

Ibn Al Haitham Journal for Pure and Applied Sciences

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Cubic Bipolar Fuzzy Ideals with Thresholds (a, β), (ω , ϑ) of a Semigroup in KU-algebra

Omniat Adnan Hasan Department of Mathematics, College of Education for Pure Sciences, Ibn Al Haitham,University of Baghdad, Iraq <u>umniyatadnan@gmail.com</u> Fatema F. Kareem Department of Mathematics, College of Education for Pure Sciences, Ibn Al Haitham,University of Baghdad, Iraq fatma.f.k@ihcoedu.uobaghdad.edu.iq

Article history: Received, 21, November, 2021, Accepted, 25, January, 2022, Published in April 2022.

Doi: 10.30526/35.2.2724

Abstract

In this paper, we introduce the concept of cubic bipolar fuzzy ideals with thresholds $(\alpha,\beta),(\omega,\vartheta)$ of a semigroup in KU-algebra as a generalization of sets and in short (**CBF**). Firstly, a (**CBF**) sub-KU-semigroup with a threshold $(\alpha,\beta),(\omega,\vartheta)$ and some results in this notion are achieved. Also, (cubic bipolar fuzzy ideals and cubic bipolar fuzzy *k*-ideals) with thresholds $(\alpha,\beta),(\omega,\vartheta)$ are defined and some properties of these ideals are given. Relations between a (**CBF**) sub algebra and a (**CBF**) ideal are proved. A few characterizations of a (**CBF**) *k*-ideal with thresholds $(\alpha, \beta), (\omega, \vartheta)$ are discussed. Finally, we proved that a (**CBF**) *k*-ideal and a (**CBF**) ideal with thresholds $(\alpha, \beta), (\omega, \vartheta)$ of a KU-semi group are equivalent relations.

Keywords: A KU-semigroup, cubic *k*-ideal, cubic bipolar fuzzy *k*-ideal with thresholds (α, β) , (ω, ϑ) .

1. Introduction

The fuzzy sets were introduced by Zadeh [1] in 1956; after that, many authors applied this concept in different mathematics fields. Mostafa [2, 3] studied the notion of fuzzy KU-ideals of KU-algebras and Generalizations of Fuzzy sets, which are called bipolar- fuzzy n-fold KU-ideals. Jun [4- 6] studied the notion of a cubic set as a generalization of fuzzy set and interval-valued fuzzy set. Kareem and Hasan[7,8] defined the cubic ideals of a KU-semigroup and a homomorphism of a cubic set in this structure. Bipolar–valued fuzzy sets are extensions of fuzzy sets whose membership degree range is enlarged from the interval [0,1] to [-1,1]. Kareem and

Hassan[9] and Kareem and Awad [10] defined the concepts of bipolar fuzzy k-ideals and cubic bipolar ideals in KU-semigroup respectively, also Kareem and Abed [11] presented the idea of bipolar fuzzy k-ideals with a threshold of KU-semigroup.

The paper aims to introduce a cubic bipolar fuzzy k-ideals with thresholds $(\alpha,\beta),(\omega,\vartheta)$ of KU-semi group and discuss some relations between a cubic bipolar fuzzy k-ideal with thresholds $(\alpha,\beta), (\omega,\vartheta)$ and a bipolar fuzzy k-ideal.

2. Basic concepts

Definition(1)[12]. Algebra($\aleph, *, 0$) is a set \aleph , and a binary operation * which is satisfies the following , for all $\chi, \gamma, \tau \in \aleph$

 $(ku_{1})(\chi * \gamma) * [(\gamma * \tau) * (\chi * \tau)] = 0$ $(ku_{2}) \chi * 0 = 0$ $(ku_{3}) 0 * \chi = \chi$ $(ku_{4}) \chi * \gamma = \gamma * \chi = 0 \text{ and } \gamma * \chi \text{ implies } \chi = \gamma$ $(ku_{5}) \chi * \chi = 0.$ We can define a binary operation ζ on χ is define

We can define a binary operation \leq on \aleph is defined by $\chi \leq \gamma \Leftrightarrow \gamma * \chi = 0$. It follows that (\aleph, \leq) is a partially ordered set.

Theorem(2)[2]. In a KU-algebra ($\aleph, \ast, 0$) $\forall \chi, \gamma, \tau \in \aleph$, then the following holds

(1) $\chi \leq \gamma$ imply $\gamma * \tau \leq \chi * \tau$ (2) $\chi * (\gamma * \tau) = \gamma * (\chi * \tau)$ (3) $\gamma * \chi \leq \chi$, also $(\gamma * \chi) * \chi \leq \gamma$

Definition(3)[2]. A non-empty subset *I* of a KU-algebra \aleph is named an ideal if for any χ , $\gamma \in$

x, then

(1) $0 \in I$

(2) If $\chi * \gamma \in I$ implies that $\gamma \in I$.

Definition(4)[2]. A non-empty subset *I* of a KU-algebra ℵ is named a KU-ideal if

(1) $0 \in I$

(2) If $\chi * (\gamma * \tau) \in I$, and $\gamma \in I$ imply that $\chi * \tau \in I$.

Definition(5)[13]. An algebra KU- semi group is a structure contains a nonempty set \aleph with two binary operations *,• and a constant 0 satisfying the following

- (I) The set \aleph with operation * and constant 0 is KU-algebra
- (II) The set \aleph with operation \circ is semigroup.

(III) $\chi \circ (\gamma * \tau) = (\chi \circ \gamma) * (\chi \circ \tau)$, and $(\chi * \gamma) \circ \tau = (\chi \circ \tau) * (\gamma \circ \tau)$, for all $\chi, \gamma, \tau \in \aleph$.

