($\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}$)-Derivation Pair on Rings

Mohammed Khalid Shahoodh
Ministry of Education, Ramadi Directorate of Education, Anbar-Iraq moha861122@yahoo.com

Article history: Received 21 November, 2021, Accepted,25, January, 2022, Published in April 2022.
Doi: 10.30526/35.2.2723

Abstract

Ring theory is one of the influential branches of abstract algebra. In this field, many algebraic problems have been considered by mathematical researchers who are working in this field. However, some new concepts have been created and developed to present some algebraic structures with their properties. Rings with derivations have been studied fifty years ago, especially the relationships between the derivations and the structure of a ring. By using the notatin of derivation, many results have been obtained in the literature with different types of derivations. In this paper, the concept of the derivation theory of a ring has been considered. This study presented the definition of $\left(\theta_{1}, \theta_{2}\right)$-derivation pair and Jordan $\left(\theta_{1}, \theta_{2}\right)$-derivation pair on an associative ring Γ, and the relation between them. Furthermore, we study the concept of prime rings under this notion by introducing some of its properties where θ_{1} and θ_{2} are two mappings of Γ into itself.

Keywords: Ring Theory, Derivation theory, Prime ring, Derivation pair, Semiprime ring.

1. Introduction

The study of derivation has been initiated from the development of Galois theory and the theory of invariants. This theory has been studied very widely by many researchers on various algebraic structures. The author in [1] studied this topic on H^{*}-algebra by introducing Jordan *-derivation pair. While the authors in [2] considered the topic of BCI-algebras, and the same topic has been investigated on BCC-algebras by the authors in [3]. Moreover, some other works with different algebraic structures can be found in [4-5]. On the other hand, some other studies have studied this topic with some types of rings such as prime and semiprime rings, see [6-8]. [12] presented a new definition of derivation pair instead of Jordan *-derivation pair which was provided by [1]. In this paper, we extended the results of [12] by introducing the notion of (θ_{1}, θ_{2})-derivation pair and studied some of its properties.

2. Basic Concepts

This section contains some of the previous results that are needed in this study which are as follows:
Definition 2.1[9]

A non-empty set Γ is said to be an associative ring, if for all $c_{1}, c_{2}, c_{3} \in \Gamma$ there exist two binary operations defined on Γ and denoted by + and \cdot respectively, such that

```
i. \(\quad c_{1}+c_{2}=c_{2}+c_{1}\)
ii. \(\quad\left(c_{1}+c_{2}\right)+c_{3}=c_{1}+\left(c_{2}+c_{3}\right)\)
iii. \(\quad \forall c_{1} \in \Gamma \exists 0 \in \Gamma\) such that \(c_{1}+0=0+c_{1}=c_{1}\)
iv. \(\forall c_{1} \in \Gamma \exists-c_{1} \in \Gamma\) such that \(-c_{1}+c_{1}=c_{1}+\left(-c_{1}\right)=0\)
v. \(\quad c_{1} \cdot c_{2} \in \Gamma\)
vi. \(\quad\left(c_{1} \cdot c_{2}\right) \cdot c_{3}=c_{1} \cdot\left(c_{2} \cdot c_{3}\right)\)
vii. \(\quad c_{1} \cdot\left(c_{2}+c_{3}\right)=c_{1} \cdot c_{2}+c_{1} \cdot c_{3}\)
viii. \(\quad\left(c_{1}+c_{2}\right) \cdot c_{3}=c_{1} \cdot c_{3}+c_{2} \cdot c_{3}\).
```


Definition 2.2 [9]

A ring Γ is said to be a prime ring if for each $c_{1}, c_{2} \in \Gamma, c_{1} \Gamma c_{2}=0$ implies that $c_{1}=0$ or $c_{2}=0$.

Definition 2.3 [9]

A ring Γ is said to be k-torsion-free if whenever $k c=0$ implies that $c=0$, where $c \in \Gamma$ and $k \neq 0$.

Definition 2.4 [10]

Let Γ be a ring, then $\left[c_{1}, c_{2}\right]$ is said to be Lie product and given as $\left[c_{1}, c_{2}\right]=c_{1} c_{2}-c_{2} c_{1}$ and $c_{1} \circ c_{2}$ is said to be Jordan product and given as $c_{1} \circ c_{2}=c_{1} c_{2}+c_{2} c_{1}$.

Definition 2.5 [11]
The characteristic of a ring Γ (for short $\operatorname{char}(\Gamma)$) is the smallest positive integer z such that $z r=0$ with $r \in \Gamma$. Otherwise, $\operatorname{char}(\Gamma)=0$.

Definition 2.6 [12]

Let Γ be a ring and let $\mu, \sigma: \Gamma \longrightarrow \Gamma$ be two additive mappings, then μ, σ are said to be derivation pair (μ, σ) if the following equations are holds:
$\mu(u v u)=\mu(u) v u+u \sigma(v) u+u v \mu(u)$, for each $u, v \in \Gamma$
$\sigma(u v u)=\sigma(u) v u+u \mu(v) u+u v \sigma(u)$, for each $u, v \in \Gamma$
and are called Jordan derivation pair if:
$\mu\left(u^{3}\right)=\mu(u) u^{2}+u \sigma(u) u+u^{2} \mu(u)$, for each $u \in \Gamma$
$\sigma\left(u^{3}\right)=\sigma(u) u^{2}+u \mu(u) u+u^{2} \sigma(u)$, for each $u \in \Gamma$.

