed Wavelet  

     In order to show that 𝜓(𝑡) defied in (26) is a wavelet, it must satisfy the following conditions: 

1. Admissibility Condition. 

To verify this condition, we use the Fourier transform (FT) time derivatives property: 

 �̂�(𝜔) = (𝑖𝜔)6𝐺(𝑖𝜔)                                                                                                         (31)                                                                                                                

Where  

𝐺(𝑖𝜔) is the FT of the 𝑔(𝑡), Thus can be given by 

 𝐺(𝑖𝜔) = ∫ 𝑔(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
  

             =
2𝜋

√7
𝑒0.5(𝑖𝜔−√7|𝜔|)                                                                                                 (32)                                                                                                     

 �̂�(𝜔) = (𝑖𝜔)6 2𝜋

√7
𝑒0.5(𝑖𝜔−√7|𝜔|)                                                                                         (33)                                                                                              

The obtained result was  

𝐶𝜓 = ∫
|�̂�(𝜔)|

2

|𝜔|

∞

−∞
𝑑𝜔 =

2714.2976𝜋2

117649
< ∞                                                                           (34)                                                                                 

2. The second step, was verify the condition of (8). 

The obtained result was 

 ∫ |𝜓(𝑡)|2∞

−∞
𝑑𝑡 =

22809600 𝜋

117649√7
< ∞                                                                                     (35)                                                                                            

To obtain a wavelet 𝜓(𝑡) satisfying the unit energy condition in (8), it is necessary to multiply the 

proposed wavelet function obtained in (26) by the normalizing coefficient (𝑁𝐶) [24]. 

   𝑁𝐶 =
1

√∫ |𝜓(𝑡)|2∞
−∞ 𝑑𝑡

                                                                                                           (36)    

                                                                                                         

3 Data Analysis and Results 

3.1 Data Description  

      In order to illustrate an appropriate model, the average of daily wind speed (m/s) data sets are 

collected from the meteorological directorate of Sulaimani for the period (Jan. 2016- Dec. 2020), 

have been used Matlab and R programming. The plot of wind speed data is represented in Figure1. 

 
Figure 1- Daily Wind Speed Data Series 
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3.2 Results of ARIMA Model 

      ARIMA models are created automatically using R's auto.arima function. 𝐴𝑅𝐼𝑀𝐴(2 ,1,1) is the 

determined model, and it has a minimum Akaike Information Criterion (AIC) value (5110.9). This 

means that the 𝐴𝑅𝐼𝑀𝐴(2 ,1,1)   model is the best among all the other models. The parameters have 

been estimated using R statistical software. The model's parameter estimates are given in Table 1. 

 

 

 

 

Table 1- The Estimates of 𝐴𝑅𝐼𝑀𝐴(2 ,1,1) Model 

 

Coefficients Value S.E 

AR1 0.4581 0.0240 

AR2 -0.0975 0.0240 

MA1 -0.969 0.0065 

 

Since the model is: 

(1 − 0.4581𝐵 + 0.0975 𝐵2)(1 − 𝐵)𝑦𝑡 = 𝛿 + (1 + 0.969 𝐵)𝑎𝑡                               (37)  

                                            

After estimation the parameters the Box-Ljung 𝑄 statistic is used to verify the model's overall 

adequacy. The Q statistic as follows:  

 

𝑄 = 𝑛(𝑛 + 2) ∑
𝑟2(𝑘)

𝑛−𝑘

𝐾
𝑘=1                                                                                                (38)   

                                                                                                         

Where, 𝑟(𝑘) is the residual autocorrelation at lag 𝑘, 𝑛 is the number of residuals and 𝐾is the 

number of lags. Because the p-value of the test is (0.2663 ) and greater than (0.05), and the value 

of Box-Ljung tests is (23.47), this 𝐴𝑅𝐼𝑀𝐴 model is appropriate for future forecasting. 

