

Ibn Al-Haitham Journal for Pure and Applied Sciences

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Some Properties for the Restriction of \mathcal{P}^* -field of Sets

Hind F. Abbas Department of Mathematics / College of Computer Science and Mathematics / Tikrit University/ Iraq. hind.f.abbas35386@st.tu.edu.iq Hassan H. Ebrahim Department of Mathematics / College of Computer Science and Mathematics / Tikrit University/ Iraq hassan1962pl@tu.edu.iq

Ali Al-Fayadh Department of Mathematics and Computer Applications / College of Science/Al – Nahrain University/ Iraq aalfayadh@yahoo.com

Article history: Received 20 February 2022, Accepted 17 May, 2022, Published in July 2022.

Doi: 10.30526/35.3.2814

Abstract

The restriction concept is a basic feature in the field of measure theory and has many important properties. This article introduces the notion of restriction of a non-empty class of subset of the power set on a nonempty subset of a universal set. Characterization and examples of the proposed concept are given, and several properties of restriction are investigated. Furthermore, the relation between the P*–field and the restriction of the P*–field is studied, explaining that the restriction of the P*–field is a P*–field too. In addition, it has been shown that the restriction of the P*–field is not necessarily contained in the P*–field, and the converse is true. We provide a necessary condition for the P*–field to obtain that the restriction of the P*–field. Finally, this article aims to study the restriction notion and give some propositions, lemmas, and theorems related to the proposed concept

Keywords: σ -field, σ - ring, field, smallest σ -field and restriction.

1. Introduction

In the real analysis and probability, the σ -field concept is the class \mathcal{M} for a subset of a universal set \mathcal{U} such that $\mathcal{U}\in\mathcal{M}$ and it is closed under the complement, countable union [1] and [2]. The main reason for σ -field is the idea of measure, which is substantial in the real analysis as the basis of Lebesgue integrals, where it exponent as a family of events which may

IHJPAS. 35(3)2022

be assigned probability [3] and [4]. In the probability theory, a σ -field is essential in the conditional expected. Also, in statistics, sub σ -field is necessary for an official mathematical definition for sufficient statistic, where a statistic be a map or a random variable. A σ - ring idea was studied by [5] as a class \mathcal{M} such that $B_1 \setminus B_2 \in \mathcal{M}$ and $\bigcup_{n=1}^{\infty} B_n \in \mathcal{M}$ whenever $B_1, B_2, \dots \in \mathcal{M}$. Many authors were interested in studying σ -field and σ - ring; for example, see [6], [7], and [8]. In this work, we denote a universal set by \mathcal{U} .

Preliminaries

In the following, we mention some basic definitions and notations in measure space that will be used in this paper.

Definition 2.1 [9].

Suppose \mathcal{M} is a class of subsets of \mathcal{U} . Then, \mathcal{M} is the \mathcal{P}^* -field of \mathcal{U} if:

- 1- $\Phi \in \mathcal{M}$.
- 2- N, M $\in \mathcal{M}$; then, N \cap M $\in \mathcal{M}$.
- 3- $M_2, \dots \in \mathcal{M}$; then, $\bigcup_{i=1}^{\infty} M_i \in \mathcal{M}$.

Example 2.2 [9].

Let $\mathcal{U} = \{1, 2, 3, 4\}$. Consider $\mathcal{M} = \{\Phi, \{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$.

Then \mathcal{M} is a \mathcal{P}^* -field of \mathcal{U} .

Definition 2.3 [5].

The family of all subsets of \mathcal{U} is called a power set and denoted by $P(\mathcal{U})$, In symbols: $P(\mathcal{U}) = \{ B : B \text{ is a subset of } \mathcal{U} \}.$

Proposition 2.4 [9].

If $\{\mathcal{M}_i\}_{i\in I}$ is a family of \mathcal{P}^* -field of \mathcal{U} , then so is $\bigcap_{i\in I} \mathcal{M}_i$.

Definition 2.5 [9].

Let $\mathcal{I} \subseteq P(\mathcal{U})$. Then, $\mathcal{P}^*(\mathcal{I}) = \bigcap \{\mathcal{M}_i : \mathcal{M}_i \text{ is a } \mathcal{P}^* \text{- field of } \mathcal{U} \text{ and } \mathcal{M}_i \supseteq \mathcal{I}, \forall i \in I \}$ is called the $\mathcal{P}^* \text{- field generated by } \mathcal{I}$.

Proposition 2.6 [9].

If $\mathcal{I} \subseteq P(\mathcal{U})$, then $\mathcal{P}^*(\mathcal{I})$ is the smallest \mathcal{P}^* -field of \mathcal{U} that contains \mathcal{I} .

