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Abstract   

    In this paper, we studied the scheduling of 𝑛 jobs on a single machine.  Each of n jobs is 

to be processed without interruption and becomes available for processing at time zero. The 

objective is to find a processing order of the jobs, minimizing the sum of maximum earliness 

and maximum tardiness. This problem is to minimize the earliness and tardiness values, so 

this model is equivalent to the just-in-time production system. Our lower bound depended on 

the decomposition of the problem into two subprograms. We presented a novel heuristic 

approach to find a near-optimal solution for the problem. This approach depends on finding 

efficient solutions for two problems. The first problem is minimizing total completion time 

and maximum tardiness. The second is minimizing total completion time and maximum 

earliness. We used these efficient solutions to find a near-optimal solution for another 

problem which is a sum of maximum earliness and maximum tardiness. This means we 

eliminate the total completion time from the two problems. The algorithm was tested on a set 

of problems of different n. Computational results demonstrate the efficiency of the proposed 

method. 

 

Keywords:Scheduling problems, Multi-Objective function, Maximum Tardiness, Maximum 

Earliness, Heuristic method. 

 

 1. Introduction 

   Since 1954, scheduling problems have received much attention in the literature. At first, 

the researchers considered only one objective function. In practical cases, the decision-maker 

is obligated to choose only one objective from some objectives [1]. Nowadays, research on 

multi-criteria scheduling problems has increased. Nagar et al. [2] introduced a survey of 

multiple and bicriteria problems in scheduling. In general, we have two structures to deal 
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with conflicting criteria: the hierarchical minimization and the simultaneous minimization 

[3]. The first one is the primary criterion, and the other is the secondary criterion. In this 

case, one minimizes the primary criterion and chooses a schedule with a minimum secondary 

criterion value. In the second approach, the efficient solutions (Pareto set) will be generated, 

and the decision-maker the one with the best composite objective function [4]. The first 

paper on a problem of this type was presented by Smith [5].  In this work, the problem of 

scheduling n  jobs on one machine can be processed at most one job at a time and without 

interruption. Each job becomes available for processing at time zero, which requires a 

positive processing time. The objective function is to minimize the sum of maximum 

earliness and maximum tardiness ETmax. This problem was first introduced by Amin-Nayeri 

and Moslehi [6]. 

   We shall use a novel heuristic method to find the best solution for the problem and drive a 

lower bound which depends on a decomposition of the problem into two subprograms. We 

present a novel heuristic method to find a best solution depending on a new idea that is 

inserting an objective function to our problem, and then find efficient solutions for the two 

problems.  

 

2.  Notations and Definitions 

   In this section, we give some notations and definitions 

N = the set {1, 2, 3,…, n}. 

 = the set of permutation schedules. 

 = a permutation schedule. 

pj = processing time for job j.  

dj = due date for job j. 

Cj = completion time for job j. 

Ei  = Max {di – Ci , 0}; the earliness of job i.  

Emax = Max {Ei}; the maximum earliness.  

Ti = Max {Ci – di, 0}; the tardiness of job i.  

Tmax = Max {Ti}; the maximum tardiness.  

MST: (minimum slack times) jobs are sequenced in non-decreasing order of minimum slack 

times sj, where sj = dj - pj. 

SPT: (shortest processing time) they are in non-decreasing order of pj. 

EDD- rule: (Early due date) they are sequenced in non-decreasing order of dj. 

LB: lower bound. 

UB: upper bound. 

 

Definition (1) [7]: Consider a problem P , a schedule  (where  is the set of all 

schedules) is said to be feasible, if it satisfies the constraints of P. 

 

Definition (2) [8]: A feasible schedule 𝜋∗ is efficient, with respect to the criteria (and  ) if 

there is no any feasible schedule π such f() ≤ f(*) and g() ≤ g(*), and at least one of the 

inequalities is strict. 
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3. Problem Formulation 

   In this study, we consider the one machine scheduling problem with multi-objective 

function which is minimizing the sum of the maximum earliness and tardiness, denoted by 1 

  Emax + Tmax , for simplicity it is 1   ETmax. 