3. Main Results

In this section, we presented the notion of $\left(\theta_{1}, \theta_{2}\right)$-derivation pair on the ring Γ where θ_{1} and θ_{2} are two mappings from the ring Γ into itself. Moreover, some properties of this concept have been proved.

Definition 3.1 Let Γ be a ring. Let $\delta_{1}, \delta_{2}: \Gamma \rightarrow \Gamma$ be additive mappings, then $\left(\delta_{1}, \delta_{2}\right)$ is said to be (θ_{1}, θ_{2})-derivation pair, if the following are holds:
$\delta_{1}(u v u)=\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{1}(u)$, for each $u, v \in \Gamma$
$\delta_{2}(u v u)=\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{2}(u)$, for each $u, v \in \Gamma$.
and are said to be Jordan $\left(\theta_{1}, \theta_{2}\right)$-derivation pair, if the following are holds:
$\delta_{1}\left(u^{3}\right)=\delta_{1}(u) \theta_{1}\left(u^{2}\right)+\theta_{2}(u) \delta_{2}(u) \theta_{1}(u)+\theta_{2}\left(u^{2}\right) \delta_{1}(u)$ for all $u \in \Gamma$
$\delta_{2}\left(u^{3}\right)=\delta_{2}(u) \theta_{1}\left(u^{2}\right)+\theta_{2}(u) \delta_{1}(u) \theta_{1}(u)+\theta_{2}\left(u^{2}\right) \delta_{2}(u)$ for all $u \in \Gamma$.
Example 3.1 Let Γ be a non-commutative ring, let $c_{1}, c_{2} \in \Gamma$ such that $\theta_{2}(u) c_{1}=\theta_{2}(u) c_{2}=$ 0 (resp. $\left.\theta_{2}(v) c_{1}=\theta_{2}(v) c_{2}=0\right)$ for all $u, v \in \Gamma$.Define $\delta_{1}, \delta_{2}: \Gamma \rightarrow \Gamma$ as follows: $\delta_{1}(u)=$ $c_{1} \theta_{1}(u)$ and $\delta_{2}(u)=c_{2} \theta_{1}(u), \forall u \in \Gamma$, where $\theta_{1}, \theta_{2}: \Gamma \rightarrow \Gamma$ are two endomorphism mappings. Then $\left(\delta_{1}, \delta_{2}\right)$ is a $\left(\theta_{1}, \theta_{2}\right)$-derivation pair of Γ.
Let $u, v \in \Gamma$, then $\delta_{1}(u v u)=c_{1} \theta_{1}(u v u)$

$$
\begin{aligned}
& =c_{1} \theta_{1}(u(v u)) \\
& =c_{1} \theta_{1}(u) \theta_{1}(v u) \\
& =\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) c_{2} \theta_{1}(v u) \\
& =\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) c_{2} \theta_{1}(v) \theta_{1}(u) \\
& =\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u) \theta_{2}(v) c_{1} \theta_{1}(u) \\
& =\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u) \theta_{2}(v) \delta_{1}(u) \\
& =\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{1}(u)
\end{aligned}
$$

Also, $\delta_{2}(u v u)=c_{2} \theta_{1}(u v u)$
$=c_{2} \theta_{1}(u(v u))$
$=c_{2} \theta_{1}(u) \theta_{1}(v u)$
$=\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) c_{1} \theta_{1}(v u)$
$=\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) c_{1} \theta_{1}(v) \theta_{1}(u)$
$=\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u) \theta_{2}(v) c_{2} \theta_{1}(u)$
$=\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u) \theta_{2}(v) \delta_{2}(u)$
$=\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{2}(u)$
Thus, $\left(\delta_{1}, \delta_{2}\right)$ is a $\left(\theta_{1}, \theta_{2}\right)$-derivation pair of Γ.
Remark 3.1: Every $\left(\theta_{1}, \theta_{2}\right)$-derivation pair is a Jordan $\left(\theta_{1}, \theta_{2}\right)$-derivation pair, but the converse is not true in general.

Example 3.2: Let Γ be a 2-torsion free non-commutative ring, let $c \in \Gamma$ such that $\theta_{2}(u) c \theta_{1}(u)=0, \forall u \in \Gamma$, but $\theta_{2}(u) c \theta_{1}(v) \neq 0$ for some $u \neq v \in \Gamma$. Define $\delta_{1}, \delta_{2}: \Gamma \rightarrow \Gamma$ as follows: $\delta_{1}(u)=\theta_{2}(u) c+c \theta_{1}(u)$ and $\delta_{2}(u)=\theta_{2}(u) c-c \theta_{1}(u), \forall u \in \Gamma$, where $\theta_{1}, \theta_{2}: \Gamma \rightarrow \Gamma$ are two endomorphisms. Then (δ_{1}, δ_{2}) is a Jordan (θ_{1}, θ_{2})-derivation but not $\left(\theta_{1}, \theta_{2}\right)$-derivation.

