

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

En la factura de la comparada de la comparada

Fuzzy Soc-Semi-Prime Sub-Modules

Saad S.Merie <u>SaadSaleem@uokirkuk.edu.iq</u> Depatment of Mthmatics, College of Education of Pure Science, Ibn Al- Haitham, University of Baghdad, Baghdad – Iraq. Hatam Yahya Khalf <u>dr.hatamyahya@yahoo.com</u> Depatment of Mthmatics, College of Education of Pure Science, Ibn Al- Haitham, University of Baghdad, Baghdad – Iraq.

Article history: Received 1, November, 2021, Accepted, 16, December, 2021, Published in January 2022.

Doi: 10.30526/35.1.2804

Abstract

In this paper, we study a new concept of fuzzy sub-module, called fuzzy socle semi-prime sub-module that is a generalization the concept of semi-prime fuzzy sub-module and fuzzy of approximately semi-prime sub-module in the ordinary sense. This leads us to introduce level property which studies the relation between the ordinary and fuzzy sense of approximately semi-prime sub-module. Also, some of its characteristics and notions such as the intersection, image and external direct sum of fuzzy socle semi-prime sub-modules are introduced. Furthermore, the relation between the fuzzy socle semi-prime sub-module and other types of fuzzy sub-module presented.

Keyword: \mathcal{F} -module, \mathcal{F} -sub-module, \mathcal{F} -prime sub-module, Socle of \mathcal{F} -module.

1.Introduction

The concept of fuzzy sets was introduced by Zadeh in1965[1]. Many authors indeed presented fuzzy subrings and fuzzy ideals. The concept of fuzzy module was introduced by Negoita and Relescu in 1975 [2]. Since then several authors have studied fuzzy modules. The concept of semi-prime fuzzy sub-module was introduced by Rabi 2004[3]. The concept of approximately semi-prime sub-module was introduced by Ali 2019[4]. The socle of M is a summation of simple sub-modules of an \mathcal{R} -module M and denoted by Soc(M). But, the fuzzy socle of \mathcal{F} -module X an \mathcal{R} -module M is a summation of simple \mathcal{F} -sub-modules of X and denoted by F - Soc(X).

Preliminaries

" There are various definitions and characteristics in this section of \mathcal{F} -sets , \mathcal{F} -modules , and prime \mathcal{F} -sub-modules.

Definition 1.1 [1]

Let D be a non- empty set and I is closed interval [0, 1] of real numbers. An \mathcal{F} -set B in D (an \mathcal{F} -subset of D) is a function from D into I.

Definition 1.2 [1]

AN \mathcal{F} -set B of a set D is said to be \mathcal{F} -constant if $B(x) = t, \forall x \in D t \in [0, 1]$

Definition 1.3 [1] Let $x_t: D \to [0, 1]$ be an \mathcal{F} -set in D, where $x \in D$, $t \in [0, 1]$ defined by:

 $x_t(y) = \begin{cases} t & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$

for all $y \in D$. x_t is said to be an \mathcal{F} -singleton or \mathcal{F} -point in D.

Definition 1.4 [5]

Let B be an \mathcal{F} -set in D, for all $t \in [0, 1]$, the set $B_t = \{x \in D; B(x) \ge t\}$ is said to be a level subset of B.

Remark 1.5 [6]

Let A and B be two \mathcal{F} -sets in S, then:

1- A = B if and only if A(x) = B(x) for all $x \in S$.

2- $A \subseteq B$ if and only if $A(x) \leq B(x)$ for all $x \in S$.

3- A = B if and only if $A_t = B_t$ for all $t \in [0,1]$.

If A < B and there exists $x \in S$ such that A(x) < B(x), then A is a proper \mathcal{F} -subset of B and written as A < B.

By part (2), we can deduce that $x_t \subseteq A$ if and only if $A(x) \ge t$.

Definition 1.6 [6]

If M is an \mathcal{R} -module. An \mathcal{F} -set X of M is called \mathcal{F} -module of an \mathcal{R} -module M if :

1-
$$X(x-y) \ge \min\{X(x), X(y)\}$$
 for all $x, y \in M\}$.

2- $X(rx) \ge X(x)$ for all $x \in M$ and $r \in \mathcal{R}$.

3-
$$X(0) = 1$$
.

Proposition 1.7 [7]

Let *C* be an \mathcal{F} -set of an \mathcal{R} -module M. Then the level subset C_t of M, $\forall t \in [0, 1]$ is a submodule of M if and only if C is an \mathcal{F} -sub-module of \mathcal{F} -module of an \mathcal{R} -module M.

Definition 1.8 [8]

Let X and A be two \mathcal{F} -modules of \mathcal{R} -module M. A is said to be an \mathcal{F} -sub-module of X if A $\subseteq X$.

Proposition 1.9 [5]

Let A be an \mathcal{F} -set of an \mathcal{R} -module M. Then the level subset A_t , $t \in [0, 1]$ is a sub-module of

M if A is an \mathcal{F} -sub-module of X where X is an \mathcal{F} -module of an \mathcal{R} -module M.

Now, we go over various \mathcal{F} -sub-module attributes that will be useful in the next section. Lemma 1.10 [6]

If r_t be an \mathcal{F} -singleton of \mathcal{R} and A be an \mathcal{F} -module of an \mathcal{R} -module M.Then for any $w \in M$

$$(r_t A)(w) = \begin{cases} \sup\{\inf(t, A(x))\}: & \text{if } w = rx \end{cases} & \text{for some } x \in M \\ 0 & \text{otherwise} \end{cases}$$

Where $r_t: \mathcal{R} \to [0, 1]$, defined by

$$r_t(z) = \begin{cases} t & \text{if } r = z \\ 0 & \text{if } r \neq z \end{cases}$$

For all $z \in \mathcal{R}$

Definition 1.11 [6]

Let A and *B* be two \mathcal{F} -sub-modules of an \mathcal{F} -module X of \mathcal{R} -module M. The residual quotient of A and *B* denoted by (A : B) is the \mathcal{F} -subset of \mathcal{R} defined by: $(A : B)(r) = \sup\{t \in [0, 1] : r_t B \subseteq A\}$, for all $r \in \mathcal{R}$. That is $(A : B) = \{r_t : r_t B \subseteq A; r_t \text{ is an } \mathcal{F} - \text{ singleton of } \mathcal{R}\}$. If $B = \langle x_k \rangle$, then $(A : \langle x_k \rangle) = \{r_t : r_t x_k \subseteq A; r_t \text{ is an } \mathcal{F} - \text{ singleton of } \mathcal{R}\}$.

Lemma 1.12 [9]

Let A be an \mathcal{F} -sub-module of \mathcal{F} -module X, $(A_t : X_t) \ge (A:X)_t$, For all $t \in [0, 1]$. Also, we can prove that by Lemma 2.3.3.[6].