Definition(6)[13]. A non-empty subset *A* of \aleph is called a sub-KU-semi group of \aleph if $\chi * \gamma \in A$, and $\chi \circ \gamma \in A$, for all $\chi, \gamma \in A$

Definition(7)[13]. In a KU-semi group ($\aleph, *, \circ, 0$), the subset $\varphi \neq I$ of \aleph is said to be S ideal , if

- (*i*) It is an ideal in a KU-algebra
- (*ii*) $\chi \circ a \in I$, and $a \circ \chi \in I$, $\forall \chi \in \aleph$, $a \in I$

Definition(8)[13]. In KU-semigroup $(\aleph, *, \circ, 0)$, the subset $\varphi \neq A$ of \aleph is named a k-ideal, if

- (*i*) It is a KU-ideal of ℵ
- (*ii*) $\chi \circ a \in I$, and $a \circ \chi \in I$, $\forall \chi \in \aleph$, $a \in I$

In this part, we recall some concepts of fuzzy logic

A function $\mu: \aleph \longrightarrow [0,1]$ is said to be a fuzzy set of a set \aleph , and the set

is said to be a level set of μ , for t, where $1 \ge t \ge 0U(\mu, t) = \{\chi \in \aleph : \mu(\chi) \ge t\}$

Now, an interval valued fuzzy set $\tilde{\mu}$ of \aleph is defined as follows:

Remark(9)[7-8]. A function $\tilde{\mu}$: $\aleph \to D[0,1]$, where D[0,1] is a family of the closed subintervals of [0, 1]. The level subset of $\tilde{\mu}$ is denoted by $\tilde{\mu}_{\tilde{t}}$ and it is defined by

 $\tilde{\mu}_{\tilde{t}} = \{\chi \in \aleph : \tilde{\mu}(\chi) \ge \tilde{t}\}, \text{ for every } [0,0] \le \tilde{t} \le [1,1].$

O. Hasan and F.Kareem [7-8] introduced the Cubic ideals of the KU-semigroup as follows:

Definition(10)[7-8]. In the KU-semigroup($\aleph, *, \circ, 0$), a cubic set Θ is the form

 $\Theta = \{ \langle \chi, \tilde{\mu}_{\Theta}(\chi), \lambda_{\Theta}(\chi) \rangle : \chi \in \aleph \}, \text{ such that } \lambda_{\Theta}(\chi) \text{ is a fuzzy set and } \tilde{\mu}_{\Theta} : \aleph \to D[0,1] \text{ is an interval-valued , briefly } \Theta = \langle \tilde{\mu}_{\Theta}, \lambda_{\Theta} \rangle.$

Definition(11)[7-8]. In the KU-semigroup $(\aleph, *, \circ, 0)$ a cubic set $\Theta = \langle \tilde{\mu}_{\Theta}, \lambda_{\Theta} \rangle$ in \aleph is named a cubic sub-KU-semigroup if: for all $\chi, \gamma \in \aleph$,

(1) $\tilde{\mu}_{\Theta}(\chi * \gamma) \ge rmin\{\tilde{\mu}_{\Theta}(\chi), \tilde{\mu}_{\Theta}(\gamma)\}, \lambda_{\Theta}(\chi * \gamma) \le max\{\lambda_{\Theta}(\chi), \lambda_{\Theta}(\gamma)\}$ (2) $\tilde{\mu}_{\Theta}(\chi \circ \gamma) \ge rmin\{\tilde{\mu}_{\Theta}(\chi), \tilde{\mu}_{\Theta}(\gamma)\}, \lambda_{\Theta}(\chi \circ \gamma) \le max\{\lambda_{\Theta}(\chi), \lambda_{\Theta}(\gamma)\}.$

Definition(12)[7-8]. The set Θ in \aleph is named a cubic ideal of a KU-semigroup $(\aleph, *, \circ, 0)$ if, $\forall \chi, \gamma \in \aleph$ $(CI_1) \ \tilde{\mu}_{\Theta}(0) \ge \tilde{\mu}_{\Theta}(\chi) \ and \ \lambda_{\Theta}(0) \le \lambda_{\Theta}(\chi),$ $(CI_2) \ \tilde{\mu}_{\Theta}(\gamma) \ge rmin\{\tilde{\mu}_{\Theta}(\chi * \gamma), \tilde{\mu}_{\Theta}(\chi)\}, \ \lambda_{\Theta}(\gamma) \le max\{\lambda_{\Theta}(\chi * \gamma), \lambda_{\Theta}(\chi)\}$ $(CI_3) \ \tilde{\mu}_{\Theta}(\chi \circ \gamma) \ge rmin\{\tilde{\mu}_{\Theta}(\chi), \ \tilde{\mu}_{\Theta}(\gamma)\}, \ \lambda_{\Theta}(\chi \circ \gamma) \le max\{\lambda_{\Theta}(\chi), \ \lambda_{\Theta}(\gamma)\}.$

Example(13)[7-8]. Let $\aleph = \{0,1,2\}$ be a set. Define the operations *, • by the following tables.

	0	1	2	o	0	1
	0	1	2	0	0	0
1	0	0	1	1	0	1
2	0	1	0	2	0	0

Then the structure $(\aleph, *, \circ, 0)$ is a KU-semi group. A cubic set $\Theta = \langle \tilde{\mu}_{\Theta}, \lambda_{\Theta} \rangle$ is defined by:

$$\tilde{\mu}_{\Theta}(x) = \begin{cases} [0.4, 0.8] & \text{if } \chi \in \{0, 2\} \\ [0.1, 0.3] & \text{if } \chi = 1 \end{cases} \text{ and } \lambda_{\Theta}(x) = \begin{cases} 0.1 & \text{if } \chi \in \{0, 2\} \\ 0.3 & \text{if } \chi = 1 \end{cases}$$

Then $\Theta = \langle \tilde{\mu}_{\Theta}, \lambda_{\Theta} \rangle$ is a cubic ideal of \aleph .