Proposition 2.7 [5].

If \mathcal{M} is σ -field, then \mathcal{M} is a σ -ring.

Proposition 2.8 [9].

Every σ -field is \mathcal{P}^* -field.

Proposition 2.9 [9].

Every σ -ring is \mathcal{P}^* -field.

2. The Main Results

In this section, the basic definitions and facts related to this work are recalled, starting with the following definition:

Definition 3.1

Suppose \mathcal{M} is a \mathcal{P}^* -field of \mathcal{U} and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$, then a restriction of \mathcal{M} over \mathcal{B} is defined as:

 $\mathcal{M}|_{\mathcal{B}} = \{ N: N = M \cap \mathcal{B}, \text{ for some } M \in \mathcal{M} \}.$

Proposition 3.2

Suppose \mathcal{M} is \mathcal{P}^* -field of \mathcal{U} and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$, then $\mathcal{M}|_{\mathcal{B}}$ is \mathcal{P}^* -field on \mathcal{B} .

Proof.

Since $\Phi \in \mathcal{M}$ and $\Phi = \Phi \cap \mathcal{B}$, then $\Phi \in \mathcal{M}|_{\mathcal{B}}$.

Let $N_1, N_2 \in \mathcal{M}|_{\mathcal{B}}$, then there is $M_1, M_2 \in \mathcal{M}$ such that $N_i = M_i \cap \mathcal{B}$ where i = 1, 2 which implies that $N_1 \cap N_2 = (M_1 \cap \mathcal{B}) \cap (M_2 \cap \mathcal{B}) = (M_1 \cap M_2) \cap \mathcal{B}$.

Since \mathcal{M} is a \mathcal{P}^* -field of \mathcal{U} , then, $M_1 \cap M_2 \in \mathcal{M}$. Thus $N_1 \cap N_2 \in \mathcal{M}|_{\mathcal{B}}$

Let $N_1, N_2, ... \in \mathcal{M}|_{\mathcal{B}}$, then there is $M_1, M_2, ... \in \mathcal{M}$ such that $N_i = M_i \cap \mathcal{B}$ where i = 1, 2... which implies that $\bigcup_{i=1}^{\infty} N_i = \bigcup_{i=1}^{\infty} (M_i \cap \mathcal{B}) = (\bigcup_{i=1}^{\infty} M_i) \cap \mathcal{B}$.

Since \mathcal{M} is a \mathcal{P}^* -field of a set \mathcal{U} , then $\bigcup_{i=1}^{\infty} M_i \in \mathcal{M}$ and hence $\bigcup_{i=1}^{\infty} N_i \in \mathcal{M}|_{\mathcal{B}}$.

Thus, $\mathcal{M}|_{\mathcal{B}}$ is a \mathcal{P}^* -field on \mathcal{B} .

Proposition 3.3

If \mathcal{M} is \mathcal{P}^* -field of \mathcal{U} and $C \subseteq \mathcal{B} \subseteq \mathcal{U}$ such that $C \in \mathcal{M}$, then $C \in \mathcal{M}|_{\mathcal{B}}$.

Proof.

Clearly.

The following examples explain that if \mathcal{M} is a \mathcal{P}^* -field of a set \mathcal{U} , then it is not necessarily that :

1- $\mathcal{M}|_{\mathcal{B}} \subseteq \mathcal{M}$.

2- $\mathcal{M} \subseteq \mathcal{M}|_{\mathcal{B}}$

Example 3.4

Let $\mathcal{U} = \{1,2,3,4\}$ and $\mathcal{M} = \{\Phi,\{1,3\},\{1,2,3\},\{1,3,4\},\mathcal{U}\}$. Then, \mathcal{M} is a \mathcal{P}^* -field of \mathcal{U} . If $\mathcal{B} = \{2,3,4\}$, then $\mathcal{M}|_{\mathcal{B}} = \{\Phi,\{3\},\{2,3\},\{3,4\},\mathcal{B}\}$. It is clear that $\mathcal{M}|_{\mathcal{B}} \notin \mathcal{M}$, since $\{3\} \in \mathcal{M}|_{\mathcal{B}}$ but $\{3\} \notin \mathcal{M}$.

Example 3.5

Let $\mathcal{U} = \{1,2,3,4\}$ and $\mathcal{M} = \{\Phi,\{1,2\},\{1,2,3\},\{1,2,4\},\mathcal{U}\}$. Then, \mathcal{M} is a \mathcal{P}^* -field of \mathcal{U} . If $\mathcal{B} = \{2,3,4\}$, then $\mathcal{M}|_{\mathcal{B}} = \{\Phi,\{2\},\{2,3\},\{2,4\},\mathcal{B}\}$. It is clear that $\mathcal{M} \not\subseteq \mathcal{M}|_{\mathcal{B}}$, since $\{1,2\} \in \mathcal{M}$ but $\{1,2\} \notin \mathcal{M}|_{\mathcal{B}}$.