It follows that if $X = A \oplus B$, where $A, B \leq X$ then $X_t = (A \oplus B)_t = A_t \oplus B_t$.

Definition 1.13 [10]

Let f be a mapping from a set M into a set N and let A be \mathcal{F} -set in M. The image of A is denoted by f(A), where f(A) is defined by:

$$f(A)(y) = \begin{cases} \sup\{A(z): z \in f^{-1}(y) \neq \emptyset\} & for \ all \ y \in \mathbb{N} \\ 0 & otherwise \end{cases}$$

Note that, if f is a bijective mapping, then $f(A)(y) = A(f^{-1}(y))$

Proposition 1.14 [11]

Let f be a mapping from a set M into a set N. Assume that X and Y are \mathcal{F} -modules of M and N respectively, let A be an \mathcal{F} -sub-module of X, then f(A) is an \mathcal{F} -sub-module of Y.

Definition 1.15 [12]

An \mathcal{F} -subset K of a ring \mathcal{R} is called \mathcal{F} -ideal of \mathcal{R} , if $\forall x, y \in \mathcal{R}$: 1- $K(x - y) \ge \min\{K(x), K(y)\}$. 2- $K(xy) \ge \max\{K(x), K(y)\}$.

Definition 1.16 [13]

Let X be an \mathcal{F} -module of an \mathcal{R} -module M, let A be an \mathcal{F} -sub-module of X and K be an \mathcal{F} -ideal of \mathcal{R} , the product KA of K and A is defined by:

$$KA(x) = \begin{cases} \sup\{inf\{K(r_1), \dots, K(r_n), A(x_1), \dots, A(x_n)\}\} & for some \ r_i \in \mathcal{R}, x_i \in M, n \in \mathbb{N} \\ 0 & otherwise \end{cases}$$

Note that K A is an \mathcal{F} -sub-module of X, and $(KA)_t = K_t A_t, \forall t \in [0, 1].$

Definition 1.17 [9]

Let X be an \mathcal{F} -module of an \mathcal{R} -module M, An \mathcal{F} -sub-module U of X is called completely prime if whenever $r_b m_t \subseteq U$, with $r_b \neq 0_1$ is an \mathcal{F} -singleton of \mathcal{R} and m_t is an \mathcal{F} -singleton of Ximplies that $m_t \subseteq U$ for each t, b $\in [0,1]$.

Definition 1.18 [6]

Let A and B be two \mathcal{F} -sub-modules of an R-module M. The addition A + B is defined by:

 $(A + B)(x) = \sup\{\min\{A(y), B(z)\} \text{ with } x = y + z, \text{ for all } x, y, z \in M \}.$ Furthermore, A + B is an \mathcal{F} -sub-module of an \mathcal{R} -module M.

Corollary 1.19 [8]

If X is an \mathcal{F} -module of an \mathcal{R} -module M and $x_t \subseteq X$, then for all \mathcal{F} -singleton r_k of \mathcal{R} , $r_k x_t = (rx)_{\lambda}$, where $\lambda = \min\{t, k\}$.

Proposition 1.20 [6]

Let A and B be two \mathcal{F} -sub-modules of an \mathcal{F} -module X of an \mathcal{R} -module M. Then the residual quotient of A and B (A : B) is an \mathcal{F} -ideal of \mathcal{R} .

Proposition 1.21 [14]

Let $f: M \to N$ be an \mathcal{R} -homomorphism, then $f(Soc(M)) \subseteq Soc(N)$.

Definition 1.22 [15]

Let X be an \mathcal{F} -module of an R-module M, X is called \mathcal{F} -simple if and only if X has no proper \mathcal{F} -sub-modules (in fact X is \mathcal{F} -simple if and only if X has only itself and 0_1).

Definition 1.23 [16]

A \mathcal{F} -module X is called semi-simple if X is a summation of simple \mathcal{F} -sub-modules of X. Moreover, X is called semi-simple if X = F - Soc(X).

Definition 1.24 [9]

Let X be an \mathcal{F} -module of an \mathcal{R} -module M, X is said to be faithful if $F - annX = 0_1$. Where $F - annX = \{r_t : r_t x_l = 0_1 ; \text{ for all } x_l \subseteq X \text{ and } r_t \text{ be an } \mathcal{F} - \text{singleton of } \mathcal{R} \}$.

Definition 1.25 [17]

Let X be an \mathcal{F} -module of an \mathcal{R} -module M, X is said to be cancellative if whenever $r_t x_l = r_t y_d$ for all $x_l, y_d \subseteq X$ and r_t be an \mathcal{F} – singleton of \mathcal{R} then $x_l = y_d$.

Definition 1.26 [3]

A proper \mathcal{F} -sub-module U of an \mathcal{F} -module X of an \mathcal{R} -module M is called semi-prime \mathcal{F} sub-module of X if whenever $r_b{}^n m_t \subseteq U$, where r_b is an \mathcal{F} -singleton of \mathcal{R} , m_t is an \mathcal{F} singleton of X and $n \in Z^+$ implies that $r_b m_t \subseteq U$ for each t, b $\in [0,1]$.

Definition 1.27 [4]

A proper sub-module E of an \mathcal{R} -module M is called pproximately semi prime (for a short app-semi-prime) sub-module of M if whenever $am \in E$, for $a \in \mathcal{R}$, $m \in M$ implies that $am \in E + Soc(M)$.

Definition 1.28 [9]

An \mathcal{F} -sub-module N of an \mathcal{F} -module X of an \mathcal{R} -module M is called weakly pure \mathcal{F} -sub-module of X if for any \mathcal{F} -singleton r_b of \mathcal{R} implies that $r_b N = r_b X \cap N$ with $b \in [0,1]$.

Lemma 1.29 [18]

Let X be an \mathcal{F} -module of an \mathcal{R} -module M and let A, B and C are \mathcal{F} -sub-modules of X such that $C \subseteq B$. Then $C + (B \cap A) = (C + A) \cap B$.

Proposition 1.30 [14]

If M be a faithful multiplication \mathcal{R} -module, then $Soc(\mathcal{R})M = Soc(M)$

Definition 1.31 [15]

Let X be an \mathcal{F} -module of an \mathcal{R} - module M. X is called multiplication \mathcal{F} -module if and only if for each \mathcal{F} sub-module A of X ,there exists an \mathcal{F} -ideal K of \mathcal{R} such that A = KX.

Proposition 1.32 [15]

AN \mathcal{F} -module X of an \mathcal{R} -module M is a multiplication if and only if every non-empty \mathcal{F} -sub-module A of X such that $A = (A_{R}X)X$.

Definition 1.33 [19]

A sub-module V of \mathcal{R} -module M is called essential if $H \cap V \neq 0$. For non-trivial sub-module H of M .

Definition 1.34 [9]

Let X be an \mathcal{F} -module of an \mathcal{R} -module M. An \mathcal{F} -sub-module A of X is called essential if $A \cap B \neq 0_1$, for nontrivial \mathcal{F} -sub-module B of X.

