

Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq

Nano S_C -Open Sets In Nano Topological Spaces

Nehmat K. Ahmed Department of Mathematics, College of Education, Salahaddin University-Erbil, 44001, Erbil. <u>nehmat.ahmed@su.edu.krd</u> Osama T. Pirbal Department of Mathematics, College of Education, Salahaddin University-Erbil, 44001, Erbil. <u>osama.pirbal@su.edu.krd</u>

Article history: Received 14 August 2022, Accepted 12 September 2022, Published in April 2023.

doi.org/10.30526/36.2.2958

Abstract

The objective of this paper is to define and introduce a new type of nano semi-open set which called nano S_C -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano S_C -open sets in term of upper and lower approximations of sets and we can easily find nano S_C -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano S_C -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano S_C -interior and nano S_C -closure are the part of this paper.

Keywords: nano closed sets, nano semi-open sets, nano S_C -open sets, nano S_C -interior, nano S_C -closure.

1.Introduction

The notion of nano topological space (briefly *NTS*) introduced by Thivagar and Carmel [1] with respect to a subset *X* of a universe *U* which is defined in terms of lower and upper approximations. Levine [2] introduced the notions of semi-open. Later, nano semi-open sets introduced by Thivagar Carmel [1], also nano S_{β} -open sets introduced by [4], and more nano open sets defined in [5-7]. In this paper, we introduce the concept nano S_C -open sets as a strong form of nano semi-open sets, since every nano S_C -open (briefly nS_C -oprn) sets is nano semi-open sets and the relationship with some class of nano near open sets. All forms of family of nano S_C -open sets under various cases of approximations idea also derived. Also, operators such as nano S_C -interior and nano S_C -closure are the part of this paper.

2. Preliminaries

Definition 2.1. [8] Let $\mathcal{W} \neq \phi$ denote the finite universe and the equivalence relation *R* on the universe *W* called the indiscernibility relation. The pair (\mathcal{W}, R) is called the approximation space. Let $X \subseteq \mathcal{W}$:

- i. The lower approximation defined by $L_R(X) = \bigcup_{x \in U} \{R(x); R(x) \subseteq X\}$, where R(x) stands the equivalence class by x.
- ii. The upper approximation defined by $U_R(X) = \bigcup_{x \in U} \{R(x); R(x) \cap X \neq \phi\}$.
- iii. The boundary region defined by $B_R(X) = U_R(X) L_R(X)$.

Definition 2.2. [1] Let \mathcal{W} denote the universe and R be an equivalence relation on W and $\tau_R(X) = \{\phi, \mathcal{W}, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq \mathcal{W}$. Then the followings axioms hold for $\tau_R(X)$:

- i. *W* and $\phi \in \tau_R(X)$
- ii. $A, B \in \tau_R(X)$, then $A \cup B\tau_R(X)$
- iii. The intersection of any finite subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

Then $\tau_R(X)$ forms a topology on \mathcal{W} and called nano topology on \mathcal{W} with respect to X. Also $(\mathcal{W}, \tau_R(X))$ is called the *NTS* and the members of $\tau_R(X)$ are called nano open sets.

Definition 2.3. Let $(\mathcal{W}, \tau_R(X))$ be a *NTS* and $K \subseteq \mathcal{W}$. The set K is called nano:

- i. regular-open [1], if K = nint(ncl(K)).
- ii. α -open [1], if $K \subseteq nint(ncl(nint((K))))$.
- iii. semi-open [1], if $K \subseteq ncl(nint(K))$.
- iv. β -open (nano semi pre-open) [3], if $K \subseteq ncl(nint(ncl(K)))$.
- v. θ -open [1], if for each $x \in K$, there exists a nano open set G such that $x \in G \subseteq ncl(K) \subseteq K$.
- vi. S_{β} -open [4], if K is nano semi-open and the union of nano β -closed sets.

The set of all nano regular-open (resp. nano α -open, nano semi-open, nano β -open, θ -open and nano S_{β} -open) sets denoted by $nRO(\mathcal{W}, X)$ (resp. $n\alpha O(\mathcal{W}, X)$, $nSO(\mathcal{W}, X)$, $n\beta O(\mathcal{W}, X)$, $n\theta O(\mathcal{W}, X)$ and $nS_{\beta}O(\mathcal{W}, X)$).

