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Abstract   

A novel technique Sumudu transform Adomian decomposition method (STADM), is 

employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that 

this method finds the solution without discretization or restrictive assumptions. This method is 

efficient, simple to implement, and produces good results. The fractional derivative is 

described in the Caputo sense. The solutions are obtained using STADM, and the results show 

that the suggested technique is valid and applicable and provides a more refined convergent 

series solution. The MATLAB software carried out all the computations and graphics. 

Moreover, a graphical representation was made for the solution of some examples. For integer 

and fractional order problems, solution graphs are shown. The results confirmed that the 

accuracy of this technique converges to the integer order of the issues. 

Keywords: Caputo derivative, Fractional Calculus, Sumudu Transformation, Analytical  

the solution, Adomian method. 
  

1. Introduction 

Nonlinear problems are used to describe a variety of phenomena. Fractional differential 

equations (FDEs) have gained much attention from researchers due to their ability and are used 

in various fields of engineering and physics. The exact solution to any fractional differential 

equation is extremely difficult to find, and no general method provides the same solution for 

any fractional differential equations. Several analytical and approximate ways have been 

suggested for solving nonlinear problems of fractional order using the Sumudu variational 

iteration method [1,2], decomposition method, and variational iteration method [3,4,]. Many 

numerical and analytical techniques have been suggested for the solutions of non-integer 

differential equations of fractional order, such as the Adomian decomposition method, 
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Variational iteration method, homotopy analysis method, and homotopy perturbation method 

[5-9]. 

 

2. Derivation of Sumudu Transform and Decomposition Approach:  
   Consider a general fractional order partial differential equations as the form: 

             𝐷𝑡
𝛼𝑦(𝑥, 𝑡) + 𝑅[𝑦(𝑥, 𝑡)] + 𝑁[𝑦(𝑥, 𝑡)] = 𝑔(𝑥, 𝑡)                                (1) 

As           𝑦(𝑥 , 0) = 𝑓(𝑥) 

Since, 𝐷𝑡
𝛼𝑦(𝑥, 𝑡)  represents  Caputo fractional derivative of  𝑦(𝑥, 𝑡)  which is defined 

as: 

𝜕𝛼

𝜕𝑡𝛼
 𝑦(𝑥, 𝑡) =

{
 
 

 
 1

Γ(n − α)
 ∫ (𝑡 − 𝑠)𝑛−𝛼−1   

𝜕𝑛𝑦(𝑥, 𝑠)

𝜕𝑡𝑛
   𝑛 − 1 < 𝛼 < 𝑛

 

𝑡

0

𝜕𝑛𝑦(𝑥, 𝑡)

𝜕𝑡𝑛
                                                            𝛼 = 𝑛 ∈ 𝑁     

}
 
 

 
 

 

 By taking Sumudu transform of the Eq. (1),  get :      

Using the property of Sumudu transform of function derivatives is defined, we get:  

    𝑆[𝑦(𝑥 , 𝑡)] = 𝑦(𝑥 ,0) + 𝑠𝛼𝑆[𝑔(𝑥 , 𝑡)] − 𝑠𝛼𝑆[𝑅(𝑦(𝑥 , 𝑡)) + 𝑁(𝑦(𝑥 , 𝑡))]    (2) 

Application of Sumudu inverse transform on Eq. (2) yields: 

 
Now, the representation of the solution for Eq. (3) is given below: 

                                                𝑦(𝑥, 𝑡) =∑𝑦𝑖(𝑥, 𝑡)

∞

𝑖=0

                                                                    (4) 

And  

                        𝑁[𝑦(𝑥, 𝑡)] =∑𝐴𝑖(𝑦0, 𝑦1, … . , 𝑦𝑛)

∞

𝑖=0

                                                                  (5) 

Where, 𝐴𝑖  are the Adomian polynomials of functions 𝑦0, 𝑦1, … . , 𝑦𝑛  that can be 

calculated by the formula given as: 

𝐴𝑖 =
1

𝑖!