Definition(14)[7-8]. In a KU-semigroup $(\aleph, *, \circ, 0)$, a cubic set $\Theta = \langle \tilde{\mu}_{\Theta}, \lambda_{\Theta} \rangle$ in \aleph is named a cubic *k*-ideal if $\forall \chi, \gamma, \tau \in \aleph$ $(Ck_1)\tilde{\mu}_{\Theta}(0)) \ge \tilde{\mu}_{\Theta}(\chi)$, and $\lambda_{\Theta}(0) \le \lambda_{\Theta}(\chi)$ $(Ck_2)\tilde{\mu}_{\Theta}(\chi * \tau) \ge rmin\{\tilde{\mu}_{\Theta}(\chi * (\gamma * \tau)), \tilde{\mu}_{\Theta}(\gamma)\},$ $\lambda_{\Theta}(\chi * \tau) \le max\{\lambda_{\Theta}(\chi * (\gamma * \tau)), \lambda_{\Theta}(\gamma)\}$

$$(\mathbf{C}\mathbf{k}_{3})\tilde{\mu}_{\Theta}(\chi\circ\gamma) \geq rmin\{\tilde{\mu}_{\Theta}(\chi), \tilde{\mu}_{\Theta}(\gamma)\}, \lambda_{\Theta}(\chi\circ\gamma) \leq max\{\lambda_{\Theta}(\chi), \lambda_{\Theta}(\gamma)\}.$$

In the following ,we recall some basic concepts of a bipolar fuzzy set.

Definition(15)[9]. A bipolar fuzzy set B in a set \aleph is a form $B = \{(\chi, \mu(\chi), \mu^+(\chi)) : \chi \in \aleph\},\$

where $\mu^{-}(\chi) : \aleph \to [-1,0]$ and $\mu^{+}(\chi) : \aleph \to [0,1]$ are two fuzzy mappings. The two membership degrees $\mu^{+}(\chi)$ and $\mu^{-}(\chi)$ denote the fulfillment degree of \aleph to the property corresponding of B and the fulfillment degree of \aleph to some implicit counter-property of B, respectively.

Kareem and Awad[10] introduced the cubic bipolar ideals of a KU- semigroup in KU-algebra as follows:

Definition(16)[10]. Let \aleph be a non-empty set. A cubic bipolar set in a set \aleph is the structure $\Theta = \{\langle \chi, \tilde{\mu}_{\Theta}^+(\chi), \tilde{\mu}_{\Theta}^-(\chi), \lambda_{\Theta}^+(\chi), \lambda_{\Theta}^-(\chi) : \chi \in \aleph \}\}$ is denoted as

 $\Theta = \langle N, K \rangle, \text{ where } N(\chi) = \{ \tilde{\mu}_{\Theta}^+(\chi), \tilde{\mu}_{\Theta}^-(\chi) \} \text{ is called interval-valued bipolar fuzzy set and} \\ K(\chi) = \{ \lambda_{\Theta}^+(\chi), \lambda_{\Theta}^-(\chi) \} \text{ is a bipolar fuzzy set. Consider } \tilde{\mu}_{\Theta}^+: \aleph \to D[0,1] \text{ such that } \tilde{\mu}_{\Theta}^+(\chi) = [\xi_{\Theta_{\mathrm{L}}}^+(\chi), \xi_{\Theta_{\mathrm{U}}}^+(\chi)] \text{ and}$

 $\tilde{\mu}_{\Theta}^{-}: \aleph \to D[-1,0]$ such that $\tilde{\mu}_{\Theta}^{-}(\chi) = [\xi_{\Theta_{L}}^{-}(\chi), \xi_{\Theta_{U}}^{-}(\chi)]$, also $\lambda_{\Theta}^{+}: \aleph \to [0,1]$ and $\lambda_{\Theta}^{-}: \aleph \to [-1,0]$ it follows that

 $\Theta = \{ \langle \chi, \{ [\xi_{\Theta_{L}}^{+}(\chi), \xi_{\Theta_{U}}^{+}(\chi)], [\xi_{\Theta_{L}}^{-}(\chi), \xi_{\Theta_{U}}^{-}(\chi)] \}, \qquad \lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{-}(\chi) \} >: \chi \in \aleph \}$ **Definition(17)[10].** A (CB) $\Theta = \langle N, K \rangle$ in \aleph is named a (CB) sub-KU-semigroup if: $\forall \chi, \gamma \in \aleph$, (1) $\tilde{\mu}_{\Theta}^{+}(\chi * \gamma) \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\gamma)\}, \tilde{\mu}_{\Theta}^{-}(\chi * \gamma) \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\gamma)\}$

$$\lambda_{\Theta}^+(\chi * \gamma) \ge \min\{\lambda_{\Theta}^+(\chi), \lambda_{\Theta}^+(\gamma)\}, \lambda_{\Theta}^-(\chi * \gamma) \le \max\{\lambda_{\Theta}^-(\chi), \lambda_{\Theta}^-(\gamma)\},\$$

(2) $\tilde{\mu}_{\Theta}^{+}(\chi \circ \gamma) \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\gamma)\}, \tilde{\mu}_{\Theta}^{-}(\chi \circ \gamma) \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\gamma)\}$ $\lambda_{\Theta}^{+}(\chi \circ \gamma) \geq min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\gamma)\}, \lambda_{\Theta}^{-}(\chi \circ \gamma) \leq max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\gamma)\},$

Example(18)[10]: The following table is Illustrates that the set $\aleph = \{0,1,2,3\}$ with binary operations \ast and \circ

*	0	1	2	3
0	0	1	2	3
1	0	0	0	2
2	0	2	0	1
3	0	0	0	0

0	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

Then($\aleph, \ast, \circ, 0$) is a KU-semigroup. Define $\Theta = \langle N, K \rangle$ as follows

$$M(x) = \begin{cases} \{[-0.2, -0.5], [0.1, 0.9]\} & if \quad \chi = \{0, 1\} \\ \{[-0.6, -0.2], [0.2, 0.5]\} & if \quad otherwise \end{cases},$$

 $\lambda_{\Theta}^{+}(x) = \begin{cases} 0.5 & \text{if } \chi = \{0,1\} \\ 0.3 & \text{if } otherwise \end{cases} \quad \lambda_{\Theta}^{-}(x) = \begin{cases} -0.6 & \text{if } \chi = \{0,1\} \\ -0.3 & \text{if } otherwise \end{cases}$

And by applying definition **2.17**, we can easily prove that $\Theta = \langle N, K \rangle$ is a cubic bipolar sub KU-semigroup of \aleph .