Let $u, v \in \Gamma$, then
$\delta_{1}\left(u^{3}\right)=\theta_{2}\left(u^{3}\right) c+c \theta_{1}\left(u^{3}\right) \quad$ and $\quad \delta_{1}\left(u^{3}\right)=\delta_{1}(u) \theta_{1}\left(u^{2}\right)+\theta_{2}(u) \delta_{2}(u) \theta_{1}(u)+$ $\theta_{2}\left(u^{2}\right) \delta_{1}(u)$. Thus, $\delta_{1}(u) \theta_{1}\left(u^{2}\right)+\theta_{2}(u) \delta_{2}(u) \theta_{1}(u)+\theta_{2}\left(u^{2}\right) \delta_{1}(u)=$
$\left(\theta_{2}(u) c+c \theta_{1}(u)\right) \theta_{1}\left(u^{2}\right)+\theta_{2}(u)\left(\theta_{2}(u) c-c \theta_{1}(u)\right) \theta_{1}(u)+\theta_{2}\left(u^{2}\right)\left(\theta_{2}(u) c+\right.$
$\left.c \theta_{1}(u)\right)=$
$\left(\theta_{2}(u) c \theta_{1}(u) \theta_{1}(u)+c \theta_{1}(u) \theta_{1}(u) \theta_{1}(u)\right)+\left(\theta_{2}(u) \theta_{2}(u) c \theta_{1}(u)-\theta_{2}(u) c \theta_{1}(u) \theta_{1}(u)\right)+$
$\left(\theta_{2}(u) \theta_{2}(u) \theta_{2}(u) c+\theta_{2}(u) \theta_{2}(u) c \theta_{1}(u)\right)=$
$c \theta_{1}(u) \theta_{1}(u) \theta_{1}(u)+\theta_{2}(u) \theta_{2}(u) \theta_{2}(u) c=\theta_{2}\left(u^{3}\right) c+c \theta_{1}\left(u^{3}\right)$.
Also,
$\delta_{2}(u)=\theta_{2}(u) c-c \theta_{1}(u)$ and $\delta_{2}\left(u^{3}\right)=\delta_{2}(u) \theta_{1}\left(u^{2}\right)+\theta_{2}(u) \delta_{1}(u) \theta_{1}(u)+\theta_{2}\left(u^{2}\right) \delta_{2}(u)$.
Thus, $\delta_{2}(u) \theta_{1}\left(u^{2}\right)+\theta_{2}(u) \delta_{1}(u) \theta_{1}(u)+\theta_{2}\left(u^{2}\right) \delta_{2}(u)=$
$\left(\theta_{2}(u) c-c \theta_{1}(u)\right) \theta_{1}\left(u^{2}\right)+\theta_{2}(u)\left(\theta_{2}(u) c+c \theta_{1}(u)\right) \theta_{1}(u)+\theta_{2}\left(u^{2}\right)\left(\theta_{2}(u) c-c \theta_{1}(u)\right)$
=
$\left(\theta_{2}(u) c \theta_{1}(u) \theta_{1}(u)-c \theta_{1}(u) \theta_{1}(u) \theta_{1}(u)\right)+\left(\theta_{2}(u) \theta_{2}(u) c \theta_{1}(u)+\theta_{2}(u) c \theta_{1}(u) \theta_{1}(u)\right)$
$+\left(\theta_{2}(u) \theta_{2}(u) \theta_{2}(u) c-\theta_{2}(u) \theta_{2}(u) c \theta_{1}(u)\right)=$
$-c \theta_{1}(u) \theta_{1}(u) \theta_{1}(u)+\theta_{2}(u) \theta_{2}(u) \theta_{2}(u) c=\theta_{2}\left(u^{3}\right) c-c \theta_{1}\left(u^{3}\right)$.
Therefore, $\left(\delta_{1}, \delta_{2}\right)$ is a $\operatorname{Jordan}\left(\theta_{1}, \theta_{2}\right)$-derivation pair.

Now, $\delta_{1}(u v u)=\theta_{2}(u v u) c+c \theta_{1}(u v u)$ and

```
\(\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{1}(u)=\)
\(\left(\theta_{2}(u) c+c \theta_{1}(u)\right) \theta_{1}(v u)+\theta_{2}(u)\left(\theta_{2}(v) c-c \theta_{1}(v)\right) \theta_{1}(u)+\theta_{2}(u v)\left(\theta_{2}(u) c+c \theta_{1}(u)\right)\)
            \(=\)
\(c \theta_{1}(u v u)+\theta_{2}(u v u) c+2 \theta_{2}(u v) c \theta_{1}(u)=\theta_{2}(u v u) c+c \theta_{1}(u v u)\).
also,
\(\delta_{2}(u v u)=\theta_{2}(u v u) c-c \theta_{1}(u v u)\) and \(\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\)
\(\theta_{2}(u v) \delta_{2}(u)=\)
\(\left(\theta_{2}(u) c-c \theta_{1}(u)\right) \theta_{1}(v u)+\theta_{2}(u)\left(\theta_{2}(v) c+c \theta_{1}(v)\right) \theta_{1}(u)+\theta_{2}(u v)\left(\theta_{2}(u) c-c \theta_{1}(u)\right)\)
    \(=\)
\(-c \theta_{1}(u v u)+\theta_{2}(u v u) c+2 \theta_{2}(u) c \theta_{1}(v u)\). Since \(\theta_{2}(u) c \theta_{1}(v) \neq 0\) for some \(u \neq v \in \Gamma\),
this means that \(\left(\delta_{1}, \delta_{2}\right)\) is not \(\left(\theta_{1}, \theta_{2}\right)\)-derivation pair.
```

Theorem 3.1 Let Γ be a prime ring. Let θ_{1} and θ_{2} be two automorphisms of Γ. If Γ is a $\left(\delta_{1}, \delta_{2}\right)$ - Derivation pair such that $\delta_{1}(u)=\mp \theta_{1}(u)$ for each $u \in \Gamma$, then $\delta_{2}(u)=0$.

