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Abstract 

     The paired sample t-test for testing the difference between two means in paired data is not 

robust against the violation of the normality assumption. In this paper, some alternative 

robust tests have been suggested by using the bootstrap method in addition to combining the 

bootstrap method with the W.M test. Monte Carlo simulation experiments were employed to 

study the performance of the test statistics of each of these three tests depending on type one 

error rates and the power rates of the test statistics. The three tests have been applied on 

different sample sizes generated from three distributions represented by Bivariate normal 

distribution, Bivariate contaminated normal distribution, and the Bivariate Exponential 

distribution.  

Keywords: Paired t-test, Robust, Bootstrap, Wilcoxon signed-rank test, Bivariate 

contaminated normal distribution, Bivariate Exponential. 

 

1. Introduction 

     Comparing the two means of correlated variables is often of interest to researchers in 

various fields, especially medical and biological. The Paired t-test is one of the most 

important tests that are widely used for this purpose. However, the paired t-test is not robust 

against the departure of the normality assumption. The robustness concept is introduced 

firstly by Box in 1953. There are many definitions of the concept of robustness, perhaps the 

most important one that was stipulated in the Huber (1981) definition that robustness has 

many meanings and implications that may be inconsistent with each other, but robustness 

can be expressed as referring to insensitivity to slight departures from the assumptions of the 

test statistics.[1] 
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Bradley (1978) defined what it means (Robust test),  stipulates that the test is called robust 

against the violation of one or more of the test's assumptions if that violation does not effect 

on the distribution of the test statistic due to tending the true probability of a Type I error to 

differ from the nominal  α. He suggested the criterion of robustness and called it liberal 

criterion, that is the test could be regarded as robust only if its Type 1 error rate  �̂� fall in the 

following interval:[2] 

0.9 𝛼 <  �̂� < 1.1 𝛼 

i.e., 

|�̂� − 𝛼|  ≤  
𝛼

10
     (1) 

In the other hand, Salter and Fawcett (1985) proposed another criterion for the robustness of 

the test which requires the Type I error values to lie within the following interval:[3]  

𝛼 ± 2 √[𝛼 (1 − 𝛼)/𝑅]   (2) 

Where R represents the replicated times.  

This paper aims to study and investigate the effect of the violation of some assumptions of 

the hypothesis test equality of means of two correlated variables on the distribution of test 

statistics.  

These violations are represented by the following points 

1. Violation of the normality assumption due to the existence of outliers. 

2. The smallness of the sample size. 

3. The paired data follow a distribution other than the normal distribution. 

4. Heterogeneity of the variances of the two dependent variables. 

The main goal of this paper is to find a robust test that achieves the highest power of the test 

when the set of paired data violate the assumptions of the normality and the homogeneity of 

variances of the correlated variables. Therefore, a number of robust tests has been suggested 

represented by Wilcoxon–matched pairs signed-ranks using bootstrap (BWS), Wilcoxon–

matched pairs signed-ranks when sample size n > 25 using bootstrap (BWL), also of 

bootstrapping the paired t-test (BT). 

2. Test Statistics 

2.1 Paired t-Test 

The paired t-test is one of the most important tests employed to test the significance of the 

 difference between the means of the two dependent variables, it is sometimes called the 

dependent sample t-test. Also, known as the repeated measurements, when we have them 

before and after the treatment.  

Let the two-dimensional random variables (X, Y) have a bivariate normal distribution with 

parameters µ𝑿, µ𝒀  , σ 
X , σ 

Y and ρ if there joint pdf is defined as: [4, 5] 

𝑓𝑋,𝑌(𝑥, 𝑦) =
1

2𝜋𝜎𝑋𝜎𝑌√1 − ρ 2 
𝑒𝑥𝑝 {

−1

2(1 − ρ 2)
[(

x −μ𝑋  

𝜎𝑋 
)

2

− 2ρ (
x −μ𝑋  

𝜎𝑋  
) (

y − μ𝑌

𝜎𝑌
) + (

y − μ𝑌

𝜎𝑌
)

2

]   − ∞ < 𝑥, 𝑦 < ∞    (3)  

Where, µ𝑋 , µ𝑌  ∈ 𝑅 , 𝜎𝑋 , 𝜎𝑌 ∈  𝑅+ , 𝜌 ∈ (−1,1). And 

𝜌 = 𝐶𝑜𝑟𝑟(𝑋, 𝑌 )   =  
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

The paired t-test aims to test the following null hypothesis:  

 𝐻0: 𝜇𝑋 = 𝜇𝑌                                                                                                (4) 

Against the alternative hypothesis: 
𝐻1: 𝜇𝑋 ≠ 𝜇𝑌 

Let  
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𝐷𝑖 =  𝑋𝑖 −  𝑌𝑖     , i = 1, 2, …, n                                                                       (5) 

Then, D ∼ Normal( µD, σD
2 ), where, µ𝐷 =  µ𝑋 − µ𝑌 is the mean of the difference between 

two populations D and σD
2 =  σD

2 + σD
2 − 𝑐𝑜𝑣 (𝑥, 𝑦) is the variance of D. 