   A set N = {1, 2, … , n} of n independent jobs that has to be scheduled on a single machine 

to minimize a criterion.  Job  j ( j =  1, 2, … , n) is to be processed on a single machine 

without interruption that handles only one job at a time, requires processing time pj, and due 

date dj. For a sequence π of the jobs, earliness Eπ(j), and the tardiness Tπ(j)  are given by: 

 

Eπ(j)= max {dπ(j) − Cπ(j), 0},                  j = 1, 2, … , n. 

Tπ(j)= max {Cπ(j) −  dπ(j), 0},                  j = 1, 2, … , n. 

 

So the mathematical form of this problem can be formulated as: 

 

 Z = min{Emax(π) + Tmax(π)} 

               s. t. 

Eπ(j) ≥ 0,                                      j = 1, 2, … , n.                 

Tπ(j) ≥ 0,                                       j = 1, 2, … , n.        ... (p1) 

Eπ(j) ≥ dπ(j) −  Cπ(j),                   j = 1, 2, … , n. 

Tπ(j) ≥ Cπ(j) −  dπ(j),                   j = 1, 2, … , n. 

 

   To find a sequence π  that minimizes Z, the schedules that minimize  Emax and  Tmax are 

referred to as EDD and MST rules respectively [9].  For the composition of these two 

functions, we cannot find optimal solution by any direct rule. 

  

4.  Analysis of the Problem with Special Cases 

   This problem has been studied in various conditions and compositions.  The problem was 

studied at first by Amin and Moslehi [6], they studied the problem of sequencing a single 

machine to find an optimal sequence of jobs, also they showed that the algorithm solved 

100% of the examples. Since the problem is NP-hard (No Bounded Polynomial Exists) [10], 

several heuristic approaches have been developed for the problem.  Abdul-Razaq and Akram 

used local search algorithm to solve a multi-criteria function of five objectives included 

maximum earliness and maximum tardiness [11]. Abdullah considered maximum earliness 

and maximum tardiness as primary criteria [12]. 

    The problem is also considered with a common due date. In a known sequence, 

Tavakkoli-Moghaddam et al. [10] found the best value of an idle insert. Tavakkoli-

Moghaddam et al.  presented also a branch-and-bound algorithm to solve the problem, with 

an idle insert [13]. Mahnam and Moslehi presented an efficient branch-and-bound algorithm 

to minimize the problem on a single machine with unequal release times and no unforced 

idle time [14].  Moslehi, et al., showed that the problem is irregular; so many properties of 

regular will be missed for the present objective function. They presented a heuristic method 

using a novel branch-and-bound algorithm to minimize the sum of maximum earliness and 

tardiness on a single-machine scheduling problem where the due dates were distinct [15]. 
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5. Algorithms for Solving Multi-objective Problems 

   In this section, we introduce two problems that concerning our problem. They have three 

criteria, namely   ∑ ∁j
n
j=1 , Tmax and   Emax.  

 

 5.1   1/ / F ( ∑ ∁j
n
j=1 , Tmax) (Total Completion Time and Maximum Tardiness) 

 This problem can be written as: 

 

 Min ∑ ∁j
n
j=1  

 and                                    ... (p2) 

 Min Tmax 

 

        V. Wassenhove and Gelders [8] found all efficient solutions for  (p2). 

 

5.2   1/ / F ( ∑ ∁j
n
j=1 , Emax) (Total Completion Time and Maximum Earliness) 

This problem can be written as: 

 

 Min ∑ ∁j
n
j=1      

        and                                  ... (p3) 

        Min Emax. 

 

Hoogeveen and Van de Velde [16] presented an algorithm in which they found all the 

efficient     solutions (Pareto set) for  (p3). 

 

6.  A Novel Heuristic Approach  

   Two methods have been used to solve multi-objective scheduling problem exact and 

approximation method. The exact solutions are obtained by enumeration method, Branch 

and bound method, and dynamic programming method. The approximate solutions are 

obtained by local search methods which form a very general class of heuristic methods [9]. 

    Here we will give a novel heuristic method to find a best solution for the (p1) problem.    