Proof: Let $u \in \Gamma$.
If $\delta_{1}(u)=\theta_{1}(u)$ for each $u \in \Gamma$
Replacing u by $u v u$ in (1), we get:
$\delta_{1}(u v u)=\theta_{1}(u v u)$ for each $u, v \in \Gamma$
That is:
$\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{1}(u)=\theta_{1}(u v u)$ for each $u, v \in \Gamma$
By using (1) we have:
$\theta_{1}(u v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \theta_{1}(u)-\theta_{1}(u v u)=0$ for each $u, v \in \Gamma$
That is:
$\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \theta_{1}(u)=0$ for each $u, v \in \Gamma$
That is:
$\theta_{2}(u)\left(\delta_{2}(v)+\theta_{2}(v)\right) \theta_{1}(u)=0$ for each $u, v \in \Gamma$
Replacing $\delta_{2}(v)+\theta_{2}(v)$ by $\theta_{2}(v)$ in (6), and using (1) we get:
$\theta_{2}(u v) \delta_{1}(u)=0$ for each $u, v \in \Gamma$
Left multiplying of (7) by $\delta_{2}(u)$ we have:
$\delta_{2}(u) \theta_{2}(u v) \delta_{1}(u)=0$ for each $u, v \in \Gamma$
Since Γ is a prime ring, (8) gives:
$\delta_{2}(u)=0$ for each $u \in \Gamma$.
Now,
If $\delta_{1}(u)=-\theta_{1}(u)$ for each $u \in \Gamma$
Replacing u by $u v u$ in (9), we get:
$\delta_{1}(u v u)=-\theta_{1}(u v u)$ for each $u, v \in \Gamma$
That is:
$\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{1}(u)=-\theta_{1}(u v u)$ for each $u, v \in \Gamma$
By using (9) we have:
$-\theta_{1}(u v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)-\theta_{2}(u v) \theta_{1}(u)+\theta_{1}(u v u)=0$ for each $u, v \in \Gamma$
That is:
$\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)-\theta_{2}(u v) \theta_{1}(u)=0$ for each $u, v \in \Gamma$
That is:
$\theta_{2}(u)\left(\theta_{2}(v)-\delta_{2}(v)\right)\left(-\theta_{1}(u)\right)=0$ for each $u, v \in \Gamma$
By using (9) we have:
$\theta_{2}(u)\left(\theta_{2}(v)-\delta_{2}(v)\right) \delta_{1}(u)=0$ for each $u, v \in \Gamma$

Replacing $\theta_{2}(v)-\delta_{2}(v)$ by $\theta_{2}(v)$ in (15), we get:
$\theta_{2}(u v) \delta_{1}(u)=0$ for each $u, v \in \Gamma$
Left multiplying of (16) by $\delta_{2}(u)$ we have:
$\delta_{2}(u) \theta_{2}(u v) \delta_{1}(u)=0$ for each $u, v \in \Gamma$
Since Γ is a prime ring, (17) gives:
$\delta_{2}(u)=0$ for each $u \in \Gamma$.
Theorem 3.2 Let Γ be a prime ring. Let θ_{1} and θ_{2} be two automorphisms of Γ. If Γ is a $\left(\delta_{1}, \delta_{2}\right)$ - Derivation pair such that $\delta_{2}(u)=\mp \theta_{1}(u)$ for each $u \in \Gamma$, then $\delta_{1}(u)=0$.

Proof: Let $u \in \Gamma$.
If $\delta_{2}(u)=\theta_{1}(u)$ for each $u \in \Gamma$
Replacing u by $u v u$ in (18), we get:
$\delta_{2}(u v u)=\theta_{1}(u v u)$ for each $u, v \in \Gamma$
That is:
$\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{2}(u)=\theta_{1}(u v u)$ for each $u, v \in \Gamma$
By using (18) we have:
$\theta_{1}(u v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u v) \theta_{1}(u)-\theta_{1}(u v u)=0$ for each $u, v \in \Gamma$
That is:
$\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u v) \theta_{1}(u)=0$ for each $u, v \in \Gamma$
That is:
$\theta_{2}(u)\left(\delta_{1}(v)+\theta_{2}(v)\right) \theta_{1}(u)=0$ for each $u, v \in$
Γ
Replacing $\delta_{1}(v)+\theta_{2}(v)$ by $\theta_{2}(v)$ in (23), and using (18) we get:
$\theta_{2}(u v) \delta_{2}(u)=0$ for each $u, v \in$
Γ
Left multiplying of (24) by $\delta_{1}(u)$ we have:
$\delta_{1}(u) \theta_{2}(u v) \delta_{2}(u)=0$ for each $u, v \in$
Γ
Since Γ is a prime ring, (25) gives:
$\delta_{1}(u)=0$ for each $u \in \Gamma$.
Now,
If $\delta_{2}(u)=-\theta_{1}(u)$ for each $u \in \Gamma$
Replacing u by $u v u$ in (26), we get:
$\delta_{2}(u v u)=-\theta_{1}(u v u)$ for each $u, v \in \Gamma$
That is:
$\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{2}(u)=-\theta_{1}(u v u)$ for each $u, v \in$ Γ
By using (26) we have:
$-\theta_{1}(u v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)-\theta_{2}(u v) \theta_{1}(u)+\theta_{1}(u v u)=0$ for each $u, v \in \Gamma$
That is:
$\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)-\theta_{2}(u v) \theta_{1}(u)=0$ for each $u, v \in \Gamma$
That is:
$\theta_{2}(u)\left(\theta_{2}(v)-\delta_{1}(v)\right)\left(-\theta_{1}(u)\right)=0$ for each $u, v \in \Gamma$
By using (26) we have:
$\theta_{2}(u)\left(\theta_{2}(v)-\delta_{1}(v)\right) \delta_{2}(u)=0$ for each $u, v \in \Gamma$
Replacing $\theta_{2}(v)-\delta_{1}(v)$ by $\theta_{2}(v)$ in (32), we get:
$\theta_{2}(u v) \delta_{2}(u)=0$ for each $u, v \in \Gamma$
Left multiplying of (33) by $\delta_{1}(u)$ we have:
$\delta_{1}(u) \theta_{2}(u v) \delta_{2}(u)=0$ for each $u, v \in \Gamma$
Since Γ is a prime ring, (34) gives:
$\delta_{1}(u)=0$ for each $u \in \Gamma$.
Theorem 3.3 Let Γ be a prime ring. Let θ_{1} and θ_{2} be two automorphisms of Γ. If Γ is a $\left(\delta_{1}, \delta_{2}\right)$ Derivation pair such that $\delta_{2}(u) \delta_{1}(v)=0$ (resp. $\delta_{1}(u) \delta_{2}(v)=0$) for each $u, v \in \Gamma$, then $\delta_{2}(u)=0\left(\right.$ resp. $\left.\delta_{1}(u)=0\right)$.