Therefore, the significance of the difference between 𝜇𝑋 and 𝜇𝑌 can be tested using the 

paired t test by testing the following hypothesis 
 𝐻0: µ𝐷 = 0                                                                                    (6) 

Against alternative hypothesis:  
𝐻1: µ𝐷 ≠ 0 

The paired t-test statistics is given by:[6, 7] 

𝑡 =
�̅�−0

𝑠𝐷
√𝑛

 ~ 𝑡(𝑛−1)                                                                                                     (7) 

Where, �̅� and 𝑆𝐷 are presented respectively, the mean and the standard deviation of 𝐷𝑖 in the 

matched sample. 

Notice that the test statistics T represents the one sample t test applied on the difference 

between two dependent variables D. 

 

2.2 Wilcoxon –Matched Pairs Signed-Ranks (W.M) 

     This test is an extension of the Wilcoxon signed-rank test, proposed by Frank Wilcoxon 

in 1945. It is widely used as an alternative test of the paired t-test where the paired data 

violate the normality assumption which inflates Type I error rate [8]. In fact, this test 

requires that paired samples should be random and independent. It is used to compare the 

means of two dependent samples or repeated measurements on a single sample in case of 

non-normality data. The W.M is used to test whether the matched random sample is drawn 

from a population in which the median of the differences is equal to a specific value, in other 

words, to test the following two sided null hypothesis: 

H0: θD = 0                                                                                                                             (8) 

Against alternative hypothesis:  H1: θD ≠ 0 

where m is the median of the differences (Di) between the two populations. 

The W.M test can be carried out using the following steps: 

1. Compute difference scores Di , (i=1, 2, …, n) for each pair of data.  

2.  Ranke the absolute value of difference scores |Di|, from 1 through n. If two or more 

difference scores are the same, the mean of the ranks of these scores is given to each of the 

tied ranks. 

3. When Di = 0 the pair is not assigned a rank, and reduces n by the number of cases in 

which the difference score = 0. 

4. Calculate the sum of the ranks of each of the positive signs (R+) and negative signs 

(R−), as follows: 
R+ = ∑ sign (Di)Rank|Di|∀Di>0  , R− = ∑ sign (Di)Rank|Di|∀Di<0  

Notice that, R++ R−=  
n(n+1)

2
 

5. The test statistics, say W is given by: 
W= min (R+, R−)                                                                                                                                    (9) 

6. Compare the test statistics W with the critical value W∗ at a specific significant level, 

then reject H0 if: [8]   W ≤ W∗  

If the sample size is relatively, large, the normal approximation of the W.M statistics can be 

used for testing the null hypothesis (7) by using the following test statistics[8] 
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z =
W −

n∗(n∗+1)

4

√n∗(n∗+1)(2n∗+1)

24

                        (10) 

n∗: Represents the number of difference scores non-zero rank. 

W: Represents the calculated value of W.M statistic defined in (9). If we use the continuity 

coefficient, the test statistic become 

z =
| W −

n∗(n∗+1)

4
|−0.5

√n∗(n∗+1)(2n∗+1)

24

                                                                               (11) 

when a repeating state appears in the different observations, it is appropriate to use the 

following statistics 

z =  
W −

n∗(n∗+1)

4

√n∗(n∗+1)(2n∗+1)

24
−

∑ti
3−∑ti
48

                                                                                                           (12) 

For all cases, the null hypothesis will be rejected if z ≥ z∗, where,  z∗ represents the tabled 

critical value of the test at a specific level of significance. 

3. Bivariate Contaminated Normal Distribution In order to study the robustness of 

the test's statistics, against the departure of normality assumption, the bivariate normal 

distribution has been contaminated by outliers. The latter process was done by generating the 

random sample from the original distribution denoted by 𝐹 with specific proportion, say λ  

and allowing a few of these sample observations to become other 

distributions  𝐺1,   𝐺2 ⋯ , 𝐺𝑘 that differ in their parameters from the original distribution. 

These observations are known as (Contaminated). Usually, it can be expressed as follows: 
(1 − λ1 − λ2 − ⋯ − λk)𝐹 + 𝜆1𝐺1 + ⋯ + 𝜆𝑘𝐺𝑘 

whereas, 

 𝜆i:  contamination rate by the distribution 𝐺𝑖 where ⅈ = 1, ⋯ , 𝑘 

There are two types of contaminants: the first type is known as symmetric contaminant. The 

symmetric contaminated is obtained when generating a symmetric contaminated distribution 

G around the original distribution center F equal in the 𝜇 of both distributions and difference 

in 𝜎2 to make the variance of G bigger than the variance of F. If both distributions G, F are 

normal distribution where, 

𝐹: 𝑁~(𝜇, 𝜎2), 𝐺: 𝑁~(𝜇, 𝜎2𝑏)                , 𝑏 > 1 

The continuous random variable X resulting from the mixture distribution will have 

symmetric contaminated normal distribution in the rate of 𝜆 i.e., 𝑋~(1 − 𝜆)𝐹 + 𝜆𝐺 

The other type is known asymmetric contamination. It is obtained when generating the 

contaminated distribution  𝐺2 symmetrically about any point within the distribution F, if the 

center is not equal. That is 𝐺2 and F have the same variance but they are differ from location 

(i.e. 𝐺2~𝑁(𝜇 + 𝑎, 𝜎2)                  , 𝑎 > 0 

In this case, the distribution of the random variable X can be expressed as follows: 
𝑋~(1 − 𝜆)𝐹 + 𝜆𝐺2. 