𝜕𝑖

𝜕𝜆𝑖
 [𝑁 (∑𝜆𝑖𝑦𝑖

∞

𝑖=0

)]

 
 
 
 𝜆=0

 

Substituting Eqs. (4) and (5) in Eq. (3): 

∑𝑦𝑖(𝑥, 𝑡)

∞

𝑖=0

=∑
𝑦(𝑥, 0)(𝑘)

𝑆𝛼−𝑘
 

∞

𝑘=0

+ 𝑆−1(𝑠𝛼𝑆[𝑔(𝑥, 𝑡)])𝑆−1 [𝑠𝛼𝑆 [𝑅 (∑𝑦𝑖(𝑥, 𝑡)

∞

𝑖=0

) +∑𝐴𝑖

∞

𝑖=0

]]                (6)  

Simplification of Eq. (6) as many times as possible resulted in a series solutions, we 

get: 

𝑆[𝐷𝑡
𝛼𝑦( 𝑥, 𝑡)]+ 𝑆[𝑅[𝑦( 𝑥, 𝑡)]]+ 𝑆[𝑁[𝑦( 𝑥, 𝑡)]] = 𝑆[𝑔( 𝑥, 𝑡)] 
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𝑦0(𝑥, 𝑡) = ∑
𝑦(𝑥, 0)(𝑘)

𝑆𝛼−𝑘

∞

𝑘=0

+ 𝑆−1(𝑠𝛼𝑆[𝑔(𝑥, 𝑡)]) 

𝑦1(𝑥, 𝑡) = −𝑆
−1[𝑠𝛼𝑆[𝑅(𝑦0(𝑥, 𝑡)) + 𝐴0]] 

𝑦2(𝑥, 𝑡) = −𝑆−1 [𝑠𝛼𝑆[𝑅(𝑦1(𝑥, 𝑡)) + 𝐴1]] 

⋮ 

𝑦𝑖(𝑥, 𝑡) = −𝑆
−1[𝑠𝛼𝑆[𝑅(𝑦𝑛−1(𝑥, 𝑡)) + 𝐴𝑛]] 

Finally, the iteration 𝑦0, 𝑦1, … . , 𝑦𝑖 were obtained and we get  𝑦(𝑥, 𝑡) = ∑ 𝑦𝑖(𝑥, 𝑡)
∞
𝑖=0 . 

 

3. Numerical Example 

          The following example demonstrates the efficiency and reliability of the Sumudu 

transform Adomian decomposition method (STADM). The software MATLAB R2021b is 

used to calculate all of the results. 

Example 3.1:  Consider         
𝜕𝛼𝑦

𝜕𝑡𝛼
−
𝜕𝑦

𝜕𝑥
−
𝜕2𝑦

𝜕𝑥2
= 0           0 < 𝛼 ≤ 1                                            (7) 

                                            And           𝑦(𝑥, 0) = 𝑥 

Solution:   

By taking Sumudu transform for Eq. (7) and using the initial condition, we get: 

𝑆[𝑦]

𝑢𝛼
= 𝑥 + 𝑆 [

𝜕𝑦

𝜕𝑥
+
𝜕2𝑦

𝜕𝑥2
] 

𝑆 [𝑦] = 𝑥 + 𝑢𝛼𝑆 [
𝜕𝑦

𝜕𝑥
+
𝜕2𝑦

𝜕𝑥2
]  

And applying the inverse Sumudu transform for the above equation 

     𝑦(𝑥, 𝑡) = 𝑥 + 𝑆−1 [𝑢𝛼𝑆 [
𝜕𝑦

𝜕𝑥
+
𝜕2𝑦

𝜕𝑥2
]]                                                                                  (8) 

       That assumes a series solution of the function 𝑦(𝑥, 𝑡) and is given by: 

     𝑦(𝑥, 𝑡) = ∑𝑦𝑛(𝑥, 𝑡)

∞

𝑛=0

                                                                                                            (9) 

Using Eqs. (9) and (8), we get: 

 
Then, we get: 

𝑦0(𝑥, 𝑡) = 𝑥 

𝑦𝑛+1(𝑥, 𝑡) = 𝑆
−1[𝑢𝛼𝑆[𝑦𝑛𝑥 + 𝑦𝑛𝑥𝑥]] 

For 𝑛 = 0 

𝑦1(𝑥, 𝑡) = 𝑆
−1[𝑢𝛼𝑆[1]] =

𝑡𝛼

Γ(α + 1)
 

