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Abstract 

     This paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit 

RK method for solving ODEs 𝑦′′′(𝑥)  =  𝑓 (𝑥, 𝑦). This approach is intended to integrate exactly 

initial value problems (IVPs), their solutions consist of linear combinations of the group functions 

𝑒𝑤𝑥 and 𝑒−𝑤𝑥 for exponentially fitting problems, with 𝑤 ∈ 𝑅 being the problem’s major frequency 

utilized to improve the precision of the method. The modified method EDITRK4 is a new three-

stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with 

functions that are exponential as solutions. Different forms of 3𝑟𝑑-order ODEs must be derived 

using the modified system, and when the same issue is reduced to a 1𝑠𝑡 framework of equations 

that can be solved using conventional RK approaches, numerical comparisons must be done. The 

findings show that the novel approach is more efficacious than previously published methods. 

 

Keyword: Numerical Methods, Exponentially Fitted, Ordinary Differential Equations, 

Diagonal Implicit Type Runge Kutta Methods, Initial Value Problems. 

 

1.Introduction 

This paper is about RK type methods directly for solving 3𝑟𝑑-order ODEs that are 

exponentially-fitted diagonally implicit in the form: 

 

𝑣′′′(𝑡) = 𝑓(𝑥, 𝑣(𝑡)),             𝑣(𝑡0) = 𝑣0,   𝑣′(𝑡0) = 𝑣0
′ ,   𝑣′′(𝑡0) = 𝑣0

′′,        𝑡 ≥ 𝑡0                    (1) 

 

Where 𝑣 ∈   𝑅𝑑, 𝑓 ∶  𝑅 ×  𝑅𝑑  
→ 𝑅𝑑 is a continuous vector-valued operation that does not rely 

on the second derivatives directly. Numerous physical issues, such as thin-film flow and gravity-

driven fluxes, need to be addressed, and so on, have this type of problem [1-3].  Then, some 

researchers have constructed explicit RK methods for solving 1𝑠𝑡-order and 2𝑛𝑑-order ODEs that 
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are exponentially and trigonometrically fitted in recent years. Because implicit techniques can 

attain higher levels of accuracy for the same stage number as explicit methods, they are essential.  

It becomes easier to resolve challenging problems as a result of this. Implicit (RK) approaches, 

on the other hand, play a crucial role in other types of problems, such as differential-algebraic 

neutralization. Furthermore, because they have a lower triangular A-matrix with at least one non-

zero diagonal element, diagonally implicit RK methods are sometimes known as semi-(implicit 

or explicit) RK approaches. For trigonometric polynomial periodic solutions to ODEs, [4] 

developed Runge-Kutta-Nyström techniques. Exponentially adapted RK algorithms were 

developed by [5]. While [6] presents an extended version of the RK method that tackles the 

problems of the Schrödinger equation. The majority of scientists, engineers, and researchers 

utilized to resolve (1) by reducing third-order differential equations to a three-dimensional system 

of 1𝑠𝑡-order equations. However, if the problem can be solved directly using numerical methods, 

it is more efficient. In [7-9] are examples of this type of work. Two explicit two-derivative RKN 

techniques, one exponentially fitted and the other trigonometrically fitted, are constructed in [10]. 

Then, using the Simos technique, Demba et al. [11] implemented an explicit trigonometrically 

fitted RKN method. Furthermore, [12] and [13] are to demonstrate how the direct method is used 

to solve specific third and fourth-order ODEs.  The major purpose of this research is to show how 

to solve special 3𝑟𝑑-order ODEs using an exponentially-fitted diagonally implicit RK method. In 

addition, (1) is solved numerically using the approach's algebraic order must be considered, as it 

is the most essential aspect in achieving high accuracy. 