 

4. Bivariate Exponential Distribution There are several formulas for the bivariate 

exponential distributions. The Downton’s bivariate exponential distribution is the most 

important of these distributions which has the density:[9]  

𝑓𝑥,𝑦(𝑥, 𝑦) =  {
𝜇𝑥𝜇𝑦

1−𝜌
𝑒𝑥𝑝 [−

𝜇𝑥𝑥+𝜇𝑦𝑦

1−𝜌
] ∑ [

𝜌𝜇𝑥𝜇𝑦𝑥𝑦

(1−𝜌)2 ]∞
𝑛=0

𝑛 1

(𝑛!)2        ,   𝑥, 𝑦 > 0

0                                                                                  ,         𝑜. 𝑤
                              (13) 

Where, µ𝑋 , µ𝑌  ∈ 𝑅+ and, 𝜌 ∈ (−1,1). With 
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𝐸(𝑥) =
1

𝜇𝑥
                        , var(𝑥) =

1

𝜇𝑥
2 

𝐸(𝑦) =
1

𝜇𝑦
                         , var(𝑦) =

1

𝜇𝑦
2
 

5. The Bootstrap Resampling Tchnique Bootstrap is the most popular resampling 

technique used in statistical analysis. It was first developed and introduced by Ephron in 

1979. It is a computer-based resampling technique developed to make statistical inferences 

simpler [10] and has the potential to be used for precision-based data simulation problems 

for statistical reasoning. According to Ephron, the boot-up process differs from statistical 

inference, as the method is very simple and based on re-sampling procedures.  The bootstrap 

statistics (BT) is given by 

BT  =
�̅̅�

𝑣𝑏

√𝑛

                                                                                              (14) 

where, �̅̅� =
∑ �̅�𝑖

𝑏

𝑖=1

𝑏
  and   𝑣𝑏 =

∑(�̅�𝑖−�̅̅�)2

𝑏−1
. 

In this paper, we used the following procedure, which gave better results 

BT =

∑ T𝑗

b

j=1

b
 

Where, 𝑇𝑗 (j = 1, 2, …, b) is the paired t-test statistics applied on 𝐷𝑖𝑗
∗  (i = 1, 2, …n), Where, 

𝐷𝑖𝑗
∗  represents the difference of the ith resampling variables in the jth bootstrap resampling. 

Similarly, we are bootstrapping the W.M test and the approximation of W.M to normal 

distribution respectively as follows: 

BWS =

∑ WS𝑗

b

j=1

b
 

Where WS𝑗 is jth Wilcoxon –matched pairs signed-ranks for small sampls  

BWL =

∑ WL𝑗

b

j=1

b
 

Where WL𝑗 is jth Wilcoxon –matched pairs signed-ranks for large sampls  

6. Simulation Study 

     A Monte-Carlo simulation study is conducted to examine and compare the behavior of 

different test statistics represented by Paired t-test (T), Paired t-test uses Bootstrap 

resampling (BT), W.M test for small sample sizes (𝑛 ≤ 30) (WS), W.M test (WL) when 

𝑛 > 30, bootstrapping W.M test for small samples (BWS) and bootstrapping W.M test 

when sample size 𝑛 > 30 (BWL). The distribution of matched pairs has been generated from 

the following joint pdf’s: 

1. Bivariate normal distribution. 

2. Bivariate contaminated normal distribution. 

3. Bivariate exponential. 

Different sample sizes (n = 10, 20, 30, 50, 100) have been generated to represent small, 

moderate and large sample sizes with different values if correlation coefficient 𝜌 =

0, 0.4, 0.8. The experiment was replicated (10000) times. 

Based on Bradley’s liberal criterion, the test will be regarded robust if it’s Type I error rate �̂� 

fall within the interval:  
0.9 𝛼 <  �̂� < 1.1 𝛼 

In this paper, we use nominal 𝛼 = 0.05. Therefore, Bradley’s liberal criterion is 
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0.045 <  �̂� < 0.055 

According to the Salter and Fawcett criterion [3], the test will be regarded as robust if it 

isType I error rate �̂� satisfies  

0.05 ± 2 √0.05 (1 − 0.05)/10000  

i.e., the test is robust if �̂� within the interval (0.0456 – 0.0543), Notice that, in this article, 

the two criteria of robustness are quite closed, Bradley’s liberal criterion will be used 

because it is more popular.  