Let S be a set of all efficient solutions for the problem  (p2), and let S1 be a set of all 

efficient solutions for the problem (p3). 

 

Proposition (1):  S ∩  S1 ≠ φ. 

Proof: Since SPT-rule is one of the efficient solutions for (p2), and also, SPT-rule is one of 

the   efficient solutions for (p4), so SPT-rule is one of the common sequences of  (S ∩

 S1). ∎ 

For each  π  ∈ (S ∪ S1), find (Emax (π)+Tmax(π)). This construct a set of solutions, and 

one of them may be an optimal solution for problem (p1). In general, one cannot guarantee 

to find  finding an optimal solution form the set.  

  

6.1 Special Cases of the Problem (𝐩𝟏) 

Case (1):  If a schedule π gives SPT-rule and EDD-rule at the same, then π is optimal 

schedule for (p2), and produces one efficient solution. 

Proof:  Directly from the definition of SPT-rule and EDD-rule. ■ 



Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34(3)2021 
 

54 

 

Case (2):  If a schedule π gives SPT-rule and MST-rule at the same, then π is optimal 

schedule for (p3), and produces one efficient solution. 

Proof:  Directly from the definition of SPT-rule and MST-rule. ■ 

Case (3):  If a schedule π gives EDD-rule and MST-rule at the same time, then π is optimal 

schedule for (p1), and produces the only efficient solution for (p1). 

Proof:  Directly from the definition of EDD-rule and MST-rule. ■ 

Preposition (2): There exists an optimal solution π  such that  π (S ∪ S1). 

Proof: Since in general EDD-rule and MST- rule are not efficient solutions for the 

problems  (p2) and  (p3) respectively. 

   Let π be the EDD-rule, and let π∗ be another schedule with Tmax (π∗) = Tmax (EDD). If  

π∗ is an efficient solution for (p2), this means π∗ ∈ S, and dominates   π, because 

 ∑ Cj
n
j=1 (π∗) <  ∑ Cj

n
j=1 (π). At the same time, it is possible that   Emax(π∗) >  Emax(π), so  

π is an efficient solution for  (p1) (Optimal) and dominates π∗. ■ 

6.2 Lower Bound (LB) 

    Deriving lower bounds for a multiple objective function is difficult, because we have to 

minimize the objectives at the same time, so we introduce here a lower bound for our 

problem as follows 

 

 6.2.1 Derive a Lower Bound (LB) 

    Consider again the problem (p1). If we have only one objective function, 𝐸𝑚𝑎𝑥 problem, 

or   𝑇𝑚𝑎𝑥  problem, then we can solve the problems by MST-rule and EDD- rule 

respectively. This technique is called the decomposition of the problem [13]. So  

LB =   Emax (MST) +  Tmax (EDD). 

 

 6.3 Optimal Solution and Efficient Solutions 

    It is clear that the optimal solution is greater than or equal to the lower bound. Define the 

upper bound by UB = Emax(MST) +  Tmax(MST). The relation between the optimal value 

(opt.), lower bound   (LB) and efficient solutions for (p1) is presented below. 

 

 Theorem: There exists an integer r ≥ 0 such that LB +  r = opt., and r ∈  [N1 − 1,  N2 + 1], 

where, N1= number of efficient solutions,  N2 =  Tmax( MST) − Tmax( EDD). 

 Proof: Since   LB  opt., so there exists an integer r ≥ 0  such that  LB +  r = opt., so the 

first part of the theorem is proved. Now, we show that r ∈  [N1 − 1, N2 + 1] or that 

 N1 − 1  r  N2 + 1.   

 Now  LB +  r = opt., thus    r = opt. – LB ≤ UB − LB  

 = Emax(MST) + Tmax(MST ) − Emax(MST) − Tmax(EDD). 

 = Tmax (MST) − Tmax(EDD) = N2 ≤ N2 + 1. Hence,   r    N2 +  1.  

 We will prove  N1 − 1  r  by mathematical induction on  N1.  Note that N1 is not known. 