Proposition 3.6

If \mathcal{M} is \mathcal{P}^* -field on \mathcal{U} and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$ such that $\mathcal{B} \in \mathcal{M}$. Then $\mathcal{M}|_{\mathcal{B}} = \{ C \subseteq \mathcal{B} : C \in \mathcal{M} \}.$

Proof.

Assume that $N \in \mathcal{M}|_{\mathcal{B}}$, then $N=M \cap \mathcal{B}$, for some $M \in \mathcal{M}$ and thus $N \in \mathcal{M}$. Hence, $N \in \{C \subseteq \mathcal{B} : C \in \mathcal{M}\}$. Therefore, $\mathcal{M}|_{\mathcal{B}} \subseteq \{C \subseteq \mathcal{B} : C \in \mathcal{M}\}$. Let $D \in \{C \subseteq \mathcal{B} : C \in \mathcal{M}\}$. Then $D \subseteq \mathcal{B}$ and $D \in \mathcal{M}$, hence $D = D \cap \mathcal{B}$, but $D \in \mathcal{M}$, then $D \in \mathcal{M}|_{\mathcal{B}}$. So, we get $\{C \subseteq \mathcal{B} : C \in \mathcal{M}\} \subseteq \mathcal{C} \in \mathcal{M}\} \subseteq \mathcal{M}|_{\mathcal{B}}$. Consequentially, $\mathcal{M}|_{\mathcal{B}} = \{C \subseteq \mathcal{B} : C \in \mathcal{M}\}$.

Corollary 3.7

If \mathcal{M} is \mathcal{P}^* -field on \mathcal{U} and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$ such that $\mathcal{B} \in \mathcal{M}$. Then, $\mathcal{M}|_{\mathcal{B}} \subseteq \mathcal{M}$.

Proof.

The proof follows **Proposition 3.6**.

Definition 3.8

If \mathcal{U} is a universal set and $\mathcal{I} \subseteq P(\mathcal{U})$ and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$, then a restriction of \mathcal{I} on \mathcal{B} is defined as:

 $\mathcal{I}|_{\mathcal{B}} = \{ N: N = M \cap \mathcal{B}, \text{ for some } M \in \mathcal{I} \}.$

Proposition 3.9

If $\mathcal{I} \subseteq P(\mathcal{U})$ and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$. Assume \mathcal{M} is a \mathcal{P}^* -field of \mathcal{U} that contains \mathcal{I} and $\mathcal{B} \in \mathcal{M}$, then $\mathcal{P}^*(\mathcal{I})|_{\mathcal{B}}$ is a \mathcal{P}^* -field of \mathcal{B} .

Proof.

The proof is done by proposition 2.6 and 3.2

Theorem 3.10

Assume $\mathcal{I} \subseteq P(\mathcal{U})$ and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$, then $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$ is the smallest \mathcal{P}^* -field on \mathcal{B} that contain $\mathcal{I}|_{\mathcal{B}}$, where

 $\mathcal{P}^*\left(\mathcal{I}|_{\mathcal{B}}\right) = \bigcap \{\mathcal{M}_i|_{\mathcal{B}} \colon \mathcal{M}_i|_{\mathcal{B}} \text{ is a } \mathcal{P}^* - \text{ field of } \mathcal{B} \text{ and } \mathcal{M}_i|_{\mathcal{B}} \supseteq \mathcal{I}|_{\mathcal{B}}, \forall i \in I\}.$

Proof.

In the same way as in proposition 2.4, we can prove that $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$ is a \mathcal{P}^* -field on \mathcal{B} . To prove that $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}}) \supseteq \mathcal{I}|_{\mathcal{B}}$, assume that $\mathcal{M}_i|_{\mathcal{B}}$ is a \mathcal{P}^* -field on \mathcal{B} and $\mathcal{M}_i|_{\mathcal{B}} \supseteq \mathcal{I}|_{\mathcal{B}}$, $\forall i \in I$, then $\mathcal{I}|_{\mathcal{B}} \subseteq \bigcap_{i \in I} \mathcal{M}_i|_{\mathcal{B}}$; hence $\mathcal{I}|_{\mathcal{B}} \subseteq \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$. Now, let $\mathcal{M}^*|_{\mathcal{B}}$ be a \mathcal{P}^* -field on \mathcal{B} such that $\mathcal{M}^*|_{\mathcal{B}} \supseteq \mathcal{I}|_{\mathcal{B}}$. Then, $\mathcal{M}^*|_{\mathcal{B}} \supseteq \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$.