Finally, (shortly fuzzy set, fuzzy sub-module, fuzzy ideal, fuzzy module and fuzzy singleton are \mathcal{F} -set, \mathcal{F} -sub-module, \mathcal{F} -ideal, \mathcal{F} -module and \mathcal{F} -singleton)."

F-Soc-semi-prime sub-modules

In this section, we offer the concept of an \mathcal{F} -Soc-semi-prime sub-module as a generalization of ordinary concept(approximately semi-prime sub-module). Some characterizations of \mathcal{F} -Soc-prime sub-module are introduced.

Definition 2.1

Let r_b be an \mathcal{F} -singleton of \mathcal{R} and m_t is an \mathcal{F} -singleton of X, then a proper \mathcal{F} -sub-module U of an \mathcal{F} -module X of an \mathcal{R} -module M is called an \mathcal{F} -Socle semi-prime (for short \mathcal{F} -Socsemi-prime) sub-module(ideal) of X if whenever $r_b^n m_t \subseteq U$ with $n \in Z^+$ implies that $r_b m_t \subseteq U + \mathcal{F} - Soc(X)$ for each t, $b \in [0,1]$.

Furthermore, if r_b and s_h are \mathcal{F} -singletons of \mathcal{R} , then a proper \mathcal{F} -ideal L of \mathcal{R} is called an \mathcal{F} -Socle semi-prime (for short \mathcal{F} -Soc-semi-prime) ideal of \mathcal{R} if whenever $r_b^n s_h \subseteq L$ with $n \in Z^+$ implies that $r_b s_h \subseteq L + \mathcal{F} - Soc(\mathcal{R})$ for each $h, b \in [0,1]$.

We will adopt the definition of an \mathcal{F} -socle of X in this research as follows:

such that: $\mathcal{F} - Soc(X)$: $M \rightarrow [0,1]$

$$\mathcal{F} - Soc(X)(m) = \begin{cases} 1 & \text{ if } m \in Soc(M) \\ h & \text{ if } m \notin Soc(M) \end{cases} \text{ with } 0 < h < 1$$

Lemma 2.2

for any \mathcal{F} -module X for each $t \in (0,1]$ with $(\mathcal{F} - Soc(X))_t \neq (\mathcal{F} - Soc(X))_t = Soc(X_t)$ X_t

Proof:

such that: $\mathcal{F} - Soc(X): M \rightarrow [0,1]$

$$\mathcal{F} - Soc(X)(m) = \begin{cases} 1 & \text{if } m \in Soc(M) \\ h & \text{if } m \notin Soc(M) \end{cases} \text{ with } 0 < h < 1$$

Now, $(\mathcal{F} - Soc(X))_t = \{m \in M : (\mathcal{F} - Soc(X))(m) \ge t\}$

So, if t = 1 then $(\mathcal{F} - Soc(X))_t = Soc(M) = Soc(X_t)$

If $0 < t \le h$ then $(\mathcal{F} - Soc(X))_t = M = X_t$ that is a contradiction

If
$$h < t < 1$$
 then $(\mathcal{F} - Soc(X))_t = Soc(M) = Soc(X_t)$

Lemma 2.3

Let X be an \mathcal{F} -module of an \mathcal{R} -module M with X(m)=1 for each $m \in M$, if U is an \mathcal{F} -submodule of X is defined by $U: M \to [0,1]$ such that:

$$U(m) = \begin{cases} 1 & \text{if } m \in E \\ k & \text{if } m \notin E \end{cases} \quad \text{with } 0 < k < 1$$

Where E is a sub-module of M. Then U is an \mathcal{F} -Soc-semi-prime sub-module of X if and only if E is an app-semi-prime sub-module of M.

Proof:

First of all, we must define $U + \mathcal{F} - Soc(X)$.

$$(U + \mathcal{F} - Soc(X))(m) = \sup\{\min(U(y), \mathcal{F} - Soc(X)(z)), y + z = m\}$$

So, we have

$$(U + \mathcal{F} - Soc(X))(m) = \begin{cases} 1 & \text{if } m \in E + Soc(M) \\ s & \text{if } m \notin E + Soc(M) \end{cases} \text{ with } s = \max\{k, h\}$$

Where $\mathcal{F} - Soc(X)$: $M \rightarrow [0,1]$ such that:

$$\mathcal{F} - Soc(X)(m) = \begin{cases} 1 & \text{if } m \in Soc(M) \\ h & \text{if } m \notin Soc(M) \end{cases} \text{ with } 0 < h < 1$$

Now,

Suppose E is an app-semi-prime sub-module of M, to prove that U is an \mathcal{F} -Soc-semi-prime sub-module of X. Let $r_b \subseteq \mathcal{R}$ and $m_t \subseteq X$ for each t, b $\in [0,1]$ such that $(r_b)^n m_t \subseteq U$, thus $(r^n)_b m_t \subseteq U$ that is either $r^n m \in E$ or $r^n m \notin E$.

1) If $r^n m \in E$, then $rm \in E + Soc(M)$. Hence $(U + \mathcal{F} - Soc(X))(rm) = 1$ this implies $r_b m_t = (rm)_t \subseteq (rm)_1 \subseteq U + \mathcal{F} - Soc(X)$.

2) If $r^n m \notin E$ then $U(r^n m) = k$ with $m \notin E$ thus U(m) = k. Since $(r_b)^n m_t \subseteq U$ then $(r^n m)_{\lambda} \subseteq U$ where $\lambda = \min\{b, t\}$, that is $U(r^n m) \ge \lambda$ thus $k \ge \lambda$. Now, if $\lambda = t$ this implies $m_t \subseteq m_k \subseteq U \subseteq U + \mathcal{F} - Soc(X)$. That is mean $r_b m_t \subseteq r_b m_k \subseteq U \subseteq U + \mathcal{F} - Soc(X)$ If $\lambda = b$, $U(h) \ge k$ for any $h \in M$, and:

$$(r_{b}^{n}X_{M})(h) = \begin{cases} b & if \ h = r^{n}a \\ 0 & otherwise \end{cases}$$
 for some $a \in M$

Then we get $(r_{h}^{n} X_{M})(h) \leq U(h)$, hence $r_{b}^{n} X_{M} \subseteq U \subseteq U + \mathcal{F} - Soc(X)$

So, each case implies that $r_b m_t \subseteq U + \mathcal{F} - Soc(X)$

Therefore U is an \mathcal{F} -Soc-semi-prime sub-module of X.