3. Cubic bipolar ideals of a KU-semi group with thresholds (α, β) , (ω, ϑ)

In this part, the notion of cubic bipolar *k*-ideals with thresholds $(\alpha, \beta), (\omega, \vartheta)$ of a KU-semi group and some properties are defined. In the following, we denote a cubic bipolar fuzzy set by (CBF) and let $\alpha, \beta \in D[0,1]$, and, $\omega, \vartheta \in [0,1]$, such that

 $[0,0] < \alpha < \beta < [1,1]$, $0 < \omega < \vartheta < 1$, where ω, ϑ are arbitrary values, and

 α, β , are arbitrary closed sub-intervals

Definition(19). A (*CBF*) set $\Theta = \langle M, L \rangle$ is named a (*CBF*) sub-KU-semi group with thresholds $(\alpha, \beta), (\omega, \vartheta)$ if $\forall \chi, \chi \in \aleph$

$$(1)\min\{\tilde{\mu}_{\Theta}^{-}(\chi*\gamma), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$$
$$rmax\{\tilde{\mu}_{\Theta}^{+}(\chi*\gamma), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$$
$$min\{\lambda_{\Theta}^{-}(\chi*\gamma), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$$

$$\max\{\lambda_{\Theta}^{+}(\chi * \gamma), \omega\} \geq \min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$$

$$(2)rmin\{\tilde{\mu}_{\Theta}^{-}(\chi \circ \gamma), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$$

$$rmax\{\tilde{\mu}_{\Theta}^{+}(\chi \circ \gamma), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$$

$$min\{\lambda_{\Theta}^{-}(\chi \circ \gamma), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$$

$$max\{\lambda_{\Theta}^{+}(\chi \circ \gamma), \omega\} \geq min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$$

Remark(20). Every (*CBF*) sub-KU-semi group of \aleph is a (*CBF*) sub-KU-semigroup with thresholds (α , β), (ω , ϑ), but not converse as it is shown in the following example **Example(21).**Let $\aleph = \{0,1,2,3\}$ be a set with two operations \ast and \circ which are defined by the following tables.

*	0	1	2	3
0	0	1	2	3
1	0	0	0	2
2	0	2	0	1
3	0	0	0	0

Then($\aleph, *, \circ, 0$) is a KU-semi group.Now, we define $\Theta = \langle M, L \rangle$ by the next

$$M(x) = \begin{cases} \begin{bmatrix} -0.9, -0.8 \end{bmatrix}, \begin{bmatrix} 0.8, \ 0.9 \end{bmatrix} & if \ \chi = 0 \\ \begin{bmatrix} -0.8, -0.7 \end{bmatrix}, \begin{bmatrix} 0.7, \ 0.8 \end{bmatrix} & if \ \chi = 1 \\ \begin{bmatrix} -0.6, -0.5 \end{bmatrix}, \begin{bmatrix} 0.5, \ 0.6 \end{bmatrix} & if \ \chi = 3 \\ \begin{bmatrix} -0.3, -0.2 \end{bmatrix}, \begin{bmatrix} 0.2, \ 0.3 \end{bmatrix} & if \ \chi = 2 \end{cases}$$
$$L(x) = \begin{cases} -0.9, \ 0.9 & if \ \chi = 0 \\ -0.5, \ 0.6 & if \ \chi = 1 \\ -0.4, \ 0.5 & if \ \chi = 3 \\ -0.2, \ 0.2 & if \ \chi = 2 \end{cases}$$

And by applying definition (19), we can easily prove that $\Theta = \langle M, L \rangle$ is a(*CBF*)sub KU-semi group with thresholds $(\alpha, \beta) = ([0.1, 0.2], [0.2, 0.2])$, and $(\omega, \vartheta) = (0.1, 0.2)$, but not a (*CBF*)sub KU-semi group since

$$\begin{split} \tilde{\mu}_{\Theta}^{+}(1*3) &\geq rmin\{\tilde{\mu}_{\Theta}^{+}(1), \tilde{\mu}_{\Theta}^{+}(3)\} \\ \{\tilde{\mu}_{\Theta}^{+}(2)\} &\geq rmin\{\tilde{\mu}_{\Theta}^{+}(1), \tilde{\mu}_{\Theta}^{+}(3)\} \\ [0.2, 0.3] &\geq rmin\{[0.7, 0.8], [0.5, 0.6]\} \\ [0.2, 0.1] &\geq [0.5, 0.6] \text{, which is incorrect phrase} \\ \tilde{\mu}_{\Theta}^{-}(1*3) &\leq rmax\{\tilde{\mu}_{\Theta}^{-}(1), \tilde{\mu}_{\Theta}^{-}(3)\} \end{split}$$

 $\tilde{\mu}_{\Theta}^{-}(2) \leq rmax\{[-0.8, -0.7], [-0.6, -0.5]\}\$ $[-0.3, -0.2 \leq [-0.6, -0.5], \text{ which is the incorrect phrase, and}$ $\lambda_{\Theta}^{+}(1 * 3) \geq min\{\lambda_{\Theta}^{+}(1), \lambda_{\Theta}^{+}(3)\}$ $\lambda_{\Theta}^{+}(2) \geq min\{0.6, 0.5\}$ $0.2 \geq 0.5, \text{ it is wrong}$ $\lambda_{\Theta}^{-}(1 * 3) \leq max\{\lambda_{\Theta}^{-}(1), \lambda_{\Theta}^{-}(3)\}$ $\lambda_{\Theta}^{-}(2) \leq max\{-0.5, -0.4\}$

 $-0.2 \leq -0.4$, which is also wrong.