Therefore, $\mathcal{P}(\mathcal{I}|_{\mathcal{B}})$ is the smallest \mathcal{P}^* -field on \mathcal{B} containing $\mathcal{I}|_{\mathcal{B}}$.

Theorem 3.11

If $\mathcal{I} \subseteq P(\mathcal{U})$ and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$, define a class \mathcal{M} by: $\mathcal{M} = \{ M \subseteq \mathcal{U} : M \cap \mathcal{B} \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}}) \}$. Then \mathcal{M} is a \mathcal{P}^* -field on a set \mathcal{U} .

Proof.

By Theorem 3.10, we have $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$ as a \mathcal{P}^* -field on \mathcal{B} , so $\Phi \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$. Since $\Phi = \Phi \cap \mathcal{B}$, then we get $\Phi \in \mathcal{M}$. Assume that $M_1, M_2 \in \mathcal{M}$. Then $(M_i \cap \mathcal{B}) \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$, for each i=1,2. Now, $(M_1 \cap M_2) \cap \mathcal{B} = (M_1 \cap \mathcal{B}) \cap (M_2 \cap \mathcal{B})$. Since $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$ is a \mathcal{P}^* -field on \mathcal{B} , then $(M_1 \cap \mathcal{B}) \cap (M_2 \cap \mathcal{B}) \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$ and hence $(M_1 \cap M_2) \cap \mathcal{B} \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$, thus $M_1 \cap M_2 \in \mathcal{M}$. Let $M_1, M_2, ... \in \mathcal{M}$. Then $(M_i \cap \mathcal{B}) \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$, for i=1,2,... Since $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$ is \mathcal{P}^* -field on \mathcal{B} , then $\bigcup_{i=1}^{\infty} (M_i \cap \mathcal{B}) \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$. Now, $(\bigcup_{i=1}^{\infty} M_i) \cap \mathcal{B} = \bigcup_{i=1}^{\infty} (M_i \cap \mathcal{B}) \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$, thus $\bigcup_{i=1}^{\infty} M_i \in \mathcal{M}$. Therefore, \mathcal{M} is \mathcal{P}^* -field on a universal set \mathcal{U} .

Theorem 3.12

If \mathcal{U} is a universal set and $\mathcal{I} \subseteq P(\mathcal{U})$ such that $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$, then $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}}) = \mathcal{P}^*(\mathcal{I})|_{\mathcal{B}}$.

Proof.

By proposition 2.6, we have $\mathcal{P}^*(\mathcal{I})$ is \mathcal{P}^* -field on \mathcal{U} . So, we get $\mathcal{P}^*(\mathcal{I})|_{\mathcal{B}}$ is $a \mathcal{P}^*$ -field on \mathcal{B} by proposition 3.2. Assume that $N \epsilon \mathcal{I}|_{\mathcal{B}}$. Then $N = M \cap \mathcal{B}$ for some $M \epsilon \mathcal{I}$.

But $\mathcal{I} \subseteq \mathcal{P}^*(\mathcal{I})$, so we have $M \in \mathcal{P}^*(\mathcal{I})$ and thus $N \in \mathcal{P}^*(\mathcal{I})|_{\mathcal{B}}$.

Hence $\mathcal{I}|_{\mathcal{B}} \subseteq \mathcal{P}^*(\mathcal{I})|_{\mathcal{B}}$. Therefore, $\mathcal{P}^*(\mathcal{I})|_{\mathcal{B}}$ is a \mathcal{P}^* -field on \mathcal{B} that containing $\mathcal{I}|_{\mathcal{B}}$.

By Theorem 3.10, we have $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$ is the smallest \mathcal{P}^* -field on \mathcal{B} that containing $\mathcal{I}|_{\mathcal{B}}$, which implies that $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}}) \subseteq \mathcal{P}^*(\mathcal{I})|_{\mathcal{B}}$.