The required criteria and derivation for exponentially fitted 3𝑟𝑑-order ODEs are solved using RK 

techniques and presented in part 3. Section 4 compares the effectiveness of the new method to 

that of previous methods. For addressing the IVPs problem (1),  the general structure of the 

EDITRK4 approach with an m-stage: 

 

𝑣𝑛+1 = 𝑣𝑛 + ℎ𝑣𝑛
′ +

ℎ2

2
𝑣𝑛

′′ + ℎ3 ∑ 𝑏𝑖
𝑚
𝑖=1 𝑘𝑖  ,                                                  (2) 

𝑣𝑛+1
′ = 𝑣𝑛

′ + ℎ𝑣𝑛
′′ + ℎ2 ∑ 𝑏𝑖

′𝑚
𝑖=1 𝑘𝑖  ,                                                                (3) 

𝑣𝑛+1
′′ = 𝑣𝑛

′′ + ℎ ∑ 𝑏𝑖
′′𝑚

𝑖=1 𝑘𝑖  .                                                                             (4) 

 

Where 

𝑘𝑖 = 𝑓 (𝑥𝑛 + 𝑐𝑖ℎ, 𝑣𝑛 + 𝑐𝑖ℎ𝑣𝑛
′ +

ℎ2

2
 𝑐𝑖

2 𝑣𝑛
′′ + ℎ3  ∑ 𝑎𝑖𝑗

𝑖−1
𝑗=1 𝑘𝑗),                  (5) 

for 𝑖 = 2,3, … , 𝑚. 

The diagonal implicit RK type parameters (EDITRK4) techniques are 𝑏𝑖, 𝑏𝑖
′, 𝑏𝑖

′′, 𝑎𝑖,𝑗  and 𝑐𝑖 of 

where 𝑖 =  2, 3, . . . , 𝑚, are genuine integers as well as 𝑚 is the approach's digit of the stage. 

When 𝑎𝑖,𝑗  ≠ 0  for 𝑖 ≤  𝑗, this method is known as diagonal implicit. The final designation 

comprises the single EDITRK4 techniques, It means that the values of 𝐴 in lower triangle 

diagonal matrices are the same as 𝑎𝑖𝑗  ≠ 0 where 𝑖 =  𝑗 in the diagonal. 
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Table 1. Butcher form EDITRK4 method. 

 
𝑐1 𝑎11   

𝑐2 𝑎21 𝑎22 

𝑐3 𝑎31 𝑎32 𝑎33 

 
𝑏1 𝑏2 𝑏3 

 𝑏1
′  

𝑏1
′′ 

𝑏2
′  

𝑏2
′′ 

𝑏3
′  

𝑏3
′′ 

 

 

The parameters of the new method supplied by (2)-(5) are obtained by expanding the EDITRK4 

method statement using Taylor's series enlargement. In accordance with a few algebraic 

adjustments, this enlargement equals the correct solution found through Taylor's series expansion. 

The general order criteria for the new technique were derived using the direct truncation error on 

the local level. This idea is founded on the derivation of order criteria to the RK technique see 

[14] and [15]. 

 

The new EDITRK4 technique is formed as follows: 

 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝛷(𝑥𝑛 , 𝑦𝑛), 

𝑦𝑛+1
′ = 𝑦𝑛

′ + ℎ𝛷′(𝑥𝑛 , 𝑦𝑛), 

𝑦𝑛+1
′′ = 𝑦𝑛

′′ + ℎ𝛷′′(𝑥𝑛 , 𝑦𝑛),                                                                                                               (6) 

 

 

where the increment functions are: 

𝛷(𝑥𝑛 , 𝑦𝑛) = 𝑦𝑛
′ +

ℎ

2
 𝑦𝑛

′′ + ℎ2 ∑ 𝑏𝑖

𝑚

𝑖=1

𝑘𝑖 , 

𝛷′(𝑥𝑛 , 𝑦𝑛) = 𝑦𝑛
′′ + ℎ ∑ 𝑏𝑖

′

𝑚

𝑖=1

𝑘𝑖, 

       𝛷′′(𝑥𝑛 , 𝑦𝑛) = ∑ 𝑏𝑖
′′

𝑚

𝑖=1

𝑘𝑖 .                                                            (7)    

In which 𝑘𝑖 is shown in (5).  If we suppose the Taylor increment function is ∆, ∆′and ∆′′ . Thus, 

by inserting the exact solution of (1) into (7), the local truncation error (LTE) of 𝑦(𝑥), 𝑦′(𝑥) 

and 𝑦′′(𝑥) can be obtained: 