Theorem 2.4. [1] If $A, B \in nSO(\mathcal{W}, X)$, then $A \cup B \in nSO(\mathcal{W}, X)$.

Theorem 2.5. [1] Let $(\mathcal{W}, \tau_R(X))$ be a *NTS*, then:

- i. If $U_R(X) = \mathcal{W}$ and $L_R(X) = \phi \Longrightarrow \tau_R^{\theta}(X) = \{\phi, \mathcal{W}\}.$
- ii. If $U_R(X) = \mathcal{W}$ and $L_R(X) \neq \phi \Longrightarrow \tau_R(X) = \tau_R^{\theta}(X)$.
- iii. If $U_R(X) = L_R(X) \neq \mathcal{W} \Longrightarrow \tau_R^{\theta}(X) = \{\phi, \mathcal{W}\}.$
- iv. If $U_R(X) \neq \mathcal{W}, L_R(X) = \phi \Longrightarrow \tau_R^{\theta}(X) = \{\phi, \mathcal{W}\}.$

v. If $U_R(X) \neq L_R(X)$ where $U_R(X) \neq \mathcal{W}$ and $L_R(X) \neq \phi \Longrightarrow \tau_R^{\theta}(X) = \{\phi, \mathcal{W}\}.$

Theorem 2.6. [1] Let $(\mathcal{W}, \tau_R(X))$ be a *NTS*, then:

i. If $U_R(X) = \mathcal{W}$ and $L_R(X) = \phi \implies nRO(\mathcal{W}, X) = \{\phi, \mathcal{W}\}.$ ii. If $U_R(X) = \mathcal{W}$ and $L_R(X) \neq \phi \implies \tau_R(X) = nRO(\mathcal{W}, X).$ iii. If $U_R(X) = L_R(X) \neq \mathcal{W} \implies \tau_R(X) = nRO(\mathcal{W}, X).$ iv. If $U_R(X) \neq \mathcal{W}, L_R(X) = \phi \implies \tau_R(X) = nRO(\mathcal{W}, X).$

v. If $U_R(X) \neq L_R(X)$ where $U_R(X) \neq \mathcal{W}$ and $L_R(X) \neq \phi \Longrightarrow nRO(\mathcal{W}, X) = \{\phi, \mathcal{W}, L_R(X), B_R(X)\}.$

Theorem 2.7. [1] Let $(\mathcal{W}, \tau_R(X))$ be a *NTS*, then:

- i. If $U_R(X) = \mathcal{W}$ and $L_R(X) = \phi \Longrightarrow n\alpha O(\mathcal{W}, X) = \{\phi, \mathcal{W}\}.$
- ii. If $U_R(X) = \mathcal{W}$ and $L_R(X) \neq \phi \Longrightarrow \tau_R(X) = n\alpha \mathcal{O}(\mathcal{W}, X)$.
- iii. If $U_R(X) = L_R(X) \neq \mathcal{W} \Longrightarrow \phi$ and those sets A for which $U_R(X) \subseteq A$ are the only $n\alpha$ -open sets in \mathcal{W} .
- iv. If $U_R(X) \neq \mathcal{W}$, $L_R(X) = \phi \Longrightarrow \phi$ and those sets *A* for which $U_R(X) \subseteq A$ are the only $n\alpha$ -open sets in \mathcal{W} .
- v. If $U_R(X) \neq L_R(X)$ where $U_R(X) \neq \mathcal{W}$ and $L_R(X) \neq \phi \Longrightarrow \phi$, $L_R(X), B_R(X)$, any set containing $U_R(X)$ are the only $n\alpha$ -open sets in \mathcal{W} .