Conversely

Suppose U is an \mathcal{F} -Soc-semi-prime of X. Let $a^n x \in U_t$, with $a \in \mathcal{R}$, $n \in Z^+$ and $x \in X_t$ it follows that $(a^n x)_t \subseteq U$, that is $(a^n)_t x_t = (a_t)^n x_t \subseteq U$. But U is an \mathcal{F} -Soc-semi-prime of X, then we get $a_t x_t = (ax)_t \subseteq U + \mathcal{F} - Soc(X)$. Thus we get $(U + \mathcal{F} - Soc(X))(ax) \ge t$, hence, by (Lemma 1.12) and (Lemma 2.2), we have $ax \in (U + \mathcal{F} - Soc(X))_t = U_t + (\mathcal{F} - Soc(X))_t = U_t + Soc(X_t)$. That is mean U_t is an app-semi-prime sub-module of X_t .

Hence $U_1 = E$ is an app-semi-prime sub-module of M.

The following example shows that the definition of an \mathcal{F} -socle of X that we adopt in this research is necessary to prove one side of above lemma.

Example 2.4

Let $M = Z_{12}$ as a Z-module and $X: M \to [0,1]$, $U: M \to [0,1]$ defined by:

$$X(m) = 1 \qquad if \ m \in Z_{12}$$
$$U(m) = \begin{cases} 1 & if \ m \in \langle \overline{0} \rangle \\ 1/4 & otherwise \end{cases}$$

And an \mathcal{F} -socle of X is defined by $\mathcal{F} - Soc(X): M \to [0,1]$ such that:

$$\mathcal{F} - Soc(X)(m) = \begin{cases} 1 & \text{if } x = \overline{0} \\ 2/3 & \text{if } m \in \langle \overline{2} \rangle - \{ \overline{0} \} \\ 1/3 & \text{otherwise} \end{cases}$$

Where $Soc(M) = \langle \overline{2} \rangle$. That's clear X is an \mathcal{F} -module and U be an \mathcal{F} -sub-module of X. We have U_t is an app-semi-prime sub-module of M for every t > 0. Now,

$$(U + \mathcal{F} - Soc(X))(m) = \begin{cases} 1 & \text{if } x = \overline{0} \\ 2/3 & \text{if } m \in \langle \overline{2} \rangle - \{ \overline{0} \} \\ 1/3 & \text{otherwise} \end{cases}$$

But, U is not an \mathcal{F} -Soc-semi-prime sub-module of X, since for an \mathcal{F} -singleton $\overline{3}_{\frac{3}{4}} \subseteq X$ and an \mathcal{F} -singleton $2_{\frac{3}{4}}$ of \mathcal{R} such that $(2^2)_{\frac{3}{4}}\overline{3}_{\frac{3}{4}} = \overline{0}_{\frac{3}{4}}$, where $\overline{0}_{\frac{3}{4}} \subseteq U$ since $U(\overline{0}) = 1 > \frac{3}{4}$. but $2_{\frac{3}{4}}\overline{3}_{\frac{3}{4}} = \overline{6}_{\frac{3}{4}} \notin U + \mathcal{F} - Soc(X)$ since $(U + \mathcal{F} - Soc(X))(\overline{6}) = \frac{2}{3} \ge \frac{3}{4}$.

Hence, U is not an \mathcal{F} -Soc-semi-prime of sub-module of X.

Proposition 2.5

Let U and V are \mathcal{F} -sub-modules of an \mathcal{F} -module X of an \mathcal{R} -module M with V is an \mathcal{F} - semiprime sub-module of X. Then $[U:_{\mathcal{R}} V]$ is an \mathcal{F} -Soc-semi-prime ideal of \mathcal{R} .

Proof:

Suppose that $r_b{}^n m_t \subseteq [U:_{\mathcal{R}} V]$, for $r_b \subseteq \mathcal{R}$, $m_t \subseteq X$, thus $r_b{}^n m_t V \subseteq U$. So we have $r_b{}^n(m_t V) \subseteq U$, but V is an \mathcal{F} -semi-prime sub-module of X. that is $r_b(m_t V) \subseteq U$, hence $r_b m_t V \subseteq U$ that is mean $r_b m_t \subseteq [U:_{\mathcal{R}} V] \subseteq [U:_{\mathcal{R}} V] + \mathcal{F} - Soc(\mathcal{R})$.

Proposition 2.6

Let U and V are \mathcal{F} -Soc-semi-prime sub-modules of an \mathcal{F} -module X of an \mathcal{R} -module M with $\mathcal{F} - Soc(X) \subseteq U$, Then $U \cap V$ is an \mathcal{F} -Soc-semi-prime sub-module of X.

Proof:

Let $r_b{}^n m_t \subseteq U \cap V$, for $r_b \subseteq \mathcal{R}$, $m_t \subseteq X$, that is $r_b{}^n m_t \subseteq U$ and $r_b{}^n m_t \subseteq V$. But U and V are \mathcal{F} -Soc-semi-prime sub-modules of X, this implies $r_b m_t \subseteq U + \mathcal{F} - Soc(X)$ and $r_b m_t \subseteq V + \mathcal{F} - Soc(X)$. That is mean $r_b m_t \subseteq (U + \mathcal{F} - Soc(X)) \cap (V + \mathcal{F} - Soc(X))$, by using modular law we get $r_b m_t \subseteq (U \cap V) + \mathcal{F} - Soc(X)$. Hence $U \cap V$ is an \mathcal{F} -Soc-semi-prime sub-module of X.

Remark 2.7

Every \mathcal{F} -semi-prime sub-module is an \mathcal{F} -Soc-semi-prime sub-module , but the converse is not true .

Proof:

Suppose U be an \mathcal{F} -semi-prime sub-module of an \mathcal{F} -module X of an \mathcal{R} -module M and $r_b{}^n m_t \subseteq U$, for $r_b \subseteq R$, $m_t \subseteq X$. Since U is an \mathcal{F} -semi-prime sub-module, then we get $r_b m_t \subseteq U \subseteq U + \mathcal{F} - Soc(X)$, thus $r_b m_t \subseteq U + \mathcal{F} - Soc(X)$. Therefore U is an \mathcal{F} -Soc-prime sub-module.

The following example show that the converse is not true

Example 2.8

Consider $M = Z_{12}$ as a Z-module and $X: M \to [0,1]$, $U: M \to [0,1]$ defined by:

$$X(m) = 1 \qquad if \ m \in Z_{12}$$

$$U(m) = \begin{cases} 1 & \text{if } m \in \langle \overline{0} \rangle \\ 1/5 & \text{if } m \notin \langle \overline{0} \rangle \end{cases}$$

And an \mathcal{F} -socle of X is defined by $\mathcal{F} - Soc(X): M \to [0,1]$ such that:

$$\mathcal{F} - Soc(X)(m) = \begin{cases} 1 & \text{if } m \in \langle \overline{2} \rangle \\ 1/3 & \text{if } m \notin \langle \overline{2} \rangle \end{cases}$$

Where $Soc(M) = \langle \overline{2} \rangle$. That's clear X is an \mathcal{F} -module and U be an \mathcal{F} -sub-module of X.

From ([4] Remark 2.3.2) $\langle \bar{0} \rangle$ is an app-semi-prime sub-module of M, so by (Lemma 2.3) we get U is an \mathcal{F} -Soc-semi-prime sub-module of X.