𝜏𝑛+1 = ℎ[𝛷 − ∆], 

 𝜏𝑛+1
′ = ℎ[𝛷′ − ∆′], 

𝜏𝑛+1
′′ = ℎ[𝛷′′ − ∆′′].                                                                                                                              (8) 

 

In the terms of elementary differentials, these expressions are best given and the Taylor series 

can be expressed as follows: 

∆= 𝑦′ +
1

2
ℎ𝑦′′ +

1

6
 ℎ2𝐹1

(3)
+

1

24
 ℎ3𝐹1

(4)
+ 𝑂(ℎ4), 
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∆′= 𝑦′′ +
1

2
 ℎ𝐹1

(3)
+

1

6
 ℎ2𝐹1

(4)
+

1

24
 ℎ3𝐹1

(5)
+ 𝑂(ℎ4), 

∆′′= 𝐹1
(3)

+
1

2
 ℎ𝐹1

(4)
+

1

6
 ℎ2𝐹1

(5)
+ 𝑂(ℎ3).                                                      (9) 

 

The first few basic differentials in the scalar case are as follows: 

𝐹1
(3)

= 𝑓, 

                   𝐹1
(4)

= 𝑓𝑥 + 𝑓𝑦𝑦′  , 

𝐹1
(5)

= 𝑓𝑥𝑥 + 2𝑓𝑥𝑦𝑦′ + 𝑓𝑥𝑦′𝑦𝑥𝑥 + 𝑓𝑦𝑦′′ + 𝑓𝑦𝑦(𝑦′)2.                                                                    (10) 

Substituting (10) into (7), for new method, the increment functions Φ, Φ' and Φ'' will become 

∑ 𝑏𝑖𝑘𝑖

𝑚

𝑖=1

= ∑ 𝑏𝑖

𝑚

𝑖=1

𝑓 + ∑ 𝑏𝑖𝑐𝑖

𝑚

𝑖=1

(𝑓𝑥 + 𝑓𝑦𝑦′)ℎ

+
1

2
∑ 𝑏𝑖

𝑚

𝑖=1

𝑐𝑖
2(𝑓𝑥𝑥 + 2𝑓𝑥𝑦𝑦′ + 𝑓𝑥𝑦′𝑦𝑥𝑥 + 𝑓𝑦𝑦′′ + 𝑓𝑦𝑦(𝑦′)2)ℎ2 + 𝑂(ℎ3), 

 

∑ 𝑏𝑖
′𝑘𝑖

𝑚

𝑖=1

= ∑ 𝑏𝑖
′

𝑚

𝑖=1

𝑓 + ∑ 𝑏𝑖
′𝑐𝑖

𝑚

𝑖=1

(𝑓𝑥 + 𝑓𝑦𝑦′)ℎ

+
1

2
∑ 𝑏𝑖

′

𝑚

𝑖=1

𝑐𝑖
2(𝑓𝑥𝑥 + 2𝑓𝑥𝑦𝑦′ + 𝑓𝑥𝑦′𝑦𝑥𝑥 + 𝑓𝑦𝑦′′ + 𝑓𝑦𝑦(𝑦′)2)ℎ2 + 𝑂(ℎ3), 

∑ 𝑏𝑖
′′𝑘𝑖

𝑚
𝑖=1 = ∑ 𝑏𝑖

′′𝑚
𝑖=1 𝑓 + ∑ 𝑏𝑖

′′𝑐𝑖
𝑚
𝑖=1 (𝑓𝑥 + 𝑓𝑦𝑦′)ℎ +

1

2
∑ 𝑏𝑖

′′𝑚
𝑖=1 𝑐𝑖

2(𝑓𝑥𝑥 + 2𝑓𝑥𝑦𝑦′ + 𝑓𝑥𝑦′𝑦𝑥𝑥 +

𝑓𝑦𝑦′′ + 𝑓𝑦𝑦(𝑦′)2)ℎ2 + 𝑂(ℎ3) , 

 

From (9) and (11),  The following is how LTE in (8) is expressed: 

 