For 𝑛 = 1 

𝑦2(𝑥, 𝑡) = 𝑆
−1[𝑢𝛼𝑆[𝑦1𝑥 + 𝑦1𝑥𝑥]] = 0 

𝑦3 = 𝑦4 = 0 

Hence, 

𝑦(𝑥, 𝑡) = 𝑥 + 𝑆−1 [𝑢𝛼𝑆 [
𝜕

𝜕𝑥
(∑𝑦𝑛(𝑥, 𝑡)

∞

𝑛=0

)+
𝜕2

𝜕𝑥2
(∑𝑦𝑛(𝑥, 𝑡)

∞

𝑛=0

)]] 
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𝑦(𝑥, 𝑡) = ∑𝑦𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑦0 + 𝑦1 + 𝑦2 +⋯ 

= 𝑥 +
𝑡𝛼

Γ(α + 1)
 

When 𝛼 = 1, 

             𝑦(𝑥, 𝑡) = 𝑥 + 𝑡 

𝑦0(𝑥, 𝑡) = 𝑥 

                𝑦1(𝑥, 𝑡) =
𝑡𝛼

Γ(α+1)
              and               𝑦2(𝑥, 𝑡) = 𝑦3(𝑥, 𝑡) = 0 

 

4. Results and Discussion: 

 The following  Tables and Figures present the Absolute error between the same solution 

and approximate solutions for Example (3.1) at various values of t = 0,0.1. Here, we use several 

terms to approximate the exact solution, and the proposed method, FSTADM, has a high 

convergence order and higher accuracy we get. Similarly, Figure4.1–Figure4.6 show the 3D 

exact and obtained results are plotted at 𝛼 = 0.75, 0.9 and 𝛼 = 1. All the exact and approximate 

results on the Graphs have shown are much closed and explain the reliability of the present 

technique.  

 

Table 1: The Data for y-Scales at x= 1 and 𝛼=0.9. 

T y0 yexact y1 Abs0 Abs1 

0 1 1 0 0 1 

0.1 1 1.1 0.130897 0.1 0.969103 

0.2 1 1.2 0.244263 0.2 0.955737 

0.3 1 1.3 0.351836 0.3 0.948164 

0.4 1 1.4 0.455811 0.4 0.944189 

0.5 1 1.5 0.55719 0.5 0.94281 

0.6 1 1.6 0.656548 0.6 0.943452 

0.7 1 1.7 0.754256 0.7 0.945744 

0.8 1 1.8 0.850573 0.8 0.949427 

0.9 1 1.9 0.94569 0.9 0.95431 

1 1 2 1.039754 1 0.960246 
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Table 2: The Data for y-Scales at x= 1 and 𝛼=1. 

t y0 yexact y1 Abs0 Abs1 

0 1 1 0 0 1 

0.1 1 1.1 0.1 0.1 1 

0.2 1 1.2 0.2 0.2 1 

0.3 1 1.3 0.3 0.3 1 

0.4 1 1.4 0.4 0.4 1 

0.5 1 1.5 0.5 0.5 1 

0.6 1 1.6 0.6 0.6 1 

0.7 1 1.7 0.7 0.7 1 

0.8 1 1.8 0.8 0.8 1 

0.9 1 1.9 0.9 0.9 1 

1 1 2 1 1 1 

 

 

 

 

 

 

 

 

Figure 1. Show Absolute error of the true solution y0,y1 at 𝛼=0.9. 

 

 

 

 

 

 

 

 

Figure 2. Show Absolute error of the true solution y0,y1 at 𝛼=1. 
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Figure 3. Show Absolute error of the true solution y0,y1 at 𝛼=0.75. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 . Figure 1.6: Show the 3D absolute solution plots at  𝛼=0.75, 0.9 and  𝛼=1. 
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5. Conclusion 

Fractional order non-linear differential equations with initial and boundary conditions 

are investigated analytically using STADM. Fractional derivatives are defined in the Caputo 

sense. The solution graphs are shown to demonstrate the current technique's best applicability. 

The graphs show that the proposed approach is a powerful tool for solving integer and 

fractional order problems. Some examples of the analytical solution are evaluated to confirm 

the accuracy and efficiency of the available approach. 
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