Theorem 2.8. [1] Let $(\mathcal{W}, \tau_R(X))$ be a *NTS*, then:

- i. If $U_R(X) = \mathcal{W}$ and $L_R(X) = \phi \Longrightarrow nSO(\mathcal{W}, X) = \{\phi, \mathcal{W}\}.$
- ii. If $U_R(X) = \mathcal{W}$ and $L_R(X) \neq \phi \Longrightarrow \tau_R(X) = nSO(\mathcal{W}, X)$.
- iii. If $U_R(X) = L_R(X) \neq \mathcal{W} \Longrightarrow \phi$ and those sets A for which $U_R(X) \subseteq A$ are the only *nS*-open sets in \mathcal{W} .
- iv. If $U_R(X) \neq \mathcal{W}$, $L_R(X) = \phi \Longrightarrow \phi$ and those sets *A* for which $U_R(X) \subseteq A$ are the only *nS*-open sets in \mathcal{W} .
- v. If $U_R(X) \neq L_R(X)$ where $U_R(X) \neq \mathcal{W}$ and $L_R(X) \neq \phi \Longrightarrow \phi$, $L_R(X), B_R(X)$, any set containing $U_R(X), L_R(X) \cup B$ and $B_R(X) \cup B$ where $B \subseteq [U_R(X)]^c$ are the only *nS*-open sets in \mathcal{W} .

Theorem 2.9. [4] Let $(W, \tau_R(X))$ be a *NTS*, then:

- i. If $U_R(X) = \mathcal{W}$ and $L_R(X) = \phi \Longrightarrow nS_\beta \mathcal{O}(\mathcal{W}, X) = \{\phi, \mathcal{W}\}.$
- ii. If $U_R(X) = \mathcal{W}$ and $L_R(X) \neq \phi \Longrightarrow \tau_R(X) = nS_\beta O(\mathcal{W}, X)$.
- iii. If $U_R(X) = L_R(X) = \{x\}, x \in \mathcal{W}, \Longrightarrow \phi$ and those sets *A* for which $U_R(X) \subseteq A$ are the only nS_β -open sets in \mathcal{W} .
- iv. If $U_R(X) = L_R(X) \neq W$ and $U_R(X)$ containing more than one element of $U \Longrightarrow \phi$ and those sets A for which $U_R(X) \subseteq A$ are the only nS_β -open sets in W.
- v. If $U_R(X) \neq \mathcal{W}$, $L_R(X) = \phi$ and $U_R(X)$ containing more than one element of $\mathcal{W} \Longrightarrow \phi$ and those sets *A* for which $U_R(X) \subseteq A$ are the only nS_β -open sets in \mathcal{W} .
- vi. If $U_R(X) \neq L_R(X)$ where $U_R(X) \neq \mathcal{W}$ and $L_R(X) \neq \phi \Longrightarrow \phi$, $L_R(X), B_R(X)$, any set containing $U_R(X), L_R(X) \cup B$ and $B_R(X) \cup B$ where $B \subseteq [U_R(X)]^c$ are the only nS_{β} -open sets in \mathcal{W} .

3. Nano S_C-open sets

Definition 3.1. A subset $A \in nSO(W, X)$ is said to be nano S_C -open (briefly nS_C -open) sets in *NTS* W if for each $x \in A$, there exist a nano closed set F such that $x \in F \subseteq A$. The family of all nano S_C -open subsets of a *NTS* W denoted by $nS_CO(W, X)$.

Definition 3.2. The complement of nS_C -open sets in a $NTS(\mathcal{W}, \tau_R(X))$ is said to ne nS_C -closed sets. The family of all nS_C -open sets denoted by $nS_CC(\mathcal{W}, X)$.

Remark 3.3. Every nS_c -open set is nS-open set, but the converse may not be true in general, as it shown in the next example.

Example 3.4. Let $\mathcal{W} = \{a, b, c, d\}$ with $\mathcal{W}/R = \{\{a, b\}, \{c\}, \{d\}\}\)$ and $X = \{b, c\}, \$ then $\tau_R(X) = \{\phi, \mathcal{W}, \{a, b, c\}, \{c\}, \{a, b\}\}\)$ and $[\tau_R(X)]^C = \{\phi, \mathcal{W}, \{d\}, \{a, b, d\}, \{c, d\}\}\)$. The $nSO(\mathcal{W}, X) = \{\phi, \mathcal{W}, \{a, b, c\}, \{c\}, \{a, b\}, \{c, d\}, \{a, b, d\}\}\)$. Then $nS_CO(\mathcal{W}, X) = \{\phi, \mathcal{W}, \{c, d\}, \{a, b, d\}\}\)$ and it is clear that the subset $\{c\}$ is nS-open but not nS_C -open set in \mathcal{W} .