𝜏𝑛+1 = ℎ3  [∑ 𝑏𝑖𝑘𝑖

𝑚

𝑖=1

− (
1

6
𝐹1

(3)
+

1

24
ℎ𝐹1

(4)
+ ⋯ )] , 

𝜏𝑛+1
′ = ℎ2  [∑ 𝑏𝑖

′𝑘𝑖

𝑚

𝑖=1

− (
1

2
𝐹1

(3)
+

1

6
ℎ𝐹1

(4)
+ ⋯ )] , 

𝜏𝑛+1
′′ = ℎ [∑ 𝑏𝑖

′′𝑘𝑖
𝑚
𝑖=1 − (𝐹1

(3)
+

1

2
ℎ𝐹1

(4)
+

1

6
ℎ2𝐹1

(5)
… )] .                                                           (12) 

 

The LTE or the order conditions up to order six for m-stage for the new technique can be solved 

by substituting (11) into (12) and expanding as a Taylor expansion using the Maple package see 

[14] and [12]. 
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2.Exponentially Fitted EDITRK4 Method 

Definition 1: To create the exponentially fitted RK kind 3-stage 4𝑡ℎ-order technique, the 

functions 𝑒𝑤 and 𝑒−𝑤 must integrate perfectly at each stage; consequently, the following 

equations are derived for 𝑦, 𝑦′ and 𝑦′′ 

𝑒±𝑣 = 1 ± 𝑣 +
1

2
 𝑣2 ± 𝑣3 ∑ 𝑏𝑖

𝑚

𝑖=1

𝑒±𝑐𝑖𝑣 ,                                 (13) 

e±v = 1 ± v +  v2 ∑ bi
′

m

i=1

e±civ,                                                 (14) 

𝑒±𝑣 = 1 ± 𝑣 ∑ 𝑏𝑖
′′𝑚

𝑖=1 𝑒±𝑐𝑖𝑣.                                                        (15) 

Where 𝑣 = 𝑤ℎ, 𝑤 ∈ 𝑅. The relations  cosh(𝑣) =
𝑒𝑣+𝑒−𝑣

2
 and  sinh(𝑣) =

𝑒𝑣−𝑒−𝑣

2
 will be used in 

the derivation process. The following equations corresponding 𝑦, 𝑦′ and 𝑦′′ are: 

         cos(𝑣) = 1 +
1

2
 𝑣2 + 𝑣3 ∑ 𝑏𝑖

𝑚

𝑖=1

sin ℎ(𝑣𝑐𝑖),                                                                    (16) 

𝑠𝑖𝑛 ℎ(𝑣) = 𝑣 + 𝑣3 ∑ 𝑏𝑖

𝑚

𝑖=1

𝑐𝑜𝑠ℎ(𝑣𝑐𝑖),                                                                                       (17) 

      𝑐𝑜𝑠ℎ(𝑣) = 1 + 𝑣2 ∑ 𝑏𝑖
′

𝑚

𝑖=1

𝑐𝑜𝑠ℎ(𝑣𝑐𝑖),                                                                             (18) 

     sinh(𝑣) = 𝑣 + 𝑣2 ∑ 𝑏𝑖
′

𝑚

𝑖=1

sinh(𝑣𝑐𝑖),                                                                              (19) 

       cosh(𝑣) = 1 + 𝑣 ∑ 𝑏𝑖
′′

𝑚

𝑖=1

sinh(𝑣𝑐𝑖),                                                                          (20) 

𝑠𝑖𝑛ℎ(𝑣) = 𝑣 ∑ 𝑏𝑖
′′

𝑚

𝑖=1

𝑐𝑜𝑠ℎ(𝑣𝑐𝑖).                                                                                     (21) 

In [12], devised the following 3-stage 4𝑡ℎ-order diagonally implicit approach. 

𝑐1 =
4

5
 , 𝑐2 =

2

5
, 𝑐3 =

7

10
   , 𝑎11 =

1

600
, 𝑎21 = 0, 𝑎22 =

1

600
, 𝑎31 = 0, 𝑎32 =

2

25
, 𝑎33 =

1

600
, 𝑏1

= 0 , 𝑏2 =
1

10
 , 𝑏3 =

1

100
   , 𝑏1

′ = 0 , 𝑏2
′ =

3

10
 , 𝑏3

′ =
1

10
 , 𝑏1

′′ = 0 , 𝑏2
′′ =

1

2
, 𝑏3

′′

=
1

2
 . 