Remark(22). If $\Theta = \langle M, L \rangle$ is a (*CBF*) sub KU-semi group with thresholds $(\alpha, \beta), (\omega, \vartheta)$ such that $\alpha = [0,0], \beta = [1,1,], \omega = 0$, and $\vartheta = 1$, then $\Theta = \langle M, L \rangle$ is a (*CBF*) sub-KU-semi group of \aleph .

Proposition(23). If $\Theta = \langle M, L \rangle$ is a cubic bipolar sub-KU-semi group with thresholds (α, β) , (ω, ϑ) of \aleph , then for all $\chi \in \aleph$

(1) $rmax\{\tilde{\mu}_{\Theta}^{+}(0), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}$

(2) $rmin\{\tilde{\mu}_{\Theta}^{-}(0), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}$

(3) $max\{\lambda_{\Theta}^{+}(0), \omega\} \geq min\{\lambda_{\Theta}^{+}(\chi), \vartheta\}$

 $(4)\min\{\lambda_{\Theta}^{-}(0), -\omega\} \leq \max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}$

Proof: by (**kus**) $\chi * \chi = 0$, and since $\Theta = \langle M, L \rangle$ is a cubic bipolar sub-KU-semi group with thresholds $(\alpha, \beta), (\omega, \vartheta)$ of \aleph ,

$$rmax\{\tilde{\mu}_{\Theta}^{+}(0), \alpha\} = rmax\{\tilde{\mu}_{\Theta}^{+}(\chi * \chi), \alpha\} \ge rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\chi), \beta\}$$
$$= rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}, \text{ that is } (1)$$
$$rmin\{\tilde{\mu}_{\Theta}^{-}(0), -\alpha\} = rmin\{\tilde{\mu}_{\Theta}^{-}(\chi * \chi), -\alpha\} \le rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}$$
$$= rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}, \text{ that is } (2)$$
$$max\{\lambda_{\Theta}^{+}(0), \omega\} = max\{\lambda_{\Theta}^{+}(\chi * \chi), \omega\} \ge min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\chi), \vartheta\}$$
$$= min\{\lambda_{\Theta}^{+}(\chi), \vartheta\}, \text{ that is } (3)$$
$$min\{\lambda_{\Theta}^{-}(0), -\omega\} = min\{\lambda_{\Theta}^{-}(\chi * \chi), -\omega\} \le max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\chi), -\vartheta\}$$
$$= max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}, \text{ that is } (4)$$

Proposition(24).If $\Theta = \langle M, L \rangle$ is a (*CBF*) sub-KU-semi group with thresholds $(\alpha, \beta), (\omega, \vartheta)$ of \aleph , then for all $\chi \in \aleph$

(1) $rmax\{\tilde{\mu}_{\Theta}^{+}(0 \circ \chi), \alpha\} \ge rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}$ (2) $rmin\{\tilde{\mu}_{\Theta}^{-}(0 \circ \chi), -\alpha\} \le rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}$ (3) $max\{\lambda_{\Theta}^{+}(0 \circ \chi), \omega\} \ge min\{\lambda_{\Theta}^{+}(\chi), \vartheta\}$ (4) $min\{\lambda_{\Theta}^{-}(0 \circ \chi), -\omega\} \le max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}$

Proof: Since $\Theta = \langle M, L \rangle$ is a (*CBF*) sub-KU-semi group with thresholds (α, β) , (ω, ϑ) of \aleph , we have

$$rmax\{\tilde{\mu}_{\Theta}^{+}(0 \circ \chi), \alpha\} \ge rmin\{\tilde{\mu}_{\Theta}^{+}(0), \tilde{\mu}_{\Theta}^{+}(\chi), \beta\} = rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}, \text{ which is } (1)$$

$$rmin\{\tilde{\mu}_{\Theta}^{-}(0\circ\chi), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(0), \ \tilde{\mu}_{\Theta}^{-}(\chi) - \beta\} = rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}, \text{ which is } (2)$$
$$max\{\lambda_{\Theta}^{+}(0\circ\chi), \omega\} \geq min\{\lambda_{\Theta}^{+}(0), \lambda_{\Theta}^{+}(\chi), \ \vartheta\} = min\{\lambda_{\Theta}^{+}(\chi), \ \vartheta\}, \text{ which is } (3)$$
$$min\{\lambda_{\Theta}^{-}(0\circ\chi), -\omega\} \leq max\{\lambda_{\Theta}^{-}(0), \lambda_{\Theta}^{-}(\chi), -\vartheta\} = max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}, \text{ which is } (4)$$

Definition(25). A (*CBF*) set
$$\Theta = \langle M, L \rangle$$
 is named a (*CBF*) ideal of the KU-semi group with
thresholds $(\alpha, \beta), (\omega, \vartheta)$ if $\forall \chi, \gamma \in \aleph$
(*CBT*₁) $rmin\{\tilde{\mu}_{\Theta}^{-}(0), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}$
 $rmax\{\tilde{\mu}_{\Theta}^{+}(0), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}$, and
 $min\{\lambda_{\Theta}^{-}(0), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}$
 $max\{\lambda_{\Theta}^{+}(0), \omega\} \geq min\{\lambda_{\Theta}^{+}(\chi), \vartheta\}$
(*CBT*₂) $rmin\{\tilde{\mu}_{\Theta}^{-}(\gamma), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi * \gamma), \tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}$
 $rmax\{\tilde{\mu}_{\Theta}^{+}(\gamma), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi * \gamma), \tilde{\mu}_{\Theta}^{+}(\chi), \beta\}$
 $min\{\lambda_{\Theta}^{-}(\gamma), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi * \gamma), \lambda_{\Theta}^{+}(\chi), \vartheta\}$
(*CBT*₃) $rmin\{\tilde{\mu}_{\Theta}^{-}(\chi \circ \gamma), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$
 $rmax\{\tilde{\mu}_{\Theta}^{+}(\chi \circ \gamma), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$
 $min\{\lambda_{\Theta}^{-}(\chi \circ \gamma), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$
 $max\{\lambda_{\Theta}^{+}(\chi \circ \gamma), \omega\} \geq min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$