   If  𝐍𝟏 =  𝟏, that is, there is only one efficient solution which is EDD (not EDD-rule) as 

well  as    MST (not MST-rule), then  r = 0pt. – LB 

 = Emax(Opt. ) +  Tmax(Opt. ) − Emax(MST)  −  Tmax(EDD)   

=  Emax(MST) +  Tmax(EDD) − Emax(MST)  −  Tmax(EDD)  = 0. 

Thus   N1 − 1   r ≤  N2 +  1. That is  r ϵ [N1 − 1, N2 + 1], and so the theorem is true   

  for   N1 =  1. 
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    If 𝐍𝟏 =  𝟐, i.e., the number of efficient solutions is two which are (σ) and (σ1) such that 

Emax (σ) = Emax (MST) and Tmax (σ1) = Tmax (EDD),  since  N1 = 2  implies that  N1 −

1 = 1. 

 Now if (σ) is optimal then: 

 r =  Emax(σ) + Tmax (σ) − Emax(MST) − Tmax (EDD)  

=    Emax(MST) + Tmax (σ)− Emax(MST) − Tmax(EDD) 

 =    Tmax (σ) − Tmax(EDD) ≥ 1 =  N1 − 1.  Hence   N1 − 1   r    N2 + 1. 

Now if  (σ1)  is optimal then: 

r =  Emax(σ1) + Tmax (σ1) − Emax(MST) − Tmax (EDD)  

=    Emax(σ1) + Tmax (EDD ) –  Emax(MST) − Tmax(EDD) 

=    Emax(σ1)– Emax(MST) ≥ 1 =  N1 − 1. Hence   N1 − 1   r    N2 + 1. 

 So,  r ϵ [N1 − 1 , N2 + 1] and the theorem is true for  N1 =  2. 

    If   𝐍𝟏 =  𝟑, i.e., there are three efficient solutions   (σ), (σ1) and (σ2) such that 

Emax (σ) = Emax (MST) and Tmax (σ2) = Tmax (EDD).  Since  N1 = 3  Implies that  N1 −

1 = 2. 

 Now if (σ) is optimal then: 

 r =  Emax(σ) + Tmax (σ) − Emax(MST) − Tmax (EDD)  

 =    Emax(MST) + Tmax (σ) − Emax(MST) − Tmax(EDD) 

=    Tmax (σ) − Tmax(EDD) ≥ 2 =  N1 − 1. Hence   N1 − 1   r    N2 + 1. 

Now if  (σ1)  is optimal then: 

r =  Emax(σ1) + Tmax (σ1) − Emax(MST) − Tmax (EDD)  

=     Emax(σ1) − Emax (MST ) + Tmax(σ1) − Tmax(EDD) 

≥ 1 + 1 = 2 =  N1 − 1. Hence   N1 − 1   r    N2 + 1. 

   Finally if   (σ2) is optimal, then: 

r =  Emax(σ2) +  Tmax (σ2) − Emax(MST) − Tmax (EDD) =     Emax(σ2) −

Emax (MST )+ Tmax(EDD) − Tmax(EDD) 

≥ 1 + 1 = 2 =  N1 − 1. Hence   N1 − 1   r    N2 + 1. 

So  r ϵ [N1 − 1 , N2 + 1] and it is true for  N1 =  3. 

   Suppose the theorem is true for   N1 =  k , i.e., the theorem is true for the k efficient 

solutions (σ), (σ1), …, (σk−1), that is, for these k efficient solutions  N1 − 1   r    N2 + 1. 

Let  N1  =  k + 1, that is , there is   k + 1  efficient solutions    (σ) , (σ1),…, (σk−1), (σk), if 

any one of the first k  efficient solutions  (σ) , (σ1), ..., (σk−1) , is optimal then since it is true 

for  N1 = k , we get   N1 − 1 ≤  r , and hence, N1 − 1   r    N2 + 1,  and if the last 

efficient solution (σk) is optimal, then: 

 r =  Emax(σk) + Tmax(σk)– Emax(MST) − Tmax(EDD) 

 =  Emax(σk) − Emax(MST) ≥ k = k + 1 = 1 =  N1 − 1, thus     N1 − 1   r   N2 +

1. Thus   it is true for  N1  =  k + 1 which completes the proof. ∎ 

 

Corollary:  If     Tmax(MST) = Tmax(EDD), then r = 0. 