Proposition 3.5. A subset *A* of a *NTS* ($\mathcal{W}, \tau_R(X)$) is *nS*_{*C*}-open if and only if *A* is *nS*-open and the union of nano closed sets.

Proof. Obvious.

Remark 3.6.

- i. Nano open sets and nS_c -open sets are independent. In above example, the subset $\{c, d\}$ is nS_c -open but not nano open in U, also, the subset $\{c\}$ is nano open but not nS_c -open set in U.
- ii. $n\alpha$ -open sets and nS_c -open sets are independent. In above example, $\{a, b, c\}$ is $n\alpha$ -open set but not nS_c -open, also $\{c, d\}$ is nS_c -open but not $n\alpha$ -open.
- iii. nR-open sets and nS_c -open sets are independent. In above example, $\{a, b\}$ is nR-open set but not nS_c -open, also $\{c, d\}$ is nS_c -open but not nR-open.
- iv. The intersection of tow nS_c -open sets may not be nS_c -open. In above example, $\{c, d\}$ and $\{a, b, d\}$ are nS_c -open but $\{c, d\} \cap \{a, b, d\} = \{d\}$ which is not nS_c -open in U. So that, the family of nS_c -open sets forma supra topology.

Proposition 3.7. Let $\{A_{\alpha}: \alpha \in \Delta\}$ be a collection of nS_C -open sets in a *NTS* $(\mathcal{W}, \tau_R(X))$. Then $\bigcup \{A_{\alpha}: \alpha \in \Delta\}$ is nS_C -open.

Proof. Let A_{α} be nS_{C} -open set for each α , then A_{α} is nS-open and hence by Theorem 5, $\cup \{A_{\alpha}: \alpha \in \Delta\}$ is nS-open. Let $x \in \bigcup\{A_{\alpha}: \alpha \in \Delta\}$, there exist $\alpha \in \Delta$ such that $x \in A_{\alpha}$. Since A_{α} is nS-open for each α , there exists a nano closed set F such that $x \in F \subseteq A_{\alpha} \subseteq \bigcup\{A_{\alpha}: \alpha \in \Delta\}$, so $x \in F \subseteq \bigcup\{A_{\alpha}: \alpha \in \Delta\}$. Therefore, $\bigcup\{A_{\alpha}: \alpha \in \Delta\}$ is nS_{C} -open set.

In the following results, we study all form of nS_C -open sets in term of upper and lower approximations in *NTS*.

Theorem 3.8. Let $(\mathcal{W}, \tau_R(X))$ be a *NTS*, then:

- i. If $U_R(X) = \mathcal{W}$ and $L_R(X) = \phi$, then $nS_CO(\mathcal{W}, X) = \{\phi, \mathcal{W}\}$.
- ii. If $U_R(X) = \mathcal{W}$ and $L_R(X) \neq \phi$, then $\tau_R(X) = nS_C O(\mathcal{W}, X)$.
- iii. If $U_R(X) = L_R(X) \neq \mathcal{W}$, then $nS_CO(W, X) = \{\phi, \mathcal{W}\}$.
- iv. If $U_R(X) \neq W$, $L_R(X) = \phi$, then $nS_C O(W, X) = \{\phi, W\}$.
- v. If $U_R(X) \neq L_R(X)$ where $U_R(X) \neq \mathcal{W}$ and $L_R(X) \neq \phi$, then $nS_C O(\mathcal{W}, X) = \{\phi, \mathcal{W}, [B_R(X) \cup B], [L_R(X) \cup B]\}$, where $B = [U_R(X)]^C$.

Proof.