Proof: Let $u, v \in \Gamma$.
If $\delta_{2}(u) \delta_{1}(v)=0$ for each $u, v \in \Gamma$
Replacing u by $u v u$ in (35), we get:
$\delta_{2}(u v u) \delta_{1}(v)=0$ for each $u, v \in \Gamma$
That is:
$\left(\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{2}(u)\right) \delta_{1}(v)=0$ for each $u, v \in \Gamma$
That is:
$\delta_{2}(u) \theta_{1}(v u) \delta_{1}(v)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u) \delta_{1}(v)+\theta_{2}(u v) \delta_{2}(u) \delta_{1}(v)=0$ for each $u, v \in \Gamma$ (38)

By using (35), we have:
$\delta_{2}(u) \theta_{1}(v u) \delta_{1}(v)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u) \delta_{1}(v)=0$ for each $u, v \in \Gamma$
That is:
$\left(\delta_{2}(u) \theta_{1}(v)+\theta_{2}(u) \delta_{1}(v)\right) \theta_{1}(u) \delta_{1}(v)=0$ for each $u, v \in \Gamma$
Replacing $\delta_{2}(u) \theta_{1}(v)+\theta_{2}(u) \delta_{1}(v)$ by $\theta_{1}(v)$ in (40), we get:
$\theta_{1}(v u) \delta_{1}(v)=0$ for each $u, v \in \Gamma$
Left multiplying (41) by $\delta_{2}(u)$ we have:
$\delta_{2}(u) \theta_{1}(v u) \delta_{1}(v)=0$ for each $u, v \in \Gamma$
Since Γ is a prime ring, (42) gives:
$\delta_{2}(u)=0$ for each $u \in \Gamma$.
Now,
If $\delta_{1}(u) \delta_{2}(v)=0$ for each $u, v \in \Gamma$
Replacing u by $u v u$ in (43), we get:
$\delta_{1}(u v u) \delta_{2}(v)=0$ for each $u, v \in \Gamma$
That is:
$\left(\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{1}(u)\right) \delta_{2}(v)=0$ for each $u, v \in \Gamma$
That is:
$\delta_{1}(u) \theta_{1}(v u) \delta_{2}(v)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u) \delta_{2}(v)+\theta_{2}(u v) \delta_{1}(u) \delta_{2}(v)=0 \quad$ for each $u, v \in \Gamma$ (46)

By using (43), we have:
$\delta_{1}(u) \theta_{1}(v u) \delta_{2}(v)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u) \delta_{2}(v)=0$ for each $u, v \in \Gamma$
That is:
$\left(\delta_{1}(u) \theta_{1}(v)+\theta_{2}(u) \delta_{2}(v)\right) \theta_{1}(u) \delta_{2}(v)=0$ for each $u, v \in \Gamma$
Replacing $\delta_{1}(u) \theta_{1}(v)+\theta_{2}(u) \delta_{2}(v)$ by $\theta_{1}(v)$ in (48), we get
$\theta_{1}(v u) \delta_{2}(v)=0$ for each $u, v \in \Gamma$
Left multiplying of (49) by $\delta_{1}(u)$, we have:
$\delta_{1}(u) \theta_{1}(v u) \delta_{2}(v)=0$ for each $u, v \in \Gamma$
Since Γ is a prime ring, (50) gives:
$\delta_{1}(u)=0$ for each $u \in \Gamma$.
Theorem 3.4 Let Γ be a prime ring. Let θ_{1} and θ_{2} be two automorphisms of Γ. If Γ is a $\left(\delta_{1}, \delta_{2}\right)$ Derivation pair such that $c \delta_{1}(u)=0$ or $\delta_{1}(u) c=0\left(\right.$ resp. $\mathrm{c} \delta_{2}(u)=0$ or $\left.\delta_{2}(u) c=0\right)$ for each $u, c \in \Gamma$, then either $c=0$ or $\delta_{1}(u)=0$ (resp. $c=0$ or $\left.\delta_{2}(u)=0\right)$.