Now, if we define a class \mathcal{M} by

 $\mathcal{M} = \{ C \subseteq \mathcal{U} : C \cap \mathcal{B} \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}}) \}, \text{ then in Theorem 3.11, we have } \mathcal{M} \text{ as } a \mathcal{P}^* - \text{ field on } \mathcal{U}. \text{ Let } C \in \mathcal{I}, \text{ then } (C \cap \mathcal{B}) \in \mathcal{I}|_{\mathcal{B}}, \text{ but } \mathcal{I}|_{\mathcal{B}} \subseteq \mathcal{P}(\mathcal{I}|_{\mathcal{B}}) \text{ implies that } (C \cap \mathcal{B}) \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}}), \text{ hence } C \in \mathcal{M} \text{ and } \mathcal{I} \subseteq \mathcal{M}.$

Now, if we assume that $N \in \mathcal{P}^*(\mathcal{I})|_{\mathcal{B}}$, then $N = M \cap \mathcal{B}$, for some $M \in \mathcal{P}(\mathcal{I})$. But $\mathcal{P}^*(\mathcal{I}) \subseteq \mathcal{M}$, then $M \in \mathcal{M}$, hence $N \in \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$. Consequentially, $\mathcal{P}^*(\mathcal{I})|_{\mathcal{B}} \subseteq \mathcal{P}^*(\mathcal{I}|_{\mathcal{B}})$.

This completes the proof.

3. Conclusions

We tried to define the concept of measure relative to the \mathcal{P}^* -field \mathcal{M} of \mathcal{U} and also define the idea of the restriction of measure on $\mathcal{M}|_{\mathcal{B}}$ of a set \mathcal{B} . Also, we discuss many properties of these notions. In this article, the idea of \mathcal{P}^* -field is given to refer to the generalization of each σ - field and σ -ring. Furthermore, some properties of the purposed notion are proven as explained below:

- Let *M* be a *P*^{*}-field of a set *U* and let *B* be a nonempty subset of *U*. Then, *M*|_B is a *P*^{*}-field of a set *B*.
- 2. Assume that \mathcal{M} is a \mathcal{P}^* -field on \mathcal{U} and $A \subseteq \mathcal{B} \subseteq \mathcal{U}$. If $A \in \mathcal{M}$, then $A \in \mathcal{M}|_{\mathcal{B}}$.
- 3. If \mathcal{M} is a \mathcal{P}^* -field and \mathcal{B} be a nonempty subset of \mathcal{U} such that $\mathcal{B} \in \mathcal{M}$. Then $\mathcal{M}|_{\mathcal{B}} = \{A \subseteq \mathcal{B}: A \in \mathcal{M}\}.$
- 4. Suppose that \mathcal{M} is a \mathcal{P}^* -field and $\mathcal{B} \subseteq \mathcal{U}$ such that $\mathcal{B} \in \mathcal{M}$. Then $\mathcal{M}|_{\mathcal{B}} \subseteq \mathcal{M}$.
- 5. If $\mathcal{I} \subseteq P(\mathcal{U})$ and $\Phi \neq \mathcal{B} \subseteq \mathcal{U}$ and $\mathcal{P}^*(\mathcal{I})|\mathcal{B}$ is a \mathcal{P}^* -field on \mathcal{B} . Then, $\mathcal{P}^*(\mathcal{I}|_{\mathcal{B}}) = \mathcal{P}^*(\mathcal{I})|_{\mathcal{B}}$.

References

- 1. Wang, Z.; Blir, G.J. Fuzzy Measure Theory. Springer Science and Business Media, LLC, New York, **1992**; ISBN 978-1-4419-3225-9.
- 2. Ahmed, I.S. ; Ebrahim, H.H. Generalizations of σ -field and new collections of sets noted by δ -field, AIP Conf Proc. **2019**, *2096*, *1*, 020019.
- 3. Robret, B. A. Real Analysis and Probability. Academic Press, Inc. New York. 1972.
- 4. Ahmed, I.S. ; Asaad, S.H. ; Ebrahim, H.H. Some new properties of an outer measure on a σ -field, *Journal of Interdisciplinary Mathematics*. **2021**,*24* (4), 947–952.
- 5. Wang, Z.; George, J. B. Generalized Measure Theory, 1st ed. Springer Science and Business Media, LLC, New York, 2009.
- 6. Endou, N.; NaBasho, B.; Shidama, Y. σ-ring and σ-algebra of Sets, Formaliz. Mathematics. **2015**, *23* (1), 51–57.
- 7. Ebrahim, H.H.; Ahmed, I.S. On a New kind of Collection of Subsets Noted by δ -field and Some Concepts Defined on δ -field, *Ibn Al Haitham Journal for Pure and Applied Science*. **2019**,*32* (2), 62-70.
- 8. Ebrahim, H.H.; Rusul, A.A. λ– Algebra with Some Of Their Properties, *Ibn Al Haitham Journal for Pure and Applied Science*. **2020**,*33* (2) ,72-80.
- 9. Abbas, H.F. ; Ebrahim, H.H. ; Al-Fayadh, A. \mathcal{P}^* -Field of sets and Some of its Properties, Accepted in *Computers and Mathematics with Applications*, **2022**.