But, U is not an \mathcal{F} -semi-prime sub-module of X, since for an \mathcal{F} -singleton $3_{\frac{1}{3}} \subseteq X$ and an \mathcal{F} -singleton $2_{\frac{1}{3}}$ of \mathcal{R} such that $(2_{\frac{1}{3}})^2 3_{\frac{1}{3}} = 0_{\frac{1}{3}}$ where $0_{\frac{1}{3}} \subseteq U$ since $U(0) = 1 > \frac{1}{3}$. but $2_{\frac{1}{3}} 3_{\frac{1}{3}} = 6_{\frac{1}{3}} \notin U$ since $U(6) = \frac{1}{5} \neq \frac{1}{3}$.

Hence, U is not an \mathcal{F} -semi-prime sub-module of X.

Remark 2.9

Every completely \mathcal{F} -sub-module of an \mathcal{F} -module X of an \mathcal{R} -module M is an \mathcal{F} -Soc-semiprime sub-module of X, but the converse is not true .

Proof:

We take U as a completely \mathcal{F} -sub-module of X with $r_b{}^n m_t \subseteq U$, for $r_b \subseteq R$, $m_t \subseteq X$. Now, if $r_b = 0_1$ then $r_b m_t = 0_t \subseteq 0_1 \subseteq U$. we get U is an \mathcal{F} -Soc- semi-prime sub-module of X. If $r_b \neq 0_1$, thus $(r_b)^{n-1} (r_b m_t) \subseteq U$, we get $(r^{n-1})_b (rm)_d \subseteq U$ where $d = \min\{b, t\}$. Now, since U is a completely \mathcal{F} -sub-module of X, then we have $(rm)_d \subseteq U \subseteq U + \mathcal{F} - Soc(X)$, thus $r_b m_t \subseteq U + \mathcal{F} - Soc(X)$. Therefore U is an \mathcal{F} -Soc-semi-prime submodule.

The following example show that the converse is not true

Example 2.10

Consider M = Z as a Z-module and $X: M \to [0,1]$, $U: M \to [0,1]$ defined by:

$$X(m) = 1 \qquad if \ m \in Z$$
$$U(m) = \begin{cases} 1 & if \ m \in 2Z\\ 1/4 & if \ m \notin 2Z \end{cases}$$

And an \mathcal{F} -socle of X is defined by $\mathcal{F} - Soc(X): M \to [0,1]$ such that:

$$\mathcal{F} - Soc(X)(m) = \begin{cases} 1 & \text{if } m \in \{0\} \\ 1/3 & \text{if } m \notin \{0\} \end{cases}$$
$$\left(U + \mathcal{F} - Soc(X)\right)(m) = \begin{cases} 1 & \text{if } m \in 2Z \\ 1/3 & \text{if } m \notin 2Z \end{cases}$$

Where $Soc(M) = \{0\}$. That's clear X is an \mathcal{F} -module and U be an \mathcal{F} -sub-module of X.

is an app-semi-prime sub-module of M, so by (Lemma 2.3) we get U is an \mathcal{F} -Soc-semi-2Z prime sub-module of X.

But U is not completely \mathcal{F} -sub-module of X, since for an \mathcal{F} -singleton $5_{\frac{1}{3}} \subseteq X$ and an \mathcal{F} singleton $2_{\frac{1}{2}}$ of \mathcal{R} such that $2_{\frac{1}{2}} 5_{\frac{1}{3}} = 10_{\frac{1}{3}}$ where $10_{\frac{1}{3}} \subseteq U$ since $U(10) = 1 > \frac{1}{3}$. but $5_{\frac{1}{3}} \not\subseteq U$ since $U(5) = \frac{1}{4} \neq \frac{1}{3}$.

Hence, U is not completely \mathcal{F} -sub-module of X.

Proposition 2.11

Let U be an \mathcal{F} -Soc-semi-prime sub-module of an \mathcal{F} -module X of an \mathcal{R} -module M, Then U is an \mathcal{F} -Soc-semi-prime sub-module of X if and only if $\forall \mathcal{F}$ -sub-module S of X and an \mathcal{F} -ideal J of \mathcal{R} with $(J)^n S \subseteq U$ for $n \in Z^+$ implies that $JS \subseteq U + \mathcal{F} - Soc(X)$

Proof:

(⇒) Assume that $(J)^n S \subseteq U$, for S is an \mathcal{F} -sub-module of X and J is an \mathcal{F} -ideal of \mathcal{R} , let $x_t \subseteq JS$ with $t \in [0,1]$ then $x_t = (c_1)_{h1}(y_1)_{t1} + (c_2)_{h2}(y_2)_{t2} + \dots + (c_n)_{hn}(y_n)_{tn}$, for every $(c_i)_{hi} \subseteq J$ and $(y_i)_{ti} \subseteq U$ where hi, $ti \in [0,1]$ for every $i=1,2,\dots,n$. Now, we get $((c_i)_{hi})^n (y_i)_{ti} \subseteq (J)^n S \subseteq U$ hence $((c_i)_{hi})^n (y_i)_{ti} \subseteq U$. But U is an \mathcal{F} -Soc-semi-prime sub-module of X implies that $(c_i)_{hi}(y_i)_{ti} \subseteq U + \mathcal{F} - Soc(X)$ for each $i=1,2,\dots,n$. So we have $x_t \subseteq U + \mathcal{F} - Soc(X)$.

(\Leftarrow) Let $(r_b)^n x_t \subseteq U$ for $r_b \subseteq \mathcal{R}$ and $n \in Z^+$ then $\langle r_b^n \rangle \langle x_t \rangle \subseteq U$, that is $\langle r_b \rangle^n \langle x_t \rangle \subseteq U$ then by hypothesis we get $\langle r_b \rangle \langle x_t \rangle \subseteq U$, hence $r_b x_t \subseteq U$. That is mean U is an \mathcal{F} -Socsemi-prime sub-module of X.

Corollary 2.12

Let U be an \mathcal{F} -sub-module of an \mathcal{F} -module X of an \mathcal{R} -module M, Then U is an \mathcal{F} -Soc-semiprime sub-module of X if and only if $\forall \mathcal{F}$ -sub-module S of X and every \mathcal{F} -singleton r_b of \mathcal{R} with $(r_b)^n S \subseteq U$ implies that $r_b S \subseteq U + \mathcal{F} - Soc(X)$.

Proof:

It is clear from (proposition 2.11).

Corollary 2.13

Let L be an \mathcal{F} - ideal of \mathcal{R} , Then L is an \mathcal{F} -Soc-semi-prime ideal of \mathcal{R} if and only if $\forall \mathcal{F}$ -subideal J of \mathcal{R} and every \mathcal{F} -singleton r_b of \mathcal{R} with $(r_b)^n J \subseteq L$ implies that $r_b J \subseteq L + \mathcal{F} - Soc(\mathcal{R})$.