Next, we solve (16) – (21) and use of the coefficients listed above to find 𝑏1, 𝑏2, 𝑏1
′ , 𝑏2

′ , 𝑏1
′′ and 𝑏2

′′. 
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𝑏1 =
(cosh(

𝑣
3

) sinh (
7𝑣
10

) − cosh(
7𝑣
10

) sinh(
𝑣
3

)

100 cosh(
4
5

𝑣) sinh (
𝑣
5

) − 100 cosh(
𝑣
5

) sinh(
4
5

𝑣)

+ 1
2⁄   

cosh (
𝑣
5

) 𝑣2 + 2 sinh(𝑣) sinh (
𝑣
5

) − 2 cosh(
𝑣
5

) cosh(𝑣) − 2 sinh (
𝑣
5

) 𝑣 + 2 cosh(
𝑣
5

)

𝑣3(cosh(
4
5

𝑣) sinh (
𝑣
5

) − cosh(
𝑣
5

) sinh(
4
5

𝑣))
 

𝑏2

= −
(cosh (

4
5

𝑣) sinh (
7𝑣
10

) − cosh (
7𝑣
10

) sinh (
4
5

𝑣)

100 cosh (
4
5

𝑣) sinh (
𝑣
5

) − 100 cosh (
𝑣
5

) sinh (
4
5

𝑣)

− 1
2⁄   

cosh (
4
5

𝑣) 𝑣2 + 2 sinh(
4
5

𝑣) sinh(𝑣) − 2 cosh(𝑣) cosh (
4
5

𝑣) − 2 sinh (
4
5

𝑣) 𝑣 + 2 cosh(
4
5

𝑣)

𝑣3(cosh(
4
5

𝑣) sinh (
𝑣
5

) − cosh(
𝑣
5

) sinh(
4
5

𝑣))
 

𝑏1
′ =

1

10

(𝑐𝑜𝑠ℎ (
𝑣
5

) 𝑠𝑖𝑛ℎ (
7𝑣
10

) − 𝑐𝑜𝑠ℎ (
7𝑣
10

) 𝑠𝑖𝑛ℎ (
𝑣
5

))

cosh (
4
5

𝑣) sinh (
𝑣
5

) − cosh (
𝑣
5

) sinh (
4
5

𝑣)
−  

cosh (
𝑣
5

) sinh(𝑣) − cosh(
𝑣
5

) 𝑣 − sinh (
𝑣
5

) + sinh(
𝑣
5

)

𝑣2(cosh(
4
5

𝑣) sinh (
𝑣
5

) − cosh(
𝑣
5

) sinh(
4
5

𝑣))
 

𝑏1
′′ =

(
1
2

𝑐𝑜𝑠ℎ (
𝑣
5

) 𝑠𝑖𝑛ℎ (
7𝑣
10

) 𝑣 −
1
2

𝑐𝑜𝑠ℎ (
7𝑣
10

) 𝑠𝑖𝑛ℎ (
𝑣
5

) 𝑣 − cosh (
𝑣
5

) cosh(𝑣) + sinh(𝑣) sinh (
𝑣
5

) + cosh(
𝑣
5

))

𝑣 (𝑐𝑜𝑠ℎ (
4
5

𝑣) 𝑠𝑖𝑛ℎ (
𝑣
5

) − 𝑐𝑜𝑠ℎ (
𝑣
5

) 𝑠𝑖𝑛ℎ (
4
5

𝑣))
 

𝑏2
′′

=
(

1
2

𝑐𝑜𝑠ℎ (
4
5

𝑣) 𝑠𝑖𝑛ℎ (
7𝑣
10

) 𝑣 −
1
2

𝑐𝑜𝑠ℎ (
7𝑣
10

) 𝑠𝑖𝑛ℎ (
4
5

𝑣) 𝑣 − cosh(𝑣) cosh (
4
5

𝑣) + sinh (
4
5

𝑣) sinh(𝑣) + cosh(
4
5

𝑣))

𝑣 (𝑐𝑜𝑠ℎ (
4
5

𝑣) 𝑠𝑖𝑛ℎ (
𝑣
5

) − 𝑐𝑜𝑠ℎ (
𝑣
5

) 𝑠𝑖𝑛ℎ (
4
5

𝑣))
 