Proof: Let $u, c \neq 0 \in \Gamma$.
If $c \delta_{1}(u)=0$ for each $c, u \in \Gamma$
Replacing u by $u v u$ in (51), we get:
$c \delta_{1}(u v u)=0$ for each $u, v, c \in \Gamma$
That is
$c\left(\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{1}(u)\right)=0$ for each $u, v, c \in \Gamma$
That is
$c \delta_{1}(u) \theta_{1}(v u)+c \theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+c \theta_{2}(u v) \delta_{1}(u)=0$ for each $u, v, c \in \Gamma$
By using (51), we have:
$c \theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+c \theta_{2}(u v) \delta_{1}(u)=0$ for each $u, v, c \in \Gamma$
That is
$c \theta_{2}(u)\left(\delta_{2}(v) \theta_{1}(u)+\theta_{2}(v) \delta_{1}(u)\right)=0$ for each $u, v, c \in \Gamma$
Replacing $\delta_{2}(v) \theta_{1}(u)+\theta_{2}(v) \delta_{1}(u)$ by $\delta_{1}(u)$ in (56), we get:
$c \theta_{2}(u) \delta_{1}(u)=0$ for each $u, c \in \Gamma$
Since $c \neq 0$ and Γ is a prime rings, then (57) gives $\delta_{1}(u)=0$.
Now, let $u, c \neq 0 \in \Gamma$.
If $c \delta_{2}(u)=0$ for each $c, u \in \Gamma$
Replacing u by $u v u$ in (58), we get:
$c \delta_{2}(u v u)=0$ for each $u, v, c \in \Gamma$
That is
$c\left(\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{2}(u)\right)=0$ for each $u, v, c \in \Gamma$
That is
$c \delta_{2}(u) \theta_{1}(v u)+c \theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+c \theta_{2}(u v) \delta_{2}(u)=0$ for each $u, v, c \in \Gamma$
By using (58), we have:
$c \theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+c \theta_{2}(u v) \delta_{2}(u)=0$ for each $u, v, c \in \Gamma$
That is
$c \theta_{2}(u)\left(\delta_{1}(v) \theta_{1}(u)+\theta_{2}(v) \delta_{2}(u)\right)=0$ for each $u, v, c \in \Gamma$
Replacing $\delta_{1}(v) \theta_{1}(u)+\theta_{2}(v) \delta_{2}(u)$ by $\delta_{2}(u)$ in (63), we get:
$c \theta_{2}(u) \delta_{2}(u)=0$ for each $u, c \in \Gamma$
Since $c \neq 0$ and Γ is a prime rings, then (64) gives $\delta_{2}(u)=0$.

Theorem 3.5 Let Γ be a prime ring with $\operatorname{char}(\Gamma) \neq 2$. Let θ_{1} and θ_{2} be two endomorphisms of Γ. If Γ is a $\left(\delta_{1}, \delta_{2}\right)$-Derivation pair such that $c_{1} q c_{2} \delta_{1}(u)+\delta_{1}(u) c_{2} q c_{1}=0$ (resp. $\left.c_{1} q c_{2} \delta_{2}(u)+\delta_{2}(u) c_{2} q c_{1}=0\right)$ for each $u, c_{1}, c_{2}, q \in \Gamma$, then $c_{1}=0$ or $c_{2}=0$.
Proof: From the assumption we have:
$c_{1} q c_{2} \delta_{1}(u)+\delta_{1}(u) c_{2} q c_{1}=0$ for each $u, c_{1}, c_{2}, q \in \Gamma$
Replacing u by $u v u$ in (65), we have:
$c_{1} q c_{2} \delta_{1}(u v u)+\delta_{1}(u v u) c_{2} q c_{1}=0$ for each $u, v, c_{1}, c_{2}, q \in \Gamma$
That is
$c_{1} q c_{2}\left(\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{1}(u)\right)+$
$\left(\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{1}(u)\right) c_{2} q c_{1}=0$ for each $u, v, c_{1}, c_{2}, q \in \Gamma$ (67)
That is
$\left(c_{1} q c_{2} \delta_{1}(u) \theta_{1}(v u)+c_{1} q c_{2} \theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+c_{1} q c_{2} \theta_{2}(u v) \delta_{1}(u)\right)+$
$\left(\delta_{1}(u) \theta_{1}(v u) c_{2} q c_{1}+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u) c_{2} q c_{1}+\theta_{2}(u v) \delta_{1}(u) c_{2} q c_{1}\right)=0$ for each
$u, v, c_{1}, c_{2}, q \in \Gamma$
By setting $\theta_{1}(v u)=\theta_{2}(u v)=1$ in (68), we have:
$\left(c_{1} q c_{2} \delta_{1}(u)+c_{1} q c_{2} \theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+c_{1} q c_{2} \delta_{1}(u)\right)+$
$\left(\delta_{1}(u) c_{2} q c_{1}+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u) c_{2} q c_{1}+\delta_{1}(u) c_{2} q c_{1}\right)=0$ for each $u, v, c_{1}, c_{2}, q \in \Gamma$
By using (65), we get:
$c_{1} q c_{2} \theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u) c_{2} q c_{1}=0$ for each $u, v, c_{1}, c_{2}, q \in \Gamma$