- i. Follows form that $\tau_R(X) = [\tau_R(X)]^c = nSO(X, W) = \{\phi, W\}.$
- ii. Suppose that $U_R(X) = \mathcal{W}$ and $L_R(X) \neq \phi$, then $\tau_R(X) = \{\phi, \mathcal{W}, L_R(X), B_R(X)\} = [\tau_R(X)]^C$. Then by Theorem 9, $nSO(\mathcal{W}, X) = \tau_R(X)$. Therefore, $\tau_R(X) = nS_CO(\mathcal{W}, X)$.
- iii. Let $A \in nSO(\mathcal{W}, X)$. By Theorem 9, ϕ , \mathcal{W} and any subset A for which containing $U_R(X)$ are the only *nS*-open sets in \mathcal{W} . If $A = \phi$ or $A = \mathcal{W}$, the result is clear. Let $\phi, \mathcal{W} \neq A \in nSO(U, X)$, then A containing $U_R(X)$, but since $[U_R(X)]^c$ is the only non-empty proper

nano closed set in \mathcal{W} and $[U_R(X)]^C \not\subseteq A$ for every $x \in U_R(X) \supseteq A$, hence $nS_CO(\mathcal{W}, X) = \{\phi, \mathcal{W}\}.$

- iv. The proof is similar to part (*iii*).
- v. Let $A \in nSO(\mathcal{W}, X)$. By Theorem 9, $\phi, L_R(X), B_R(X), U_R(X)$, any set $G \subseteq \mathcal{W}$ for which $U_R(X) \subseteq G$, $B_R(X) \cup B$ and $L_R(X) \cup B$ are the only *nS*-open sets in \mathcal{W} where $B \subseteq$ $[U_R(X)]^C$. It is clear ϕ and \mathcal{W} are nS_C -open sets in \mathcal{W} . If $A = L_R(X)$, then A is not nS_C open set, since every non-empty proper nano closed set containing $[U_R(X)]^C$ and $[U_R(X)]^C \not\subseteq A$. If $A = B_R(X)$, then A is not nS_C -open set, since every non-empty proper nano closed set containing $[U_R(X)]^C$ and $[U_R(X)]^C \not\subseteq A$. If $A = U_R(X)$, then A is not nS_C open set, since every non-empty proper nano closed set containing $[U_R(X)]^C$ and $[U_R(X)]^C \not\subseteq A$. If A containing $U_R(X)$, then A is not nS_C -open set, since every non-empty proper nano closed set containing $[U_R(X)]^C$ and $[U_R(X)]^C \not\subseteq A \supseteq U_R(X)$. If $A = L_R(X) \cup$ B where $B \subset [U_R(X)]^c$, then A is not nS_c -open set, since every non-empty proper nano closed set containing $[U_R(X)]^c$ and $[U_R(X)]^c \not\subseteq A$. If $A = B_R(X) \cup B$ where $B \subset$ $[U_R(X)]^C$, similarly A is not nS_C -open set. If $A = L_R(X) \cup B$ where $B = [U_R(X)]^C$, then A is nS_c -open set, since every non-empty proper nano closed set containing $[U_R(X)]^c$ and $[U_R(X)]^C \subseteq A$ for every $x \in A$. If $A = B_R(X) \cup B$ where $B = [U_R(X)]^C$, similarly A is nS_C -open set. Therefore, $nS_CO(\mathcal{W}, X) = \{\phi, \mathcal{W}, [B_R(X) \cup B], [L_R(X) \cup B]\}$, where B = $[U_R(X)]^C$.

Proposition 3.9. Let $(\mathcal{W}, \tau_R(X))$ be a *NTS* and *K* be any subset of *U*:

i. If *K* is $n\theta$ -open set, then *K* is nS_C -open.

- ii. If K is nS_C -open set, then K is nS_β -open.
- iii. If K is nS_C -open set, then K is $n\beta$ -open.
- iv. If *K* is nS_C -open set, then *K* is $n\lambda$ -open.
- v. If K is nS_C -open set, then K is $n\delta\beta$ -open.

Proof. Obvious.