The Algorithm of Simulation Experiments can be summaried in the following table: 

 

Table 1. The Algorithm of Simulation Experiments 

n 𝝆 

Bivariate Normal 

distribution 

Contaminated Bivariate Normal 

distribution 
Bivariate Exponential distribution 

𝑿~𝑵(𝝁, 𝝈𝟐) 𝒀~𝑵(𝝁, 𝝈𝟐) 𝑿~𝑵(𝝁, 𝝈𝟐) 𝒀~𝑵(𝝁, 𝝈𝟐) 𝑿~𝑬𝑿𝑷(𝝀) 𝒀~𝑬𝑿𝑷(𝝀) 

10 

20 

30 

50 

100 

0 

0.4 

0.8 

𝑋~𝑁(1,1) 𝑌~𝑁(1,1) 
80%𝑋~𝑁(1,1)
+ 20%𝑋~𝑁(1,25) 

𝑌~𝑁(1,1) 

𝑋~𝐸𝑋𝑃(1) 𝑌~𝐸𝑋𝑃(1) 

𝑋~𝑁(1.5,1) 𝑌~𝑁(1,1) 
80%𝑋~𝑁(1.5,1)
+ 20%𝑋~𝑁(1.5,25) 

𝑌~𝑁(1,1) 

𝑋~𝑁(1,1) 𝑌~𝑁(1,25) 
80%𝑋~𝑁(1,1)
+ 20%𝑋~𝑁(1,25) 

𝑌~𝑁(1,25) 

𝑋~𝐸𝑋𝑃(1/1.5) 𝑌~𝐸𝑋𝑃(1) 

𝑋~𝑁(1.5,1) 𝑌~𝑁(1,25) 
80%𝑋~𝑁(1.5,1)
+ 20%𝑋~𝑁(1.5,25) 

𝑌~𝑁(1,25) 

 

7. Simulation Results 

     To examine and compare the behavior of test statistics under different cases, the 

simulation experiment’s results represented by Type I error rates and power rates are 

summarized in Tables 2-11. In this paper, the behavior of different tests will be discussed 

briefly according to the distribution of the population that matched sample drown from, as 

follows:  

1. Bivariate normal distribution with equality of variances 

i)  Type I Error Rates 

 Type I error rates for different tests at (α = 0.05) applied on matched data from a bivariate 

normal distribution are tabulated in the table (2) and it shows that: 

 It can be seen that the value of Type 1 error rate of the T , BWS and WL tests for all 

cases are within Bradley’s liberal criterion (0.045-0.055) 

 The performance of BT test is not good because the value of Type I error rate is 

outside the Bradley’s liberal criterion for all cases except one case when  𝑛 = 100 with 

different values of 𝜌. 

 Generally, it can be seen that all of Type 1 error rates of the test statistics do well 

except that of the BWL when 𝑛 ≤ 20 and WS when 𝑛 ≤ 10 for all the different values of 𝜌. 
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Table 2. Type 1 error rates on different test statistics at α = 0.05 distributed according to the 𝜌 and n with 

Bivariate normal distribution, 𝑋 ∼ 𝑁(1,1 )  and 𝑌 ∼ 𝑁(1 ,1 ) 

𝝆 n T WS WL BT BWS BWL 

0 

10 *0.0496 0.0369 *0.0495 0.1059 0.0506* 0.0589 

20 *0.0518 *0.0456 *0.0489 0.0744 0.0537* 0.0577 

30 *0.0559 *0.0518 *0.0547 0.0614 0.0489* 0.0500* 

50 *0.0523 - *0.0504 0.0578 - 0.0522* 

100 *0.0518 - *0.0536 0.0556 - 0.0550* 

0.4 

10 *0.0508 0.0380 *0.0505 0.1080 0.0484* 0.0569 

20 *0.0536 *0.0484 *0.0525 0.0752 0.0520* 0.0565 

30 *0.0550 *0.0515 *0.0538 0.0633 0.0499* 0.0510* 

50 *0.0504 - *0.0499 0.0596 - 0.0524* 

100 *0.0525 - *0.0505 0.0550* - 0.0556 

0.8 

10 *0.0517 0.0383 *0.0516 0.1052 0.0517* 0.0601 

20 *0.0528 *0.0477 *0.0517 0.0743 0.0527* 0.0565 

30 *0.0546 *0.0510 *0.0538 0.0644 0.0517* 0.0528* 

50 *0.0504 - *0.0489 0.0598 - 0.0529* 

100 *0.0543 - *0.0531 0.0548* - 0.0546* 

  Note: * means Type 1 error rate is within the Bradley’s liberal criterion (0.045-0.055) 

ii) Power rates  

The power rates of different tests at (α = 0.05) applied on samples taken from a Bivariate 

normal distribution have summarized in the Table (3) and show that: 

 The T test is the most powerful when compared to other tests followed by the BWL test 

which can be used with large sample sizes (n ≥30). 

 It is clear that, with the increasing sample size, the power rates for all tests are increasing 

and converged to 1, which corresponds to the central limit theory. 

 The power rates are increasing with the increase in the correlation coefficient.  

 It can be observed that the power rates for the BT test when the sample size (n=100) for 

all the different values of 𝜌 are greater than power rates for the T test. 