Proof:  Since   Tmax(MST) = Tmax(EDD) so, we have a schedule π (say) which gives 

EDD-rule and MST-rule at the same time, and  π is also optimal schedule. The lower bound 

is defined as: 

LB =   Emax (MST) +  Tmax (EDD).  Therefore,   LB = opt.  this implies that  r =  0. ∎ 

6.4 Modified Smith’s Algorithm 
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   Smith presented an algorithm to solve a multi-criteria problem [5]. We modify it to find 

an optimal solution for a given Tmax.   

Step (1): Set R =  ∑ pj
n
j=1 , N = {1, 2, … , n}, k = n.  

Step (2): Find a job j* such that    pj∗ ≥ pj, Dj*, Dj ≥ R, and 

 R − dj ≤ Tmax (EDD), j  and  j∗ ∈ N. 

(Break ties arbitrarily). Assign job j*  to position k . 

Step (3): Set R = R − pj , N=N- {j*},  k = k − 1. If  k = 0  , stop. Else, go to step (2). 

 

    This theorem finds the difference between the LB and the opt. solution. We use this 

theorem to find a heuristic method and then the near optimal solution for (p1). 

   Let S1= {σ1, σ2, …, σk} which means that there are k efficient solutions for the problem 

 (p3). Also let S = {σ∗
1, σ∗

2, …, σk1

∗ } which means that there are k1 efficient solutions for 

the problem  (p2).  In  S1, there exists i (i = 1, . . . , k)  such that   Emax (σi) = Emax(MST), 

and there exists also in S  j (j = 1, . . . , k1) such that   Tmax (σ∗
j
) = Tmax(EDD). Compute 

zi = Emax (σi) + Tmax(σi) ∀i, i = 1, … , k . Also compute:       zj = Emax (σ∗
j
) + Tmax(σ∗

j) 

∀j, j = 1, … , k1. 

    We get a set of solutions zi and zj which are upper bounds of the problem (p1). This 

means that they are greater than or equal to the optimal solution. Let z∗ be the minimum 

one of  zi and  zj. 

From the theorem, we have opt. = LB + r, where    r ∈  [N1 − 1,  N2 + 1].  Now we have 

the possible cases for the optimal. 

        If  N1 = 1,  implies that    r ∈  [0,  N2 + 1], opt. = LB + 0. 

If  N1 = 2,  implies that   r ∈  [1,  N2 + 1], opt. = LB + 1, and so on. Since we have  z∗ as 

the minimum upper bound, so if  opt. = LB + 1 > z∗ stop the process. 

     For the acceptable values of  r we start with  r = 0. It is a special case 

where  Tmax(MST) = Tmax(EDD), in this case, one can find the optimal solution directly. If 

not.  We check for    r = 1.  If there exists a sequence π∗ ∈  S1 ∪ S such that  Emax(π∗) +

Tmax(π∗) = LB + 1, so it is optimal, otherwise solve (p1) using modified Smith’s algorithm 

with given   Tmax(EDD). If a solution exists, it is optimal otherwise check for   r = 2. 

 

The Proposed Algorithm: 

Step (1): Find efficient solutions for (p3) , say  S1= {σ1, σ2, …, σk} and for (p2), say S = 

{σ∗
1, σ∗

2, …, σk1

∗ }. N1 is the number of efficient solutions of (p1),  N2 = Tmax(MST) −

Tmax (EDD) and  LB = Emax(MST) + Tmax (EDD). 

Step (2): Compute zi = Emax (σi) + Tmax(σi) ∀i, i = 1, … , k, and compute   zj = 

Emax (σ∗
j
) + Tmax(σ∗

j)  ∀j, j = 1, … , k1.  z∗ is minimum of zi and zj. 

Step (3): If  Tmax(MST) = Tmax(EDD), then EDD-rule as well MST-rule give optimal 

solution . Go to step (7). Else, go to step (4). 

Step (4): Find values of  r such that r ∈  [N1 − 1,  N2 + 1], stop if  r >  N2 + 1 or  r > z∗, 

r = 1. 