4. Nano S_C-Operators

Definition 4.1. A subset *N* of a *NTS* ($\mathcal{W}, \tau_R(X)$) is said to be a nS_C -neighborhood of a subset *A* of *W*, if there exists a nS_C -open set *G* such that $A \subseteq G \subseteq N$, and denoted by nS_C -neighborhood. **Definition 4.2.** A point $x \in \mathcal{W}$ is called a nS_C -interior point of $A \subseteq W$, if \exists a nS_C -open set *G* containing *x* such that $x \in G \subseteq A$. The set of all nS_C -interior points of *A* is called nS_C -interior of *A* and denoted by nS_C -interior of *A*.

Theorem 4.3. Let A be any subset of a NTS $(\mathcal{W}, \tau_R(X))$. If a point $x \in nS_C int(A)$, then \exists a nano closed set F containing x such that $F \subseteq A$.

Proof. Suppose that $x \in nS_C$ int A, then $\exists a nS_C$ -open set G containing x such that $G \subseteq A$. Since $G \in nS_CO(W, X)$, then $\exists a$ nano closed set F containing x such that $F \subseteq G \subseteq A$. Hence $x \in F \subseteq A$.

Theorem 4.4. Let *A* be any subset of a *NTS* ($\mathcal{W}, \tau_R(X)$), then:

- i. $nS_C int(A) \subseteq A$.
- ii. $nS_C int(A) = \bigcup \{G: G \text{ is } nS_C \text{ open and } G \subseteq A\}$
- iii. A is nS_c open if and only if $A = nS_c int(A)$.

- iv. $nS_c int(nS_\beta int(A)) = nS_c int(A)$.
- v. $nS_cint(\phi) = \phi$ and $nS_cint(\mathcal{W}) = \mathcal{W}$.

Proof.

- i. Follows form definition.
- ii. $x \in nS_C int(A)$, then $G \subseteq A$ for some nS_C -open set G such that $x \in G$. Therefore, $x \in \bigcup$ { $G: G \text{ is } nS_C$ -open and $x \in G \subseteq A$ }. If $x \in \bigcup \{G: G \text{ is } nS_C$ -open and $x \in G \subseteq A$ }, then $x \in G$ for some nS_C -open set $G \subseteq A$. Therefore, $x \in nS_C int(A)$.
- iii. If A is nS_C -open and $x \in A$, then $x \in \bigcup \{G: G \text{ is } nS_C$ -open and $G \subseteq A\}$. That is, $x \in nS_C int(A)$, hence $A \subseteq nS_C int(A)$, but since $nS_C int(A) \subseteq A$. Therefore, $nS_C int(A) = A$. Conversely, if $nS_C int(A) = A$, then A is nS_C -open in U since $nS_C int(A)$ is nS_C -open.
- iv. Follows from part (*iii*).
- v. Since ϕ and \mathcal{W} are nS_c -open set, then by part (*iii*), $nS_cint(\phi) = \phi$ and $nS_cint(U) = \mathcal{W}$.

Theorem 4.5. Let *A* and *B* be any two subset of a *NTS* ($\mathcal{W}, \tau_R(X)$), then:

- i. If $A \subseteq B$, then $nS_cint(A) \subseteq nS_cint(B)$.
- ii. $nS_Cint(A) \cup nS_Cint(B) \subseteq nS_Cint(A \cup B)$.
- iii. $nS_Cint(A \cap B) \subseteq nS_Cint(A) \cap nS_Cint(B)$.

Proof.

- i. If $A \subseteq B$ and $x \in nS_cint(A)$, then $G \subseteq A$ for some nS_c -open set G containing x. Hence $G \subseteq A$ and $x \in nS_cint(B)$. Therefore, $nS_cint(A) \subseteq nS_cint(B)$.
- ii. Since, $A \subseteq A \cup B$, by (i), $nS_cint(A) \subseteq nS_cint(A \cup B)$. Again since $B \subseteq A \cup B$, $nS_cint(B) \subseteq nS_cint(A \cup B)$. Therefore, $nS_cint(A) \cup nS_cint(B) \subseteq nS_cint(A \cup B)$.
- iii. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, by part (i), $nS_cint(A \cap B) \subseteq nS_cint(A) \cap nS_cint(B)$.