Table 3. The power rates on different test statistics with Bivariate Normal Distribution, 

 𝑋 ∼ 𝑁(1,1 )  and 𝑌 ∼ 𝑁(1 ,1 ) 
𝝆 n T WS WL BT BWS BWL 

0 

10 *0.1716 0.1375 *0.1680 0.2561 0.1535* 0.1705 

20 *0.3244 *0.2955 *0.3105 0.3752 0.3023* 0.3143 

30 *0.4662 *0.4432 *0.4526 0.4943 0.4412* 0.4443* 

50 *0.6881 - *0.6665 0.7005 - 0.6633* 

100 *0.9399 - *0.9295 0.9415* - 0.9304* 

0.4 

10 *0.2567 0.2061 *0.2458 0.3539 0.2220* 0.2429 

20 *0.4953 *0.4581 *0.4748 0.5382 0.4568* 0.4689 

30 *0.6769 *0.6513 *0.6580 0.7024 0.6486* 0.6516* 

50 *0.8873 - *0.8707 0.8914 - 0.8672* 

100 *0.9940 - *0.9923 0.9947* - 0.9923* 

0.8 

10 *0.6035 0.5305 *0.5835 0.6980 0.5369* 0.5713 

20 *0.9203 *0.9027 *0.9099 0.9229 0.8850* 0.8907 

30 *0.9857 *0.9805 *0.9819 0.9891 0.9830* 0.9838* 

50 *0.9998 - *0.9998 0.9997 - 0.9995* 

100 *1.0000 - *1.0000 1.0000* - 1.0000* 

            

2. Bivariate contaminated normal distribution with equality of variances 
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To study the influence of departures from normality on four test statistics, the tests have been 

applied on different paired samples that generated form the Bivariate contaminated normal 

distribution, represented by:  80%𝑋~𝑁(1,1) + 20%𝑋~𝑁(1,25) and 𝑌~𝑁(1,25). 

i) Type 1 Error Rates  

Results of Type 1 error rates on different test statistics at 0.05 level of significance with 

contaminated data by outliers are summarized in Table (4) and show that: 

 The paired t-test statistics is extremely sensitive (not robust) to the contaminated data 

when 𝑛 ≤ 30 with different values of  𝜌 which means it is not robust against the departure 

from normality assumption. 

 The most robust tests are BWL and WL with all cases followed by BWS for small 

sample sizes. 

 The BT test improves the robustness of the paired t-test because it robust in all cases 

except with n = 10 when 𝜌 = 0, 0.4. 

 All test statistics are robust against the normality assumption when 𝑛 ≥ 50. 

Table 4. Type 1 Error Rates on different test statistics with Bivariate Contaminated Normal distribution, 𝑋 ∼

𝑁(1,1 )  and 𝑌 ∼ 𝑁(1 ,1 ) 

𝝆 n T WS WL BT BWS BWL 

0 

10 0.0334 0.0384 *0.0503 0.0827 0.0488* 0.0543* 

20 0.0401 0.0429 *0.0470 0.0542* 0.0529* 0.0542* 

30 *0.0464 *0.0494 *0.0519 0.0543* 0.0517* 0.0526* 

 *0.0523 ـ *0.0543 0.0500* - 0.0468* 50

 *0.0519 ـ *0.0466 0.0513* - 0.0481* 100

0.4 

10 0.0270 0.0377 *0.0506 0.0744 0.0494* 0.0529* 

20 0.0368 0.0443 *0.0490 0.0537* 0.0522* 0.0535* 

30 0.0442 *0.0489 *0.0513 0.0508* 0.0524* 0.0532* 

 *0.0537 ـ *0.0542 0.0493* - 0.0460* 50

 *0.0541 ـ *0.0471 0.0504* - 0.0470* 100

0.8 

10 0.0154 0.0370 *0.0500 0.0539* 0.0494* 0.0542* 

20 0.0267 *0.0446 *0.0491 0.0.428 0.0502* 0.0535* 

30 0.0384 *0.0484 *0.0512 0.0447* 0.0526* 0.0540* 

 *0.0540 ـ *0.0498 0.0516* - 0.0448* 50

 *0.0542 ـ *0.0470 0.0509* - 0.0458* 100

 

i) Power rates 

The power rates of different tests applied on samples from a Bivariate contaminated normal 

distribution have been tabulated in table (5) and we have observed the following important 

points: 

• The BWL test achieved the highest power rate, which means it has less Type II error 

(β) in comparison to other tests, followed by the BWS test which can be used with small 

sample sizes (n ≤ 30). 

• It is obvious that the power rates are increasing with the increase of the correlation 

coefficient.  

• It is clear that, with the increasing sample size, the power rates of all tests are 

increasing and converged to each other. 

• In general, for all test statistics, it is clear that all power rates of tests in the Bivariate 

contaminated normal distribution are lower than Bivariate normal distribution. 
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• Finally, it is clear that all power rates of tests are increasing with the increasing of 

Type I error because both of them represent the number of rejecting H0. 

Table 5. Power rates on different test statistics with Bivariate Contaminated Normal Distribution, 𝑋 ∼ 𝑁(1,1 )  

and 𝑌 ∼ 𝑁(1 ,1 ) 

𝝆 N T WS WL BT BWS BWL 

0 

10 0.0882 0.0970 *0.1172 0.193 0.1279* 0.1427* 

20 0.1487 0.1891 *0.1994 0.2111* 0.2141* 0.2214* 

30 *0.2036 *0.2876 *0.2952 0.2531 0.3046 0.3078 

 *0.4627 ـ *0.3293 0.4356* - 0.2850* 50

 *0.7586 ـ *0.5247 0.7499* - 0.4880* 100

0.4 

10 0.1058 0.1296 *0.1544 0.2456 0.1757* 0.1933* 

20 0.1861 0.2698 *0.2844 0.2672* 0.3026* 0.3120* 

30 0.2494 *0.4062 *0.4149 0.3216 0.4412 0.4441 

 *0.6462 ـ *0.4143 0.6169* - 0.3456* 50

 *0.9145 ـ *0.6277 0.9068* - 0.5848* 100

0.8 

10 0.1622 0.2500 *0.2790 0.4353* 0.3629* 0.3863* 

20 0.2622 *0.5515 *0.5693 0.4175 0.6236* 0.6358* 

30 0.3340 *0.7553 *0.7636 0.4557* 0.8165* 0.8185* 

 *0.9585 ـ *0.5514 0.9454* - 0.4543 50

 *0.9997 ـ *0.7678 0.9991* - 0.7134* 100

 