Example(26). The following table Illustrates the set $\aleph = \{0,1,2\}$ with binary operations \ast and \circ

*	0	1	2	0	0	1	2
0	0	1	2	0	0	0	0
1	0	0	1	1	0	1	0
2	0	1	0	2	0	0	2

Then($\aleph, *, \circ, 0$) is a KU-semigroup. Define $\Theta = \langle M, L \rangle$ as follows:

 $M(\chi) = \begin{cases} [-0.8, -0.7], [0.6, 0.8] & \text{if } \chi = 0\\ [-0.6, -0.5], [0.4, 0.6] & \text{if } \chi = 1\\ [-0.4, -0.3], [0.3, 0.2] & \text{if } \chi = 2 \end{cases}$

	(-0.6,	0.8	if $\chi = 0$
$L(\chi)$	-0.5,	0.6	if $\chi = 1$
	-0.3,	0.3	if $\chi = 2$

We can show that $\Theta = \langle M, L \rangle$ is a (*CBF*) ideal with thresholds ([0.1, 0.1], [0.3, 0.2]) and (0.4, 0.2) of \aleph

```
Definition(27). A (CBF)set \Theta = \langle M, L \rangle is named a (CBF)k-ideal of KU-semigroup with
thresholds (\alpha, \beta), (\omega, \vartheta) if \forall \chi, \gamma, \tau \in \aleph
(CBK<sub>1</sub>)rmin{\tilde{\mu}_{\Theta}^{-}(0), -\alpha} \leq rmax{\tilde{\mu}_{\Theta}^{+}(\chi), -\beta}
rmax{\tilde{\mu}_{\Theta}^{+}(0), \alpha} \geq rmin{\tilde{\mu}_{\Theta}^{+}(\chi), \beta}
min{\lambda_{\Theta}^{-}(0), -\omega} \leq max{\lambda_{\Theta}^{-}(\chi), -\vartheta}
max{\lambda_{\Theta}^{+}(0), \omega} \geq min{\lambda_{\Theta}^{+}(\chi), \vartheta}
(CBK<sub>2</sub>) rmin{\tilde{\mu}_{\Theta}^{-}(\chi * \tau), -\alpha} \leq rmax{\tilde{\mu}_{\Theta}^{-}(\chi * (\gamma * \tau)), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta}
rmax{\tilde{\mu}_{\Theta}^{+}(\chi * \tau), \alpha} \geq rmin{\tilde{\mu}_{\Theta}^{+}(\chi * (\gamma * \tau)), \lambda_{\Theta}^{-}(\gamma), -\vartheta}
max{\lambda_{\Theta}^{+}(\chi * \tau), -\omega} \leq max{\lambda_{\Theta}^{-}(\chi * (\gamma * \tau)), \lambda_{\Theta}^{+}(\gamma), \vartheta}
(CBK<sub>3</sub>)rmin{\tilde{\mu}_{\Theta}^{-}(\chi \circ \gamma), -\alpha} \leq rmax{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta}
rmax{\tilde{\mu}_{\Theta}^{+}(\chi \circ \gamma), \alpha} \geq rmin{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta}
min{\lambda_{\Theta}^{-}(\chi \circ \gamma), -\omega} \leq max{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\gamma), -\vartheta}
max{\lambda_{\Theta}^{+}(\chi \circ \gamma), \omega} \geq min{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\gamma), \vartheta}
```

Lemma(28). Every (*CBF*) *k*-ideal of \aleph is a (*CBF*) *k*-ideal with thresholds (α , β), (ω , ϑ) of \aleph **Proof:** Suppose that $\Theta = \langle M, L \rangle$ is a (*CBF*) *k*-ideal of \aleph , then let

 $rmax\{\tilde{\mu}_{\Theta}^{+}(0), \alpha\} < rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}, \text{and } \alpha < \beta \text{ it follows that } \tilde{\mu}_{\Theta}^{+}(0) < \tilde{\mu}_{\Theta}^{+}(\chi). \text{ But that is a contradiction, since } \Theta \text{ is a}(CBF) \mathbf{k}\text{-ideal of } \aleph$,

 $rmax\{\tilde{\mu}_{\Theta}^{+}(0),\alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi),\beta\},\$

also let $min\{\lambda_{\Theta}(0), -\omega\} > max\{\lambda_{\Theta}(\chi), -\vartheta\}$, and $\omega < \vartheta$, it follows that

 $\lambda_{\Theta}^{-}(0) > \lambda_{\Theta}^{-}(\chi)$; this is a contradiction since Θ is a(*CBF*) *k*-ideal of \aleph . this means that

 $min\{\lambda_{\Theta}^{-}(0), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}$, in the same way, we can prove

 $rmin\{\tilde{\mu}_{\Theta}^{-}(0), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}, \text{ and } max\{\lambda_{\Theta}^{+}(0), \omega\} \geq min\{\lambda_{\Theta}^{+}(\chi), \vartheta\}$

Again, assume that

 $rmax\{\tilde{\mu}_{\Theta}^{+}(\chi * \tau), \alpha\} < rmin\{\tilde{\mu}_{\Theta}^{+}(\chi * (\gamma * \tau), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}, \text{ and } \alpha < \beta \text{ it follows that} \\ \tilde{\mu}_{\Theta}^{+}(\chi * \tau) < rmin\{\tilde{\mu}_{\Theta}^{+}(\chi * (\gamma * \tau), \tilde{\mu}_{\Theta}^{+}(\gamma)\}, \text{ which is a contradiction, so} \end{cases}$