Proof :

Clearly from (proposition 2.11).

Proposition 2.14 :

If $r_b^n U \mathcal{F}$ -Soc-semi-prime sub-module of cancellative \mathcal{F} -module X. Where U is an \mathcal{F} -submodules of X and r_b is an idempotent \mathcal{F} -singleton of R. Then $U \subseteq r_b^{n-1} U + F - Soc(X)$

Proof:

Let $a_t \subseteq U$ this implies $r_b{}^n a_t \subseteq r_b{}^n U$, for r_b is an \mathcal{F} -singleton of R. But, $r_b{}^n U$ is an \mathcal{F} -Soc-semi-prime sub-module of X with $a_t \subseteq X$, where $t, b \in [0,1]$. Therefore $r_b a_t \subseteq r_b{}^n U + F - Soc(X)$, that is $r_b{}^2 a_t \subseteq r_b{}^{n+1} U + r_b F - Soc(X)$, thus $r_b{}^2 a_t \subseteq r_b{}^2 r_b{}^{n-1} U + r_b F - Soc(X)$ but r_b is an idempotent \mathcal{F} -singleton of R. So we get $r_b a_t \subseteq r_b{}^n U + r_b F - Soc(X)$. But, X is a cancellative \mathcal{F} -module, we have $a_t \subseteq r_b{}^{n-1} U + F - Soc(X)$, that is mean $U \subseteq r_b{}^{n-1} U + F - Soc(X)$.

Remark 2.15

Every \mathcal{F} -semi-prime sub-module is an \mathcal{F} -Soc-semi-prime sub-module.

Proof:

It is Clear by definition of \mathcal{F} -semi-prime sub-module.

Remark 2.16

If U is an \mathcal{F} -Soc-semi-prime sub-module of \mathcal{F} -module X, with $\mathcal{F} - Soc(X) \subseteq U$. Then U is an \mathcal{F} -semi-prime sub-module.

Proof:

Assume that U is an \mathcal{F} -Soc-semi-prime sub-module of an \mathcal{F} -module X of an \mathcal{R} -module M. Let $(r^n)_b m_t = (r_b)^n m_t \subseteq U$, for $r_b \subseteq \mathcal{R}, m_t \subseteq X$, where $t, b \in [0,1]$. Since U is an \mathcal{F} -Soc-semi-prime sub-module, then $r_b m_t \subseteq U + \mathcal{F} - Soc(X) \subseteq U$ but $\mathcal{F} - Soc(X) \subseteq U$. Hence U is an \mathcal{F} -semi-prime sub-module.

Corollary 2.17

If U is an \mathcal{F} -Soc-semi-prime sub-module of \mathcal{F} -module X, with U be an \mathcal{F} -essential sub-module of X. Then U is an \mathcal{F} -semi-prime sub-module.

Proof:

Since U be an \mathcal{F} -essential sub-module of X, then by definition of \mathcal{F} -socle we have $\mathcal{F} - Soc(X) \subseteq U$ and by (Remark 2.16) that is complete the proof.

Corollary 2.18

If U is an \mathcal{F} -sub-module of \mathcal{F} -module X, with $\mathcal{F} - Soc(X) \subseteq U$. Then U is an \mathcal{F} -semiprime sub-module of X if and only if U is an \mathcal{F} -Soc-prime sub-module of X.

Proof:

Consequently from (Remark 2.7) and (Remark 2.16).

Remark 2.19

Let U and V are \mathcal{F} -sub-modules of \mathcal{F} -module X. If U+V is an \mathcal{F} -semi-prime sub-module of X with $V \subseteq \mathcal{F} - Soc(X)$, then U is an \mathcal{F} -Soc-semi-prime sub-module of X.

Proof:

Let $(r^n)_b x_k = (r_b)^n x_k \subseteq U$, for $r_b \subseteq \mathcal{R}$, $x_k \subseteq X$, where $k, b \in [0,1]$. this implies $(r^n)_b x_k \subseteq U + V$. But U+V is an \mathcal{F} -semi-prime sub-module of X, hence $r_b x_k \subseteq U + V \subseteq U + \mathcal{F} - Soc(X)$ since $V \subseteq \mathcal{F} - Soc(X)$. That is U is an \mathcal{F} -Soc-semi-prime sub-module of X.

Theorem 2.20

Any \mathcal{F} -sub-module of semi-simple \mathcal{F} -module X is an \mathcal{F} -Soc-semi-prime sub-module of X.

Proof:

If U is an \mathcal{F} -sub-module of an \mathcal{F} -module X of an \mathcal{R} -module M. Let $(r^n)_b x_k = (r_b)^n x_k \subseteq U$, for $r_b \subseteq \mathcal{R}, x_k \subseteq X$, where $k, b \in [0,1]$. But, X is a semi-simple \mathcal{F} -module, thus $X = \mathcal{F} - Soc(X)$. We have $x_k \subseteq X = \mathcal{F} - Soc(X) \subseteq U + \mathcal{F} - Soc(X)$, this implies $r_b x_k \subseteq r_b X = r_b \mathcal{F} - Soc(X) \subseteq r_b (U + \mathcal{F} - Soc(X)) \subseteq U + \mathcal{F} - Soc(X)$ that is mean U is an \mathcal{F} -Soc-semi-prime sub-module of X.

Proposition 2.21 :

If U is a weakly pure \mathcal{F} -sub-module of \mathcal{F} -module X with $(r^n)_b$ U is an \mathcal{F} -Soc-semi-prime sub-module of X for every non-empty \mathcal{F} -singleton r_b of R, then U is an \mathcal{F} -Soc-semi-prime sub-module of X.

Proof:

Suppose that $(r^n)_b x_t \subseteq U$, with r_b is an \mathcal{F} -singleton of R and $x_t \subseteq X$, where $t, b \in [0,1]$. Also $(r^n)_b x_t \subseteq (r^n)_b X$ this implies $(r^n)_b x_t \subseteq U \cap (r^n)_b X = (r^n)_b U$ since U is a weakly pure \mathcal{F} -sub-module of X, but $(r^n)_b U$ is an \mathcal{F} -Soc-semi-prime sub-module of X, hence $r_b x_t \subseteq (r^n)_b U + F - Soc(X) \subseteq U + F - Soc(X)$. Thus U is an \mathcal{F} -Soc-semi-prime sub-module of X.

Lemma 2.22 :

for every fuzzy sub- $(A \oplus B) + F - Soc(X \oplus Y) = (A + F - Soc(X)) \oplus (B + F - Soc(Y))$ modules A and B of fuzzy modules X and Y respectively.