3. Bivariate normal distribution without equality of variances 

In this case the variances X and Y have been assumed unequal, where, 𝑋~𝑁(1,1)  and 

𝑌~𝑁(1,25), when estimating Type I error, and 

𝑋~𝑁(1,1.5)  and 𝑌~𝑁(1,25), in case of estimating the power rate. 

 

i) Type 1 error rates  

In this case, the result in Table (6) show that: 

When 𝜎𝑌
2  increases (𝜎𝑌

2 = 25)  and differs from 𝜎𝑋
2 (𝜎𝑋

2 = 1), Type I error rates are very 

little different  from Type I error rates when 𝜎𝑌
2 = 1, (see table 2 and its discussion) 

Table 6. Type I error rates on different test statistics with Bivariate Normal distribution, 𝑋 ∼ 𝑁(1, 1)  and 

𝑌 ∼ 𝑁(1, 25) 

𝝆 n T WS WL BT BWS BWL 

0 

10 0.051 0.0371 0.0496 0.1059 0.0507* 0.0587 

20 0.0535 0.046 0.0508 0.0736 0.0529* 0.0568 

30 0.0538 0.05 0.0532 0.0647 0.0511* 0.0524* 

50 0.0516 - 0.0494 0.0593 - 0.0543* 

100 0.0546 - 0.0543 0.0565 - 0.0536* 

0.4 

10 0.0499 0.0374 0.0483 0.1025 0.0500* 0.0593 

20 0.0522 0.0476 0.0505 0.0762 0.0502* 0.0550 

30 0.051 0.0477 0.05 0.0661 0.0549* 0.0564 

50 0.0494 - 0.0474 0.0635 - 0.0539* 

100 0.0511 - 0.0511 0.0571 - 0.0547* 

0.8 

10 0.0513 0.0374 0.0503 0.1058 0.0487* 0.0585 

20 0.0499 0.0435 0.0469 0.0699 0.0473* 0.0513* 

30 0.0492 0.0445 0.0477 0.0648 0.0526* 0.0532* 

50 0.049 - 0.0488 0.0608 - 0.0549* 

100 0.048 - 0.047 0.0570 - 0.0555 
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ii) Power rates  

From Table (7), results for the power rates show that: 

 Generally, we can say that the power tests are decreased when the variance of Y 

increases when compared to the results with the corresponding results of the equality case of 

variance 

 It is clear that, the power rates are increasing with the increasing of the correlation 

coefficient. 

It can be seen that with the increasing of the sample size, the power rates for all 

tests are increasing and converged to each other. 

 Finally, for all test statistics, all power rates of tests are increasing with the increasing 

Type I error. 

Table 7. Power rates on different test statistics with Bivariate Normal distribution, 𝑋 ∼ 𝑁(1, 1)  and 𝑌 ∼

𝑁(1, 25) 

𝝆 n T WS WL BT BWS BWL 

0 

10 0.0618 0.0451 0.0574 0.1194 0.0586* 0.0687 

20 0.0758 0.0671 0.0732 0.0969 0.0692* 0.0737 

30 0.0869 0.0814 0.0841 0.1022 0.0840* 0.0853* 

50 0.1036 - 0.1013 0.1144 - 0.1033* 

100 0.1611 - 0.1568 0.168 - 0.1592* 

0.4 

10 0.0621 0.0447 0.0604 0.1186 0.0605* 0.0703 

20 0.0795 0.0709 0.0757 0.0996 0.0704* 0.0755 

30 0.0902 0.086 0.0891 0.1087 0.0916* 0.0929 

50 0.113 - 0.1089 0.1291 - 0.1164* 

100 0.1819 - 0.1752 0.1909 - 0.1792* 

0.8 

10 0.0636 0.0476 0.0633 0.1203 0.0616* 0.0723 

20 0.0816 0.0749 0.0807 0.1079 0.0778* 0.0831* 

30 0.0966 0.091 0.0947 0.1164 0.0954* 0.0971* 

50 0.1301 - 0.1252 0.1417 - 0.1275* 

100 0.2161 - 0.2067 0.2171 - 0.2051 

 

4. Bivariate contaminated normal distribution without equality of variances 

In this case, different tests have been applied on the paired data from the Bivariate 

contaminated normal distribution with assuming the variances X and Y which have been 

assumed unequal 

i) Type 1 error rates 

Table (8) includes the results of Type I error rates in case of Bivariate contaminated normal 

distribution, with the following  

80%𝑋~𝑁(1,1) + 20%𝑋~𝑁(1,25) and 𝑌~𝑁(1,25).  