The inclusion of parts (*ii* and *iii*) of above theorem cannot be replaced by equality in general, as it shown in the following example.

Example 4.6. Let $\mathcal{W} = \{a, b, c, d\}$ with $\mathcal{W}/R = \{\{a\}, \{b, c\}, \{d\}\}$ and $X = \{a, b\}$, then $\tau_R(X) = \{\phi, \mathcal{W}, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $nS_CO(\mathcal{W}, X) = \{\phi, \mathcal{W}, \{a, d\}, \{b, c, d\}\}$. For part (*ii*), take $A = \{b, d\}$ and $B = \{c, d\}$, then $nS_Cint(A) \cup nS_Cint(B) = \phi \cup \phi = \phi$ but $nS_Cint(A \cup B) = \{b, c, d\}$. Therefore, $nS_Cint(A) \cup nS_Cint(B) \neq nS_Cint(A \cup B)$. For part (*iii*), take $A = \{a, d\}$ and $B = \{b, c, d\}$, then $nS_Cint(A \cap B) = nS_Cint(\{d\}) = \phi$, but $nS_Cint(A) \cap nS_Cint(B) = \{a, d\} \cap \{b, c, d\} = \{d\}$. Therefore, $nS_Cint(A \cap B) \neq nS_Cint(A) \cap nS_Cint(B)$.

Definition 4.7. A point $x \in W$ of a *NTS* $(W, \tau_R(X))$ is said to be nS_C -cluster point of a subset A of U, if $A \cap G \neq \phi$ for every nS_C -open set G containing x.

Definition 4.8. The set of all nS_c -cluster points of a subset A of \mathcal{W} is said to be nS_c -closure of A and denoted by $nS_ccl(A)$. Equivalently, The $nS_ccl(A)$ is the intersection of all nS_c -closed sets containing A.

Theorem 4.9. Let *A* be any subset of a *NTS* ($\mathcal{W}, \tau_R(X)$). A point $x \in nS_C cl(A)$ if and only if $A \cap H \neq \phi$ for every nS_C -open set *H* containing *x*.

Proof. Obvious.

Corollary 4.10. For any subset A of a NTS $(\mathcal{W}, \tau_R(X))$, the following statements are true.

i. $nS_C cl (\mathcal{W} - A) = \mathcal{W} - nS_C int(A)$.

ii. $nS_C int (W - A) = W - nS_C cl(A)$.

Proof.

- i. Let x ∈ nS_ccl (W − A), then G ∩ (W − A) ≠ φ for any nS_c-open set G containing x. Therefore, G ⊈ A where G is nS_c-open set containing x. That is, x ∉ nS_cint(A). Therefore, x ∈ W − nS_cint(A). Thus, nS_ccl(W − A) ⊆ W − nS_cint(A). Conversely, if x ∈ W − nS_cint(A), then x ∉ nS_cint(A), and this mean G ⊈ A for every nS_c-open set G containing x. Therefore, G ∩ (W − A) ≠ φ and so x ∈ nS_ccl(W − A). Hence, W − nS_cint(A) ⊆ nS_ccl(W − A). Hence, nS_ccl(W − A) = W − nS_cint(A).
- ii. The proof is similar to part (i).

Theorem 4.11. For any subset A and B of a NTS $(\mathcal{W}, \tau_R(X))$, the following statements are true:

- i. If $A \subseteq B$, then $nS_C cl(A) \subseteq nS_C cl(B)$. ii. $nS_C cl(A) \cup nS_C cl(B) \subseteq nS_C cl(A \cup B)$.
- iii. $nS_ccl(A \cap B) \subseteq nS_ccl(A) \cap nS_ccl(B)$.

Proof.

- i. If A ⊆ B and x ∈ nS_ccl(A), then G ∩ A ≠ φ for every nS_c-open set G containing x.Since G ∩ A ⊆ G ∩ B, G ∩ B ≠ φ whenever G is nS_c-open set containing x. Therefore, x ∈ nS_ccl(B). Hence, nS_ccl(A) ⊆ nS_ccl(B).
- ii. Since $A, B \subseteq A \cup B$, then by part (*i*), we get the result.
- iii. Since $A \cap B \subseteq A, B$, then by part (*i*), we get the result.