By setting $\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)=1$ in (70), we have:
$c_{1} q c_{2}+c_{2} q c_{1}=0$ for each $u, v, c_{1}, c_{2}, q \in \Gamma$
Replacing q by $x c_{1} y$ in (71), we get:
$c_{1} x c_{1} y c_{2}+c_{2} x c_{1} y c_{1}=0$ for each $x, y, c_{1}, c_{2} \in \Gamma$
That is
$c_{1} y c_{2}=-c_{2} y c_{1}$ and $c_{2} x c_{1}=-c_{1} x c_{2}$
Substituting (73) in (72) we have:
$-c_{1} x c_{2} y c_{1}-c_{1} x c_{2} y c_{1}=0$
That is $2 c_{1} \Gamma c_{2} \Gamma c_{1}=(0)$
Since $\operatorname{char}(\Gamma) \neq 2$ and Γ is a prime, then (75) gives $c_{1}=0$ or $c_{2}=0$.
Theorem 3.6 Let Γ be a 2-torsion free ring with an identity element. Furthermore, let $\left(\delta_{1}, \delta_{2}\right)$ be a Jordan $\left(\theta_{1}, \theta_{2}\right)$-derivation pair such that $\delta_{1}(1)=\delta_{2}(1)$. Then $\delta_{1}(u)=\delta_{2}(u), \forall u \in \Gamma$ where θ_{1} and θ_{2} are two mappings of Γ.

Proof: Let $\varphi: \Gamma \rightarrow \Gamma$ be a mapping given by $\varphi(u)=\delta_{1}(u)-\delta_{2}(u), \forall u \in \Gamma$. By Definition 3.1, we have:
$\delta_{1}\left(u^{3}\right)=\delta_{1}(u) \theta_{1}\left(u^{2}\right)+\theta_{2}(u) \delta_{2}(u) \theta_{1}(u)+\theta_{2}\left(u^{2}\right) \delta_{1}(u)$ for all $u \in \Gamma$
$\delta_{2}\left(u^{3}\right)=\delta_{2}(u) \theta_{1}\left(u^{2}\right)+\theta_{2}(u) \delta_{1}(u) \theta_{1}(u)+\theta_{2}\left(u^{2}\right) \delta_{2}(u)$ for all $u \in \Gamma$
Subtracting (77) from (76), we get:
$\varphi\left(u^{3}\right)=\varphi(u) \theta_{1}\left(u^{2}\right)-\theta_{2}(u) \varphi(u) \theta_{1}(u)+\theta_{2}\left(u^{2}\right) \varphi(u)$ for all $u \in \Gamma$
Linearizing (78), we have:
$\varphi\left(u^{2} v+v u^{2}+u v^{2}+v^{2} u+u v u+v u v\right)=\varphi(u) \theta_{1}(u v)+\varphi(u) \theta_{1}(v u)+\varphi(u) \theta_{1}\left(v^{2}\right)+$ $\varphi(v) \theta_{1}(u v)+\varphi(v) \theta_{1}(v u)+\varphi(v) \theta_{1}\left(u^{2}\right)-\theta_{2}(u) \varphi(u) \theta_{1}(v)-\theta_{2}(u) \varphi(v) \theta_{1}(u)-$
$\theta_{2}(v) \varphi(u) \theta_{1}(u)-\theta_{2}(v) \varphi(v) \theta_{1}(u)-\theta_{2}(u) \varphi(v) \theta_{1}(v)-\theta_{2}(v) \varphi(u) \theta_{1}(v)$

$$
+\theta_{2}(u v) \varphi(u)
$$

$+\theta_{2}(v u) \varphi(u)+\theta_{2}\left(v^{2}\right) \varphi(u)+\theta_{2}(u v) \varphi(v)+\theta_{2}(v u) \varphi(v)+\theta_{2}\left(u^{2}\right) \varphi(v)$ for all $u, v \in \Gamma$ (79)

Replacing u by $-u$ in (79), we get:
$\varphi\left(u^{2} v+v u^{2}-u v^{2}-v^{2} u+u v u-v u v\right)=\varphi(u) \theta_{1}(u v)+\varphi(u) \theta_{1}(v u)-\varphi(u) \theta_{1}\left(v^{2}\right)-$ $\varphi(v) \theta_{1}(u v)-\varphi(v) \theta_{1}(v u)+\varphi(v) \theta_{1}\left(u^{2}\right)+\theta_{2}(u) \varphi(u) \theta_{1}(v)+\theta_{2}(u) \varphi(v) \theta_{1}(u)+$ $\theta_{2}(v) \varphi(u) \theta_{1}(u)-\theta_{2}(v) \varphi(v) \theta_{1}(u)-\theta_{2}(u) \varphi(v) \theta_{1}(v)-\theta_{2}(v) \varphi(u) \theta_{1}(v)$

$$
+\theta_{2}(u v) \varphi(u)
$$

$+\theta_{2}(v u) \varphi(u)-\theta_{2}\left(v^{2}\right) \varphi(u)-\theta_{2}(u v) \varphi(v)-\theta_{2}(v u) \varphi(v)+\theta_{2}\left(u^{2}\right) \varphi(v)$ for all $u, v \in \Gamma$ (80)