 $rmax\{\tilde{\mu}_{\Theta}^{+}(\chi * \tau), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi * (\gamma * \tau), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\},$ Also let $min\{\lambda_{\Theta}^{-}(\chi * \tau), -\omega\} > max\{\lambda_{\Theta}^{-}(\chi * (\gamma * \tau)), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}, \text{ and } \omega < \vartheta, \text{ so}$ $\lambda_{\Theta}^{-}(\chi * \tau) > max\{\lambda_{\Theta}^{-}(\chi * (\gamma * \tau)), \lambda_{\Theta}^{-}(\gamma)\}, \text{ which is a contradiction. That is } min\{\lambda_{\Theta}^{-}(\chi * \tau), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi * (\gamma * \tau)), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$ In the same way, we get $rmin\{\tilde{\mu}_{\Theta}^{-}(\chi * \tau), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi * (\gamma * \tau)), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$ $max\{\lambda_{\Theta}^{+}(\chi * \tau), \omega\} \geq min\{\lambda_{\Theta}^{+}(\chi * (\gamma * \tau)), \lambda_{\Theta}^{+}(\gamma), \vartheta\}, \text{ and the condition } (CBK_3)$ Then, $\Theta = \langle M, L \rangle$ is a (CBF) *k*-ideal with thresholds $(\alpha, \beta), (\omega, \vartheta)$ of \aleph .

Proposition(29). Let $\Theta = \langle M, L \rangle$ be a cubic bipolar *k*-ideal with thresholds $(\alpha, \beta), (\omega, \vartheta)$ of \aleph if $\chi \leq \gamma$, then (*a*) $rmin\{\tilde{\mu}_{\Theta}^{-}(\chi), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}, rmax\{\tilde{\mu}_{\Theta}^{+}(\chi), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$ (*b*) $min\{\lambda_{\Theta}^{-}(\chi), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\gamma), -\vartheta\}, max\{\lambda_{\Theta}^{+}(\chi), \omega\} \geq min\{\lambda_{\Theta}^{+}(\gamma), \vartheta\}$

Proof: Since
$$\chi \leq \gamma$$
, then $\gamma * \chi = 0$, and by $(ku_3) \ 0 * \chi = \chi$
Since $\Theta = \langle M, L \rangle$ is a (CB) k-ideal with thresholds $(\alpha, \beta), (\omega, \vartheta)$ of \aleph , we get
 $min\{\tilde{\mu}_{\Theta}^{-}(\chi), -\alpha\} = rmin\{\tilde{\mu}_{\Theta}^{-}(0 * \chi), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(0 * (\gamma * \chi)), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$
 $= rmax\{\tilde{\mu}_{\Theta}^{-}(0), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$
 $= rmax\{\tilde{\mu}_{\Theta}^{-}(0), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$
 $= rmax\{\tilde{\mu}_{\Theta}^{+}(0, \pi_{\Theta}), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(0 * (\gamma * \chi)), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$
 $= rmin\{\tilde{\mu}_{\Theta}^{+}(0 * 0), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$
 $= rmin\{\tilde{\mu}_{\Theta}^{+}(0, 0, \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$
 $= rmin\{\tilde{\mu}_{\Theta}^{+}(0), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$
 $= rmin\{\tilde{\mu}_{\Theta}^{+}(0), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$
 $= min\{\tilde{\lambda}_{\Theta}^{-}(0 * (\gamma * \chi)), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$
 $= max\{\lambda_{\Theta}^{-}(0 * 0), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$
 $= max\{\lambda_{\Theta}^{-}(0, 0, 0, \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$
 $= max\{\lambda_{\Theta}^{-}(0, 1, \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$
 $= max\{\lambda_{\Theta}^{-}(0, 1, \lambda_{\Theta}^{+}(\gamma), \vartheta\}$

= $min\{\lambda_{\Theta}^{+}(\gamma), \vartheta\}$, which is(**b**)

Theorem(30).Let $\Theta = \langle M, L \rangle$ be a cubic bipolar fuzzy set of a KUsemigroup($\aleph, *, \circ, 0$) then, Θ is a (*CBF*) *k*-ideal with thresholds (α, β), (ω, ϑ) of \aleph if and only if it is a (*CBF*)-ideal with thresholds (α, β), (ω, ϑ) of \aleph .

Proof: \Rightarrow Let $\Theta = \langle M, L \rangle$ be a cubic bipolar *k*-ideal with thresholds $(\alpha, \beta), (\omega, \vartheta)$ of \aleph , if we put $\chi = 0$ in *(CBK*₂), we get

 $rmin\{\tilde{\mu}_{\Theta}^{-}(0 * \tau), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(0 * (\gamma * \tau)), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\} \text{ is}$ $rmin\{\tilde{\mu}_{\Theta}^{-}(\tau), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\gamma * \tau), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$ $\text{,also} \quad rmax\{\tilde{\mu}_{\Theta}^{+}(0 * \tau), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(0 * (\gamma * \tau), \tilde{\mu}_{\Theta}^{-}(\gamma), \beta\} \text{ is}$ $rmax\{\tilde{\mu}_{\Theta}^{+}(\tau), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\gamma * \tau), \tilde{\mu}_{\Theta}^{-}(\gamma), \beta\} \text{ ,and}$ $min\{\lambda_{\Theta}^{-}(0 * \tau), -\omega\} \leq max\{\lambda_{\Theta}^{-}(0 * (\gamma * \tau)), \lambda_{\Theta}^{-}(\gamma), -\vartheta\} \text{ is}$ $min\{\lambda_{\Theta}^{-}(\tau), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\gamma * \tau)), \lambda_{\Theta}^{-}(\gamma), -\vartheta\},$ Also $max\{\lambda_{\Theta}^{+}(0 * \tau), \omega\} \geq min\{\lambda_{\Theta}^{+}(0 * (\gamma * \tau)), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$