As a result, we developed EDITRK4, a 3-stage 4th-order diagonally implicit exponentially fitted 

RK type approach. The solution's matching Taylor series expansion is given by: 

 

𝑏1 =
1

180
−

𝑣2

8000
+

4057𝑣4

1008000000
−

732037𝑣6

5443200000000
+

380948723𝑣8

79833600000000000

−
150590645851𝑣10

871782912000000000000
 

𝑏2 =
34

225
+

29𝑣2

24000
+

5333𝑣4

1008000000
−

658169𝑣6

5443200000000
+

41437183𝑣8

8870400000000000

−
149781459959𝑣10

871782912000000000000
 

𝑏1
′ =

1

36
−

𝑣2

1440
+

1259𝑣4

33600000
−

108659𝑣6

77760000000
+

1226395609𝑣8

23950080000000000

−
90543546703𝑣10

484323840000000000000
 

 

𝑏2
′ =

67

180
+

11𝑣2

7200
+

1471𝑣4

33600000
−

152837𝑣6

108864000000
+

1228905701𝑣8

23950080000000000

−
10065377507𝑣10

5381376000000000000
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𝑏1
′′ =

1

12
+

43𝑣2

7200
−

169𝑣4

2880000
+

117487𝑣6

60480000000
−

29389781𝑣8

435456000000000

+
1665975073𝑣10

68428800000000000
−

6617676448637𝑣12

74724249600000000000000
 

 

𝑏2
′′ =

5

12
+

23𝑣2

7200
−

101𝑣4

2880000
+

104747𝑣6

60480000000 
−

28558129𝑣8

435456000000000

−
11578525811𝑣10

4790016000000000000
+

6605830989193𝑣12

74724249600000000000000
 

 

3.Numerical Experiments 

Problem 1: (Non-homogeneous Linear Problem). 

𝑣′′′(𝑡) =  𝑣(𝑡) +  𝑐𝑜𝑠(𝑣),     𝑣(0) =  0,    𝑣 ′(0) =  0, 𝑣′′(0)  =  1. 

Theoretical solution: 

𝑣(𝑡) = (𝑒𝑡 − cos(𝑡) − sin(𝑡)) . 

 

Problem 2: (Non-homogeneous Nonlinear Problem). 

𝑣′′′(𝑡)  =  (𝑣(𝑡))2 +  𝑐𝑜𝑠2(𝑣)  −  𝑐𝑜𝑠(𝑡)  −  1, 

𝑣(0)  =  0, 𝑣′(0)  =  1, 𝑣′′(0)  =  1. 

Theoretical solution: 

𝑣(𝑡)  =  𝑠𝑖𝑛(𝑡). 

Problem 3: (Non-homogeneous Nonlinear Problem). 

𝑣′′′(t) = 8 (
𝑣2(𝑡)

𝑒2𝑡
)  , 

𝑣(0) = 1 ,        𝑣′(0) = 2,      𝑣′′(0) = 4 . 

Theoretical solution: 

𝑣(𝑡)  =  𝑒2𝑡. 

 

Problem 4: (Non-linear System). 

 

𝑦1
′′′(t) = 𝑦2(t),                                                   𝑦1(0) = 1 , 𝑦1

′ (0) = 0 , 𝑦1
′′(0) = 1 , 

𝑦2
′′′(t) = −𝑦1(𝑡) − 2𝑦2(𝑡) + 2𝑦3(𝑡),           𝑦2(0) = 0 , 𝑦2

′ (0) = 1 , 𝑦2
′′(0) = 0 , 

𝑦3
′′′(t) = 𝑦1(𝑡) + 𝑦2(𝑡)                                    𝑦3(0) = 1 , 𝑦3

′ (0) = 1 , 𝑦3
′′(0) = 1. 

The precise solution is provided by 

𝑦1(𝑡)  =  𝑐𝑜𝑠ℎ(𝑡), 
𝑦2(𝑡)  =  𝑠𝑖𝑛ℎ(𝑡), 
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𝑦3(𝑡)  = 𝑒𝑡 . 

Problem 5: (Non-linear System). 