Proof:

From (Lemma 2.2) we get $(F - Soc(X \oplus Y))_t = Soc((X \oplus Y)_t)$

For each $t \in (0,1]$. But, $Soc((X \oplus Y)_t) = Soc(X_t \oplus Y_t)$ and we have $Soc(X_t \oplus Y_t) = Soc(X_t) \oplus Soc(Y_t)$

That is $(F - Soc(X \oplus Y))_t = Soc(X_t) \oplus Soc(Y_t) = (F - Soc(X))_t \oplus (F - Soc(Y))_t$

Thus $(F - Soc(X \oplus Y))_t = [(F - Soc(X)) \oplus (F - Soc(Y)]_t]_t$

Hence from (Remark 1.5) then $F - Soc(X \oplus Y) = F - Soc(X) \oplus F - Soc(Y)$

Proposition 2.23 :

If U and V are \mathcal{F} -sub-modules of \mathcal{F} -modules X and Y respectively, then

1) If $U \oplus Y$ is an \mathcal{F} -Soc-semi-prime sub-module of $X \oplus Y$ thus U is an \mathcal{F} -Soc-semi-prime sub-module of X.

2) if $X \oplus V$ is an \mathcal{F} -Soc-semi-prime sub-module of $X \oplus Y$ thus V is an \mathcal{F} -Soc-semi-prime sub-module of X.

Proof :

1) Suppose that $U \oplus Y$ is an \mathcal{F} -Soc-semi-prime sub-module of $X \oplus Y$ and r_b is an \mathcal{F} -singleton of R and $x_t \subseteq X$ such that $(r^n)_b x_t \subseteq U$. Then $(r^n)_b (x_t, y_p) = ((r^n)_b x_t, (r^n)_b y_p) \subseteq U \oplus Y$, for any \mathcal{F} -singleton $y_p \subseteq Y$, but $U \oplus Y$ is an \mathcal{F} -Soc-semi-prime sub-module of $X \oplus Y$. Thus $(r_b x_t, r_b y_p) \subseteq (U \oplus Y) + F - Soc(X \oplus Y)$, by (Lemma 2.22) we get $(r_b x_t, r_b y_p) \subseteq (U + F - Soc(X)) \oplus (Y + F - Soc(Y))$. That is $r_b x_t \subseteq U + F - Soc(X)$, therefore U is an \mathcal{F} -Soc-semi-prime sub-module of X.

2) Similarly as the idea in (1).

Lemma 2.24 :

If X is an \mathcal{F} -module of an \mathcal{R} -module M, and M be a faithful multiplication \mathcal{R} -module, then:

 $\mathcal{F} - Soc(X) = X \mathcal{F} - Soc(\mathcal{R})$

Proposition 2.25 :

Let X be a finitely generated multiplication and faithful \mathcal{F} -module of an \mathcal{R} -module M, if J is an \mathcal{F} -Soc-semi-prime ideal of \mathcal{R} then JX is an \mathcal{F} -Soc-semi-prime sub-module of X.

Proof :

Assume that r_b is an \mathcal{F} -singleton of \mathcal{R} and $x_t \subseteq X$ such that $(r^n)_b x_k = (r_b)^n x_k \subseteq$ JX, where $k, b \in [0,1]$. that is $(r^n)_b \langle x_t \rangle \subseteq$ JX. But X is a multiplication \mathcal{F} -module, thus there exists an \mathcal{F} -ideal L of \mathcal{R} with $\langle x_t \rangle = LX$. Then we get $(r^n)_b LX \subseteq$ JX, so $(r^n)_b L \subseteq J + \mathcal{F}$ ann(X) = J since X is a faithful \mathcal{F} - module. But J is an \mathcal{F} -Soc-semi-prime ideal of \mathcal{R} , then by (Corollary 2.13) implies that $r_b L \subseteq J + \mathcal{F} - Soc(\mathcal{R})$. Now, by multiplying both sides with X and using (Lemma 2.24) we have $r_b LX \subseteq JX + \mathcal{F} - Soc(\mathcal{R})X = JX + \mathcal{F} - Soc(X)$. Therefore, JX is an \mathcal{F} -Soc-semi-prime sub-module of X.

Proposition 2.26

Suppose that U is an \mathcal{F} -Soc-semi-prime sub-module of an \mathcal{F} -module X and V is an \mathcal{F} -semi-prime sub-module of X with $\mathcal{F} - Soc(X) \subseteq V$. Then the intersection of U and V is an \mathcal{F} -Soc-semi-prime of X.

Proof :

If r_b is an \mathcal{F} -singleton of \mathcal{R} and $x_t \subseteq X$ where $b, t \in [0,1]$, such that $(r^n)_b x_k = (r_b)^n x_k \subseteq U \cap V$. This implies $(r^n)_b x_t \subseteq U$ and $(r^n)_b x_t \subseteq V$, but U is an \mathcal{F} -Soc-semi-prime submodule of X. So, we have $r_b x_k \subseteq U + \mathcal{F} - Soc(X)$.Now, since V is an \mathcal{F} -semi-prime submodule of X then $r_b x_k \subseteq V$.We get $r_b x_k \subseteq [U + \mathcal{F} - Soc(X)] \cap V$, but $\mathcal{F} - Soc(X) \subseteq V$

then by using (Lemma 1.29) we have $r_b x_k \subseteq (U \cap V) + \mathcal{F} - Soc(X)$. That is mean $U \cap V$ is an \mathcal{F} -Soc-semi-prime of X.

Proposition 2.27

Let X be a faithful multiplication \mathcal{F} -module of an \mathcal{R} -module M, then a proper \mathcal{F} -sub-module U is an \mathcal{F} -Soc-semi-prime sub-module of if and only if $[U_{:R} X]$ is an \mathcal{F} -Soc-semi-prime ideal of \mathcal{R} .

Proof:

Let $(r^n)_b m_t = (r_b)^n m_t \subseteq [U_R X]$ with m_t and r_b are \mathcal{F} -singletons of \mathcal{R} where $b, t \in [0,1]$ implies that $(r^n)_b (m_t X) \subseteq U$. But, U is an \mathcal{F} -Soc-semi-prime sub-module, so by (Corollary 2.13) then $r_b(m_t X) \subseteq U + \mathcal{F} - Soc(X)$. Since X is a multiplication \mathcal{F} -module, then by (Preposition 1.32) $U = [U_R X]X$, and since X is a faithful multiplication, so by (Lemma 2.24) $F - Soc(X) = \mathcal{F} - Soc(\mathcal{R})X$. Therefore $r_b m_t X \subseteq [U_R X]X + \mathcal{F} - Soc(\mathcal{R})X$, this implies $r_b m_t \subseteq [U_R X] + \mathcal{F} - Soc(\mathcal{R})$. Thus $[U_R X]$ is an \mathcal{F} -Soc-semi-prime ideal of \mathcal{R} .