Step (5): If there exists a sequence π∗ ∈  S1 ∪ S such that  Emax(π∗) + Tmax(π∗) = LB + r, 

so it is optimal and go to step (7). Else, go to step (6). 
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Step (6): Use modified Smith’s algorithm for given Tmax(EDD). If a solution exists, it is 

optimal. Go to step (7). Else, r = r + 1. Go to step (5). 

Step (7): Stop. 

 

Example: Consider a 4 job problem with the following given data 

j 1 2 3 4 

pj 5 3 2 7 

dj 8 6 11 7 

 

      At first, we find efficient solutions for the problems (p2) and (p3) by suitable 

algorithms. The results are in the following table. We characterize each efficient solution 

for each problem by , and the other solutions are the corresponding solutions. 

 

 

S1 = {(3, 2, 1, 4), (2, 3, 1, 4), (2, 1, 3, 4), (4, 2, 3, 1)}, 

S = {(3, 2, 1, 4), (3, 1, 2, 4), (2, 1, 4, 3), (2, 4, 1, 3)}, k = 4  and k1= 4. 

 

In  S1  schedule number 7 gives   Emax (7) = Emax(MST) = 0, and in S  schedule number 6 

gives  Tmax (6) = Tmax(EDD) = 7 (in this example it is EDD-rule).  

Now find the set of solutions zi and zj which are in column 5. z∗ = 9  

To apply the theorem  LB = 7 + 0 = 7, N2 = 7 − 7 = 0, so  r ∈  [N1 − 1, 1].   

If  N1 = 1,  implies that    r ∈  [0,1],  opt. = LB + 0 = 7. 

If  N1 = 2,  implies that   r ∈  [1, 1], opt. = LB + 1 = 8. 

The possible cases for the optimal value are 7, 8, and 9. 

Start with   r = 0. Since there exists no π∗ ∈  S1 ∪ S such that  Emax(π∗) + Tmax(π∗) =

LB + 0 = 7, use the modified Smith’s algorithm, where Tmax = Tmax (EDD). The solution 

is (4, 2, 1, 3) with  Tmax = 7 and Emax = 0. 

 

7. Computational Results 

    Here, we will introduce our results via computational tests to show the efficiency of the 

proposed algorithm. The problems are generated as follows:  an integer processing time pj 

generated from the uniform distribution [1, 10]. Also, an integer due date dj is generated 

from the uniform distribution [0, ∑ pj
n
j=1 ]. 

Numbers Schedules (∑ Cj
4
j=1 , Emax) (∑ Cj

4
j=1 , Tmax) (Emax + Tmax) 

1 (3, 2, 1, 4)  (34, 9)  (34, 10) 19 

2 (2, 3, 1, 4)  (35, 6) (35, 10) 16 

3 (3, 1, 2, 4) (36, 9)  (36, 9) 18 

4 (2, 1, 3, 4)  (38, 3) (38, 10) 13 

5 (2, 1, 4, 3) (43, 3)  (43, 8) 11 

6 (2, 4, 1, 3) (45, 3)  (45, 7) 10 

7 (4, 2, 3, 1)  (46, 0) (46, 9) 9 
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The proposed algorithm was running and coding it in Matlab 8.1 (R2013a) and 

implemented on Intel (R) Pentium (R) CPU 2117U@ 1.80 GHZ, with RAM 4.00 GB 

personal computer. 

 

  8. Conclusions and Future Works 

    We presented a novel heuristic algorithm to minimize the sum of maximum earliness 

and tardiness in single-machine scheduling  ETmax. The algorithm depended on a new idea 

that is presented for the first time. The algorithm was easy to implement and had a simple 

structure comparing with other used algorithms such as branch and bound algorithm. To 

evaluate the efficiency of the proposed algorithm, the algorithm was tested on (25) 

examples for different n. For n = 3,  it solves 100% of the instances. For n = 4,  it solves 

100% of the instances. For n = 5,  it solves also 100% of the instances. Computational 

results showed the ability of the algorithm. 

   An important area for future research is to use the presented idea for other multi- 

objective problems with a variety of environments and conditions. 
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