 

𝑦1
′′′(t) = 𝑦2(t),                                                         𝑦1(0) = 1 , 𝑦1

′ (0) = 0 , 𝑦1
′′(0) = 1 , 

𝑦2
′′′(t) = 𝑦1(t),                                                         𝑦2(0) = 0 , 𝑦2

′ (0) = 1 , 𝑦2
′′(0) = 0 , 

𝑦3
′′′(t) = 𝑦1(𝑡) + 𝑦2(𝑡) − sinh(𝑡)                       𝑦3(0) = 1 , 𝑦3

′ (0) = 0 , 𝑦3
′′(0) = 1. 

 

The precise solution is provided by 

𝑦1(𝑡) = cosh(𝑡), 

𝑦2(𝑡) = sinh(𝑡), 

𝑦3(𝑡) = 𝑒𝑡 + 1 − cosh(𝑡) +
𝑡2

2
− 𝑡. 

Figures 1–5 show the decimal logarithm of the largest global error and the logarithm function 

valuations, which illustrate how effective the EDITRK4 techniques. The EDITRK4 approach 

requires fewer function evaluations than other implicit RK approaches of the same order. This is 

because the number of equations tripled when the problems were converted into a system of 1𝑠𝑡-

order ODEs.  Furthermore, as shown in Figures 1–5, the EDITRK4 approaches have the smallest 

maximum global error and the fewest number of function evaluations for each step. The EDITRK4 

produces more accurate findings than the other results in the literature, as seen in Figures 1-5 

(DITRKM4, RKLIIIB4, and DIRKN4). The logarithm of function evaluations with different step 

sizes  ℎ =  0.1, 0.05, 0.025, 0.00125, and 0.00625 in this study is a function of the decimal 

logarithm of the greatest global fault for 5 test problems. 

 

 

Figure 1. Accuracy curve for EDITRK4, DITRKM4, RKLIIIB4, and DIRKN4 with ℎ = 0.1, 0.05 0.025, 0.00125, 

and 0.00625 for the problem 1. 
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Figure 2. Accuracy curve for EDITRK4, DITRKM4, RKLIIIB4, and DIRKN4 with ℎ = 0.1, 0.05 0.025, 0.00125, and 

0.00625 for the problem 2. 

 

 

 

Figure 3. Accuracy curve for EDITRK4, DITRKM4, RKLIIIB4, and DIRKN4 with ℎ = 0.1, 0.05 0.025, 0.00125, and 

0.00625 for the problem 3. 

 

 

Figure 4. Accuracy curve for EDITRK4, DITRKM4, RKLIIIB4, and DIRKN4 with ℎ = 0.1, 0.05 0.025, 0.00125, and 

0.00625 for the problem 4. 

 



IHJPAS. 36(1)2023 
 

398 
 

 

Figure 5. Accuracy curve for EDITRK4, DITRKM4, RKLIIIB4, and DIRKN4 with ℎ = 0.1, 0.05 0.025, 0.00125, and 

0.00625 for the problem 5. 

 

 

4.Conclusion 

     In this paper, we devise an exponentially fitted diagonally implicit RK type technique to 

address the 𝑦′′′(𝑥)  =  𝑓 (𝑥, 𝑦)  problem. As a result, the EDITRK4 method, a diagonally 

implicit three-stage fourth-order exponentially-fitted technique based on computing the 

solution's greatest error (𝑚𝑎𝑥(| 𝑦(𝑡𝑛) − 𝑦𝑛| )). This is the greatest difference between actual 

and computed solution absolute errors, was developed and used in the numerical comparison of 

criteria. The numerical results are shown in Figures 1–5. Then, the EDITRK4 method requires 

fewer capacity assessments than the DITRK4, RKLIIIB4, and DIRKN4 procedures. The 

common logarithm of the greatest global error during integration and computing cost was 

calculated using the number of function evaluations, as indicated in the figures. The numerical 

results showed that over a brief duration of integration, the unique exponentially fitted 

methodology RK type approach has a lower global error than the other current approaches. The 

innovative EDITRK4 methodology is significantly more effective than the competition present 

approaches when solving third-order ODEs of the kind 𝑦′′′ =  𝑓 (𝑥, 𝑦 ) directly. 
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