Conversely

Let $(r^n)_b D = (r_b)^n D \subseteq U$ with r_b be an \mathcal{F} -singleton of \mathcal{R} and D is an \mathcal{F} -sub-module of X. Since X is a multiplication \mathcal{F} -module, then D = JX for some an \mathcal{F} -ideal of \mathcal{R} , we get $(r^n)_b JX \subseteq U$ that is mean $(r^n)_b J \subseteq [U:_R X]$, but $[U:_R X]$ is an \mathcal{F} -Soc-semi-prime ideal of \mathcal{R} , so by (Corollary 2.12) we have $r_b J \subseteq [U:_R X] + F - Soc(\mathcal{R})$, this implies $r_b JX \subseteq [U:_R X]X + \mathcal{F} - Soc(\mathcal{R})X$, then by (Lemma 2.25) we get $r_b JX \subseteq U + \mathcal{F} - Soc(X)$.

Lemma 2.28

Let $f: \mathbb{M} \to \overline{M}$ be isomorphism mapping from an \mathcal{R} -module M into an \mathcal{R} -module \overline{M} . If X and \overline{X} are \mathcal{F} -modules of an \mathcal{R} -modules M and \overline{M} respectively. Then $f(\mathcal{F} - Soc(X)) \subseteq \mathcal{F} - Soc(\overline{X})$.

Proposition 2.29

Let $f: X \to \overline{X}$ be an \mathcal{F} -isomorphism from \mathcal{F} -module X into \mathcal{F} -module \overline{X} , with U is an \mathcal{F} -Soc-semi-prime sub-module of X, such that ker $(f) \subseteq U$. Then f(U) is an \mathcal{F} -Soc-semi-prime sub-module of \overline{X} .

Proof :

is a proper \mathcal{F} -sub-module of \overline{X} . If not, then $f(U) = \overline{X}$. Let $x_t \subseteq X$, so $f(x_t) \subseteq \overline{X} = f(U)$ f(U), that is there exists $y_s \subseteq U$ where $s, t \in [0,1]$ such that $f(x_t) = f(y_s)$ implies that $f(x_t) - f(y_s) = 0_1$ then $f(x_t - y_s) = 0_1$, thus $x_t - y_s \subseteq \ker(f) \subseteq U$, it follows that $x_t \subseteq U$. Thus U = X that is a contradiction. Now, Let $(r_b)^n z_c \subseteq f(U)$ with $r_b \subseteq \mathcal{R}$ and $z_c \subseteq \overline{X}$ with $b, c \in [0,1]$, but f is onto $f(x_t) = z_c$ for some $x_t \subseteq X$, therefore $(r^n)_b z_c =$ $(r^n)_b f(x_t) = f((r^n)_b x_t) \subseteq f(U)$, this implies that there exists $k_h \subseteq U$ with $h \in$ [0,1] such that $f(k_h) = f((r^n)_b x_t)$, that is $f(k_h - (r^n)_b x_t) = 0_1$, so $k_h - (r^n)_b x_t \subseteq$ ker $(f) \subseteq U$. It follows that $(r_b)^n x_t \subseteq U$. But, U is an \mathcal{F} -Soc-semi-prime sub-module of X, thus $r_b x_t \subseteq U + \mathcal{F} - Soc(X)$. Then by (Lemma 2.28) we have $r_b z_c = r_b f(x_t) \subseteq$ $f(U) + f(\mathcal{F} - Soc(X)) \subseteq f(U) + \mathcal{F} - Soc(\overline{X})$. Hence f(U) is an \mathcal{F} -Soc-semi-prime submodule of \overline{X} .

2.Conclusion

Through this research, we were able to know some of the fuzzy algebraic properties of fuzzy socle semi-prime sub-modules and the relationship with other concepts . The idea of fuzzy socle semi-prime sub-modules is dualized in this study by introducing several characteristics and properties of semi-prime fuzzy sub-modules. This approach has opened up new possibilities for studying the fuzzy dimension. Thus, socle semi-prime module and completely socle semi-prime sub-modules can be defined utilizing the concept of fuzzy socle semi-prime sub-modules.

References

 Zadeh L. A. 1965. Fuzzy Sets, *Information and control*, 8: 338-353, 1965.
Naegoita, C. V.; Ralescu, D. A. Application of Fuzzy Sets in System Analysis, Birkhauser, Basel, Switzerland, **1975**.

3. Hadi, I. M. A. Semiprime Fuzzy Sub-modules of Fuzzy Modules, *Ibn-Al-Haitham J. for Pure and Appl. Sci.*, **2004**,*17*(*3*),112-123.

4. Al, i S.A. Approximately Prime Sub-modules and Some of Their Generalizations M.Sc.Thesis, University of Tikrit. **2019**

5. Martinez, L., *Fuzzy Modules Over Fuzzy Rings in Connection with Fuzzy Ideals of Rings*, J.Fuzzy Math.**1996**, *4*, 843-857.

6. Zahedi, M. M. On L-Fuzzy Residual Quotient Modules and P. Primary Sub-modules, *Fuzzy Sets and Systems*, **1992**,51: 333-344.

7. Mukherjee, T. K.; Sen, M. K.; Roy, D. On Fuzzy Sub-modules and Their Radicals, J. Fuzzy Math., **1996**, *4*, 549-558.

8. Mashinchi, M.; Zahedi, M.M., 2,"On L-Fuzzy Primary Sub-modules, *Fuzzy Sets Systems*, **199**, 49, 231-236.

9.Rabi H. J. . Prime Fuzzy Sub-module and Prime Fuzzy Modules , M. Sc. Thesis, University of Baghdad. **2001**

10.Zahedi, M. M. A characterization of L-Fuzzy Prime Ideals, *Fuzzy Sets and Systems*, **1991**,44: 147-160.

11. AL-Abege A. M. H, Near-ring, Near Module and Their Spectrum, M.Sc.Thesis, University of Kufa, College of Mathematics and Computers Sciences. **2010** 12. Mashinchi, M. ; Zahedi, M.M., On L-Fuzzy Primary Sub-modules, *Fuzzy Sets Systems*, **1996**, 4, 843-857.

13. Gada, A.A., Fuzzy Spectrum of Modules Over Commutative Rings, M.Sc. Thesis, University of Baghdad. **2000**

14.Kasch, F. . Modules and Rings, Academic press. 198215.Hatam Y. K., Fuzzy Quasi-Prime Modules and Fuzzy Quasi-Prime. Sub-modules ,M.Sc. Thesis, University of Baghdad. 2001

16.. Kalita, M. C A study of fuzzy algebraic structures: some special types, Ph.D Thesis, Gauhati University, Gauhati, India, **2007**.

17.Wafaa, H. H.T-ABSO Fuzzy Sub-modules and T-ABSO Fuzzy Modules and Some Their Generalizations, Ph.D. Thesis, University of Baghdad. **2018.**

18. Hadi, G. Rashed, Fully Cancellation Fuzzy Modules and Some Generalizations, M.Sc. Thesis, University of Baghdad. **2017**

19.Goodreal , K. R. Ring Theory –Non Singular Rings and modules, Marci-Dekker, New York and Basel. **1976**