The inclusion in (*ii* and *iii*) of above theorem cannot be replaced by quality in general, as it shown in the following two examples.

Example 4.12. Let $\mathcal{W} = \{a, b, c, d\}$ with $\mathcal{W}/R = \{\{a\}, \{b, c\}, \{d\}\}$ and $X = \{a, b\}$, then $\tau_R(X) = \{\phi, \mathcal{W}, \{a\}, \{b, c\}, \{a, b, c\}\}$, $nS_CO(\mathcal{W}, X) = \{\phi, \mathcal{W}, \{a, d\}, \{b, c, d\}\}$ and $nS_CC(\mathcal{W}, X) = \{\phi, \mathcal{W}, \{b, c\}, \{a\}\}$. For part (*ii*), take $F = \{a, d\}$ and $E = \{a, b\}$, then $nS_Ccl(F \cap E) = nS_Ccl(\{a\}) = \{a\}$, but $nS_Ccl(F) \cap nS_Ccl(E) = \mathcal{W}$. Therefore, $nS_Ccl(F \cap E) \neq nS_Ccl(F) \cap nS_Ccl(F) \cap nS_Ccl(F) \cap nS_Ccl(F) \cap nS_Ccl(F) \cup nS_Ccl(\{b, c\}) \cup \{a\}) = \mathcal{W}$, but $nS_Ccl(\{b, c\}) \cup nS_Ccl(\{a\}) = \{a, b, c\}$. Therefore, $nS_Ccl(F) \cup nS_Ccl(F) \neq nS_Ccl(F \cup E)$.

Theorem 4.13. Let *A* be any subset of a *NTS* ($\mathcal{W}, \tau_R(X)$), then the following statements are true:

- i. $nS_C cl(\phi) = \phi$ and $nS_C cl(W) = W$.
- ii. $A \subseteq nS_C cl(A)$.
- iii. $A \in nS_CC(W, X)$ if and only if $A = nS_Ccl(A)$.

iv. $nS_C cl(nS_\beta cl(A)) = nS_C cl(A)$

Proof.

- i. Follows form the fact that ϕ and \mathcal{W} are nS_{β} -closed set.
- ii. By definition of nS_C -closure, $A \subseteq nS_C cl(A)$.
- iii. Let A is nS_C -closed set, then A is smallest nS_C -closed set containing itself and hence $nS_C cl(A) = A$. Conversely, if $nS_C cl(A) = A$, then A is the smallest nS_C -closed set containing itself and hence A is nS_C -closed set in W.
- iv. Since $nS_C cl(A)$ is nS_C -closed set, then the proof follows from part (*iii*).

References

1. Thivagar, M. L.; Richard, C. On nano forms of weakly open sets. *International journal of mathematics and statistics invention*, **2013**, *1*, 31-37.

2. Levine, N. Semi-open sets and semi-continuity in topological spaces. *The American mathematical monthly*, **1963**, *70*, 36-41.

3. Revathy, A., Ilango, G. On nano β-open sets. Int. J. Eng. Contemp. Math. Sci, 2015, 1, 1-6.

4. Pirbal, O. T.; Ahmed, N. K. On Nano S_{β} -Open Sets In Nano Topological Spaces. *General Letters in Mathematics*, **2022**, *12*, 23-30.

5. Rajasekaran, I.; Meharin, M.; Nethaji, O. On nano gβ-closed sets. 2017, 5, 377–382.

6. Padma, A.; Saraswathi, M.; Vadivel, A.; Saravanakumar, G. New notions of nano M-open sets. *Malaya Journal of Matematik*, **2019**, *1*, 656-660.

7. Rajasekaran, I.; Meharin, M.; Nethaji, O. On new classes of some nano open sets. *International Journal of Pure and Applied Mathematical Sciences*, **2017**, *10*, 147-155.

8. Pawlak, Z. Rough sets. International journal of computer & information sciences, **1982**, 11, 341-356.