According to (79) and (80), we have:
$\varphi\left(u^{2} v+v u^{2}+u v u\right)=\varphi(u) \theta_{1}(u v)+\varphi(u) \theta_{1}(v u)+\varphi(v) \theta_{1}\left(u^{2}\right)-\theta_{2}(v) \varphi(v) \theta_{1}(u)-$ $\theta_{2}(u) \varphi(v) \theta_{1}(v)-\theta_{2}(v) \varphi(u) \theta_{1}(v)+\theta_{2}(u v) \varphi(u)+\theta_{2}(v u) \varphi(u)+\theta_{2}\left(u^{2}\right) \varphi(v)$ for all $u, v \in \Gamma$
Replacing u by 1 in (81), we get:
$2 \varphi(v)=\varphi(v) \theta_{1}(1)-\theta_{2}(v) \varphi(v) \theta_{1}(1)-\theta_{2}(1) \varphi(v) \theta_{1}(v)+\theta_{2}(1) \varphi(v)$ for all $\quad v \in \Gamma$ (82)

By setting $\theta_{1}(1)=\theta_{2}(1)=0$ in (82), then we have:
$2 \varphi(v)=0$ for all $v \in \Gamma$
Since Γ is a 2 -torsion free ring, then
$\varphi(v)=0$ for all $v \in \Gamma$
Therefore, (84) gives $\delta_{1}(u)=\delta_{2}(u)$ for all $u \in \Gamma$.
Proposition 3.1 Let Γ be a ring, and θ_{1}, θ_{2} be two mappings of Γ. Then
1- If $\left(\delta_{1}, \delta_{2}\right)$ is a $\left(\theta_{1}, \theta_{2}\right)$-derivation pair on Γ, then $\delta_{1}+\delta_{2}$ is a $\left(\theta_{1}, \theta_{2}\right)$-derivation.

2- If $\left(\delta_{1}, \delta_{2}\right)$ is a Jordan $\left(\theta_{1}, \theta_{2}\right)$-derivation pair on Γ, then $\delta_{1}+\delta_{2}$ is a Jordan $\left(\theta_{1}, \theta_{2}\right)$ derivation.
Proof: (1) Since δ_{1} and δ_{2} is a $\left(\theta_{1}, \theta_{2}\right)$-derivation pair, then by Definition 3.1, we have:
$\delta_{1}(u v u)=\delta_{1}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{2}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{1}(u)$ for all $u, v \in \Gamma$
(85)
$\delta_{2}(u v u)=\delta_{2}(u) \theta_{1}(v u)+\theta_{2}(u) \delta_{1}(v) \theta_{1}(u)+\theta_{2}(u v) \delta_{2}(u)$ for all $u, v \in \Gamma$ (86)

By adding (85) and (86), we have:
$\left(\delta_{1}+\delta_{2}\right)(u v u)=\left(\delta_{1}+\delta_{2}\right)(u) \theta_{1}(v u)+\theta_{2}(u)\left(\delta_{1}+\delta_{2}\right)(v) \theta_{1}(u)+\theta_{2}(u v)\left(\delta_{1}+\delta_{2}\right)(u)$ Thus, $\delta_{1}+\delta_{2}$ is a (θ_{1}, θ_{2})-derivation. By a similar way to prove (2).

4. Conclusion

As a conclusion, this article presented the notion of $\left(\theta_{1}, \theta_{2}\right)$-derivation pair with some of its properties. This study displayed that the sum of two $\left(\theta_{1}, \theta_{2}\right)$-derivation pair is a $\left(\theta_{1}, \theta_{2}\right)$ derivation and the sum of two Jordan $\left(\theta_{1}, \theta_{2}\right)$-derivation pair is a Jordan $\left(\theta_{1}, \theta_{2}\right)$-derivation.

References

1. Zalar, B. Jordan-Von Neumann theorem for Saworotnow's generalized Hilbert space, Acta Math. Hungar. 1995,69: 301-325.
2. Abujabal, H. A.; Al-Shehri N. Some results on derivations of BCI-algebras, Journal of Natural Sciences and Mathematics, 2006, 46(1-2):13-19.
3. Prabpayak, C.; Leerawat, U. On derivations of BCC-algebras, Kasetsart Journal, 2009, 43(2) :398-401.
4. Al-Shehrie, N. Derivations of B-algebras, Journal of King Abdulaziz University-Science, 2010, 22(1):71-83.
5. Al-Kadi, D. f_{q}-Derivations of G-Algebra, International Journal of Mathematics and Mathematical Sciences, 2016 :1-5.
6. Yass, S. Strongly derivation pairs on prime and seniprime rings. MSc. Thesis, University of Baghdad, 2010.
7. Kumar, D.; Sandhu, G. On multiplicative (generalized)-derivations in semiprime rings, , International Journal of Pure and Applied Mathematics, 2016, 106(1):249-257.
8. Samman, M.; Alyamani, N. Derivations and reverse derivations in semiprime rings, International Mathematical Forum, 2007, 2(39):1895-1902.
9. Herstein, I. Topics in ring theory, University of Chicago Press, Chicago, 1969.
10. Ashraf, M,; Ali. S,; Haetinger, C. On derivations in rings and their applications, Aligarh Bull. of Mathematics, 2006, 25(2):79-107.
11. Jackson, N. A first Course in abstract algebra, 2016.
12. Majeed, A. H.; Altay, A. A. On Jordan derivation pairs in rings, Iraqi J. of Science.(to appear).