The important points of the results can be summarized as follows 

 The results of the non-parametric tests (BWS, BWL, WS, WL) nearly are the same as 

the results of  

 Bivariate contaminated normal distribution, with the equal variances, assumed 

(homogeneity of variances, see Table 4).  

 In general, Type I error rates of T test become better than the corresponding values of 

Bivariate contaminated normal distribution, with the equal variances assumes (homogeneity 

of variances, see Table 4), due to 20% of the matched samples contaminated by paired data 

that have the same variances of the two correlated variables, i.e. 𝜎𝑋
2 = 𝜎𝑌

2 = 25 
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Table 8. Type I error rates on different test statistics with Bivariate contaminated normal distribution, 𝑋 ∼

𝑁(1, 1)  and 𝑋 ∼ 𝑁(1, 25) 

𝝆 n T WS WL BT BWS BWL 

0 

10 0.0515 0.0395 0.0526 0.1040 0.0520* 0.0593 

20 0.051 0.0462 0.0502 0.0730 0.0505* 0.0540* 

30 0.0542 0.0547 0.0571 0.0620 0.0509* 0.0522* 

50 0.0517 - 0.0503 0.0637 - 0.0547* 

100 0.0504 - 0.0494 0.0565 - 0.0568 

0.4 

10 

 

 

0.0499 0.0368 0.0497 0.1025 0.0500* 0.0593 

 

 

20 0.0528 0.0443 0.0498 0.0762 0.0502* 0.0550 

30 0.0539 0.051 0.0538 0.0661 0.0549* 0.0564 

50 0.0534 - 0.0505 0.0635 - 0.0539* 

100 0.0489 - 0.0496 0.0579 - 0.0570 

0.8 

10 0.0508 0.0393 0.0509 0.1048 0.0502* 0.0592 

20 0.0517 0.0455 0.05 0.0710 0.0470* 0.0512* 

30 0.0525 0.0504 0.0519 0.0623 0.0530* 0.0535* 

50 0.0516 - 0.0495 0.0625 - 0.0587 

100 0.0472 - 0.049 0.0591 - 0.0587 

 

ii) Power rates  

From table (9), the results for the power rates show that: 

 Generally, we can say that the power tests are decreased when the variance of Y 

increases in comparison to e results with the corresponding results of the case of an equality 

of variance 

 It is clear that, the power rates are increasing with the increasing correlation 

coefficient. 

 It can be seen that, with the increasing sample size, the power rates for all tests are 

increasing and converged to each other. 

 Finally, for all test statistics, all power rates of tests are increasing with the increasing 

Type I error. 

Table 9. Power rates on different test statistics Bivariate contaminated normal distribution, 𝑋 ∼ 𝑁(1, 1)  and 

𝑋 ∼ 𝑁(1, 25) 

𝜌 n T WS WL BT BWS BWL 

0 

10 0.0583 0.0443 0.0563 0.1156 0.0584* 0.0685 

20 0.0694 0.0642 0.0703 0.0912 0.0658* 0.0700* 

30 0.0831 0.0779 0.0817 0.0962 0.0809* 0.0819* 

50 0.0982 - 0.0950 0.1064 - 0.0970* 

100 0.1434 - 0.1400 0.1512 - 0.1477 

0.4 

10 0.0616 0.0463 0.0602 0.1195 0.0586* 0.0703 

20 0.0755 0.0676 0.0747 0.0971 0.0695* 0.0754 

30 0.0913 0.0859 0.0902 0.1061 0.0905* 0.0920 

50 0.1123 - 0.1079 0.1268 - 0.1143* 

100 0.1747 - 0.1681 0.1761 - 0.1705 

0.8 

10 0.0681 0.0526 0.0673 0.1192 0.0625* 0.0723 

20 0.0833 0.0747 0.0810 0.1059 0.0778* 0.0823* 

30 0.1020 0.0958 0.0991 0.1196 0.0990* 0.1007* 

50 0.1452 - 0.1378 0.1546 - 0.1376 

100 0.2336 - 0.2251 0.2377 - 0.2268 

 

5. Bivariate Exponential distribution 
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In this case, the paired samples have been drown from Bivariate Exponential distribution i.e., 

𝑋 ∼ 𝑒𝑥𝑝(1) and 𝑌 ∼ 𝑒𝑥𝑝(1 ) in case of estimating Type I error rate and 𝑋 ∼ 𝑒𝑥𝑝(0.6667 )  

and 𝑌 ∼ 𝑒𝑥𝑝(1 ) in case of estimating the power rate for different tests.   

i) Type 1 error rates  

Table (10) shows Type 1 error rates for each test, under the Bivariate exponential 

distribution assumption. 

 It can be noted that WL is the most robustness in different cases due to its Type I 

error rates which are within the  Bradley’s liberal criterion (0.045-0.055), followed by BWS. 

 We can say that T-test is insensitive to non-normality assumption for all cases except 

for one case when the sample sizes (𝑛 = 10) with the different values of 𝜌. 

 The BWS is the most robust test for all sample sizes compared to other tests. 

 It can be observed Type 1 error rates for the WS test lie outside the expectable range 

except for one case when n=30 for all values of 𝜌. 

 It is noticed that the T test is insensitive to non-normality assumption for all cases 

except for one case when the sample sizes (n=10) with the different values of 𝜌. 