 $max\{\lambda_{\Theta}^{+}(\tau), \omega\} \geq min\{\lambda_{\Theta}^{+}(\gamma * \tau), \lambda_{\Theta}^{+}(\gamma), \vartheta\}, \text{the other conditions } (CBT_{1}), (CBT_{3}) \text{ are holds from the definition of } (CBF)k\text{-ideal; therefore } \Theta = \langle M, L \rangle \text{is a (CB)-ideal with thresholds } (\alpha, \beta), (\omega, \vartheta) \text{ of } \aleph$

 $\leftarrow \text{Let } \Theta = \langle M, L \rangle \text{ be a cubic bipolar ideal with thresholds } (\alpha, \beta), (\omega, \vartheta) \text{ of } \aleph, \\ \text{By } (CBT_2) rmin\{\tilde{\mu}_{\Theta}^-(\chi * \tau), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^-(\gamma * (\chi * \tau), \tilde{\mu}_{\Theta}^-(\gamma), -\beta\}, \text{ also} \\ rmax\{\tilde{\mu}_{\Theta}^+(\chi * \tau), \alpha\} \leq rmin\{\tilde{\mu}_{\Theta}^+(\gamma * (\chi * \tau), \tilde{\mu}_{\Theta}^-(\gamma), -\vartheta\}, \\ min\{\lambda_{\Theta}^-(\chi * \tau), -\omega\} \leq max\{\lambda_{\Theta}^-(\gamma * (\chi * \tau), \lambda_{\Theta}^-(\gamma), -\vartheta\}, \\ \text{also} \\ max\{\lambda_{\Theta}^+(\chi * \tau), \omega\} \geq min\{\lambda_{\Theta}^+(\gamma * (\chi * \tau), \lambda_{\Theta}^+(\gamma), \vartheta\} \\ \text{Applying theorem } 2 (2) \text{ to the previous four steps ,we obtain} \\ rmin\{\tilde{\mu}_{\Theta}^-(\chi * \tau), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^-(\chi * (\gamma * \tau), \tilde{\mu}_{\Theta}^-(\gamma), -\beta\}, \\ rmax\{\tilde{\mu}_{\Theta}^+(\chi * \tau), \alpha\} \leq rmin\{\tilde{\mu}_{\Theta}^+(\chi * (\gamma * \tau), \tilde{\mu}_{\Theta}^-(\gamma), -\beta\}, \\ max\{\lambda_{\Theta}^-(\chi * \tau), -\omega\} \leq max\{\lambda_{\Theta}^-(\chi * (\gamma * \tau), \lambda_{\Theta}^-(\gamma), -\vartheta\}, \\ max\{\lambda_{\Theta}^+(\chi * \tau), \omega\} \geq min\{\lambda_{\Theta}^+(\chi * (\gamma * \tau), \lambda_{\Theta}^+(\gamma), \vartheta\}, \text{ which is } a (CBF) \text{ k-ideal,} \\ \text{The remaining two conditions } (CBK_I), (CBK_3) \text{ are holds from the definition of } (CBF)\text{-ideal}.$

4.Conclusion

During this work, we present the definitions of the cubic bipolar sub-KU-semigroup with thresholds (α, β) , (ω, ϑ) and cubic bipolar *k*-ideal with thresholds (α, β) , (ω, ϑ) of \aleph . The relationship among these types of ideals and some properties are studied, We obtained the following result: every (CBF) sub-KU-semi group of \aleph is a (CBF) sub-KU-semi group with thresholds (α, β) , (ω, ϑ) of \aleph , but the converse is not true. Finally, we proved that a cubic bipolar fuzzy k-ideal with thresholds (α, β) , (ω, ϑ) and a cubic bipolar fuzzy ideal with thresholds (α, β) , (ω, ϑ) of a KU-semi group are equivalents.

References

- 1. Zadeh, L.A. Fuzzy Sets, Inform and Control, 1965, 8, 338-353.
- Mostafa, S.M.; Abd-Elnaby, M.A.; Yousef, M.M.M. Fuzzy ideals of KU-Algebras, Int. Math, Forum, 2011, 6(63), 3139-3149.
- Mostafa, S. M.; Kareem, F. F.bipolar fuzzy N-fold KU-ideals of KU-algebras, Mathematica Aeterna, 2014, 4, 633-650.
- 4. Jun, Y. B.; Kim, C. S.; Kang, M. S. Cubic subalgebras and ideals of BCK/BCI-algebras, *Far East Journal of Mathematical Sciences*, 2010, 2 (44), 239–250.
- 5. Jun, Y. B.; Kim, C. S.; Kang, J. G. Cubic q-ideals of BCIalgebras, Ann. *Fuzzy Math.Inform.* 2011, *1* (1), 25-34.
- Jun, Y. B.; Kim, C. S.; Yang, K. O. Cubic sets, Ann. Fuzzy Math. Inform. 2012,4 (1) 83-98.
- Kareem, F. F.; Hasan, O. A. Cubic ideals of semigroup in KU-algebra, *Journal of Physics: Conference Series* 1804 (2021) 012018 IOP Publishing
- 8. Kareem, F. F.; Hasan, O. A. The Homomorphism of a cubic set of a semigroup in a KUalgebra, *Journal of Physics*, 1879 (2021) 022119 IOP Publishing.
- 9. Kareem, F.F.; Hasan, E. R. Bipolar fuzzy *k*-ideals in KU-semigroups, *Journal of New Theory*, 2019,9, 71-78.
- K Awad, Wisam K., and Fatema F. Kareem. The Homomorphism of Cubic bipolar ideals of a KU-semigroup. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2022, 35(1)., 73-83.
- 11. Kareem, F.F.; Abed, M. M. Generalizations of Fuzzy k-ideals in a KU-algebra with Semigroup, *Journal of Physics*, 2021, 1879,022108 IOP Publishing.
- 12. Prabpayak, C. Leerawat, U. On ideals and congruence in KU-algebras, scientia Magna, 2009, *5*(*1*), 54-57.
- 13. Kareem, F.F.; Hasan, E. R. On KU-semigroups, *International Journal of Science and Nature*. 2018, *9* (1), 79-84.