    For testing the accuracy of the model, we analysed the performance of model is evaluated by 

using the Mean Absolute Error (MAE), Mean Absolute Scaled Error (MASE), and Root Mean 

Squares Error (RMSE) [8, 11 ].  

 

MAE =
1

n
∑ |Yt − Yt̂|n

t=1                                                                                                   (39) 

MASE =
1

n
∑ |Yt−Yt̂|n

t=1
1

n−2
∑ |Yt−Yt−2|n

t=2

                                                                                                (40)                                                                                                               

RMSE = [
1

n
∑ (Yt − Yt̂)

2n
t=1 ]

1

2                                                                                         (41)                                                                                                           

Where 𝑌�̂� is the predicted value, 𝑌𝑡 is the actual value, and 𝑛 is the number of observations. 

 

3.3 Results of Wavelet-ARIMA 

      We used proposed wavelet, Golden hat, Mexican hat, Daubechies, and Coiflet to transform the 

wind speed data using the continuous wavelet transform (CWT). The CWT was used up to 64 

scales, and the average of all wavelet coefficients was computed. Matlab was used to implement 

the CWT. An ARIMA model is fitted after the decomposition. Other wavelet functions' results 

were investigated for comparison with the proposed wavelet-ARIMA. Table (2) shows that the 
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(MAE), (MASE), and (RMSE), of the proposed wavelet-ARIMA model are fewer than the MAE, 

RMSE, and MASE of the direct use of ARIMA model, indicating that the suggested wavelet-

ARIMA model has better predictive capacity. It signifies that the proposed wavelet-ARIMA 

approach outperforms the direct usage of the ARIMA model for the provided data set. 

 

 

 

 

 

Table 2- The Estimates of 𝐴𝑅𝐼𝑀𝐴(2 ,1,1) Model 

 

Model        MAE        MASE RMSE 

ARIMA                         

Proposed Wavelet-ARIMA 

0.68824 

0.03363 

0.86761 

0.56867 

 

0.97999 

0.04553 

 

 

 

 

 

 

Table 3- Comparison of Wavelet-ARIMA 

 

Mother Wavelet MAE   MASE RMSE 

Proposed wavelet    

Golden hat 

Mexican hat 

Daubechies 1(Haar) 

Daubechies 2 

Daubechies 3 

Daubechies 4 

Daubechies 5 

Coiflet1 

Coiflet2 

Coiflet3 

Coiflet4 

Coiflet 5 

 

  0.03363 

  0.04373 

  0.05917 

  0.26526 

  0.09405 

  0.08737 

  0.09419 

  0.07266 

  0.12240 

  0.07794 

  0.06637 

  0.07659 

  0.05917 

 

0.56867 

0.63261 

0.57855 

0.82055 

0.47276 

0.52716 

0.52482 

0.47772 

0.58794 

0.47228 

0.44251 

0.50719 

0.42861 

 

0.04553 

0.05947 

0.05267 

0.32138 

0.13043 

0.12207 

0.12841 

0.10203 

0.17193 

0.10910 

0.09289 

0.10880 

0.08277 

 

 

 

4. Conclusions 

       The aims of this study are to propose a wavelet function, as well as to compare ARIMA and 

wavelet- 𝐴𝑅𝐼𝑀𝐴 to determine the best-fitted model. The CWT was used to decompose the data. 

From the previous results, it is clear that the model for daily wind speed forecasting is the  

𝐴𝑅𝐼𝑀𝐴(2 ,1,1)  model, and the wavelet- 𝐴𝑅𝐼𝑀𝐴 model is better than direct use of 𝐴𝑅𝐼𝑀𝐴 for 

daily wind speed forecasting. As compared to wavelets the proposed wavelet is the most 



IHJPAS. 36(2)2023 

428 
 

appropriate wavelet for wind speed forecasting, it gives us less value of MAE (0.03363) and RMSE 

(0.04553). 
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