Table 10. Type I error rates on different test statistics with Bivariate Exponential distribution 

𝝆 n T BT BWS BWL WS WL 

0 

10 0.0452* 0.0894 0.0519* 0.0597 0.0377 0.0494* 

20 0.0495* 0.0671 0.0524* 0.0565 0.0447 0.0483* 

30 0.0485* 0.0590 0.0514* 0.0521* 0.0456* 0.0469* 

50 0.0453* 0.0543* - 0.0512* - 0.0458* 

100 0.0486* 0.0518* - 0.0565 - 0.0532* 

0.4 

10 0.0432 0.0913 0.0543* 0.0634 0.0423 0.0530* 

20 0.0471* 0.0652 0.0508* 0.0542*  0.0431 0.0479* 

30 0.0474* 0.0588 0.0543* 0.0552 0.0501* 0.0518* 

50 0.0489* 0.0543* - 0.0572 - 0.0543* 

100 0.0513* 0.0541* - 0.0518* - 0.0503* 

0.8 

10 0.0411 0.0920 0.0507* 0.0575 0.0388 0.0469* 

20 0.0433 0.0633 0.0494* 0.0525 0.0412 0.0450* 

30 0.0463* 0.0583 0.0506* 0.0519* 0.0451* 0.0468* 

50 0.0484* 0.0536* - 0.0508* - 0.0483* 

100 0.0456* 0.0488* - 0.0501* - 0.0461* 

 

ii) Power rates  

The results of the simulation study of the power rates can be summarized in Table (11). 

 The power rates for all methods are increasing with the increase of the sample size 

and the correlation coefficient may approach 1 when n=30,50 and ρ=0.8. 

 The t-test has the most powerful rate for all sample sizes compared to other tests 

when ρ=0.4,0.8. 

 Generally, the power rates of bivariate exponential distribution and bivariate normal 

are the most powerful than the bivariate contaminated normal distribution. 

 When 𝜌 = 0 𝑎𝑛𝑑 𝑛 = 30,50, it can be seen that BWL has higher power rates 

compared to other tests. 

 The WL test when the sample size is equal to 10 and ρ≤0.4 have higher power rates. 

 It is clear that the power rates of the non-parametric tests (WS, WL, BWS, BWL, 

BT) when the data follow the bivariate exponential distribution are the most 
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powerful when compared with the power rates when data follow the bivariate 

contaminated normal distribution with different values of ρ. 

 

Table 11. Power rates on different test statistics with Bivariate Exponential D istribution 

𝝆 n T BT BWS BWL WS WL 

0 

10 0.1504* 0.2344 0.1626* 0.1815 0.1367 0.1667* 

20 0.2659* 0.3200 0.3074* 0.3171 0.2964 0.3098* 

30 0.3545* 0.3986 0.4410* 0.4445* 0.4321* 0.4405* 

50 0.5218* 0.5518* - 0.6493* - 0.6438* 

100 0.8150* 0.8277* - 0.9161 - 0.9137* 

0.4 

10 0.1281 0.2087 0.1427* 0.1594 0.1244 0.1502* 

20 0.2993* 0.3371 0.2782* 0.2903* 0.2682 0.2820* 

30 0.4753* 0.5004 0.4416* 0.4444 0.4361* 0.4442* 

50 0.7090* 0.7124* - 0.6408 - 0.6417* 

100 0.9510* 0.9528* - 0.9144* - 0.9139* 

0.8 

10 0.2987 0.4101 0.3099* 0.3402 0.2866 0.3401* 

20 0.7096* 0.7466 0.6619* 0.6711 0.6610 0.6761* 

30 0.8798* 0.8917 0.8447* 0.8481* 0.8456* 0.8514* 

50 0.9895* 0.9886* - 0.9795* - 0.9790* 

100 1.0000* 1.0000* - 0.9998* - 1.0000* 

 

8. Conclusion  

The Monte-Carlo simulation was employed to study the behavior of different test statistics 

that are used for comparing the equality of the means of the two paired populations. Based 

on the theoretical part and the results of the Type one error rates and the power rates of the 

tests, the most important conclusions have been reached: 

 It is obvious that the power rates are increasing with the increase of the 

correlation coefficient and the sample size. 

 The presence of outliers leads to a decrease of the type I error rates for the 

paired t-test statistics. 

 In case of the existence of outliers in 20% and the homogeneity of 

variances of correlated variables, the bootstrapping of the Wilcoxon 

signed rank test for large sample sizes is best in comparison to other tests 

for all cases and different value of ρ. Followed by the bootstrapping of the 

Wilcoxon signed rank test for small sample sizes when 𝑛 ≤  10. 

 When the paired data follow the bivariate exponential distribution, the 

Wilcoxon signed-rank test for large sample sizes is the most powerful 

compared to the other tests in case of small sample sizes, with different 

values of 𝜌, while the bootstrapping of the paired t-test is the best in 

comparing to other tests when 𝑛 ≥  30 and 𝜌 >  0. 

 In case of the existence of outliers (with homogeneity of variance), we 

recommend apply the Wilcoxon signed rank test for large sample sizes 

test when the sample size n ≤ 50 and ρ > 0.  
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