Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Some Games in İ- PRE- g- separation axioms

Esmaeel R. B.
Department of mathematics, College of Education for Pure Sciences, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq. ranamumosa@yahoo.com

Ahmed A. Jassam
Department of mathematics, College of Education for Pure Sciences, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq. ahm7a7a@gmail.com

Article history: Received 5 November 2020, Accepted 6 December 2020, Published in July 2021.

Doi: 10.30526/34.3.2676

Abstract

The primary purpose of this subject is to define new games in ideal spaces via $\mathfrak{f}-\mathrm{pre}-\mathrm{g}$ - open set. The relationships between games that provided and the winning and losing strategy for any player were elucidated.

Keywords. $\mathfrak{f}-\mathrm{pre}$ - g - open set, f - pre- g - open function, f - pre- g - cotinuous function, \dot{f} - pre-g-separation axioms and game.

1.Introduction

Kuratowski [1] presented in 1933. A collection $\mathrm{C} \subset \mathrm{P}(\mathrm{X})$ is claims an ideal on a nonempty set X when the following two conditions are satisfied; (i) $B \in \dot{f}$ whenever $B \subset \mathbb{A}$ and $\mathbb{A} \in \dot{f}$ (ii) $\mathbb{A} \cup B \in \dot{f}$ whenever A and $B \in \dot{f}$. Vaidyanathaswamy [2]. Provides the concept of ideal spaces by giving the set operator ($)^{*}: \mathrm{P}(\mathrm{X}) \rightarrow \mathrm{P}(\mathrm{X})$. Which is local function, so the topological spaces were circulated, claims ideal space and symbolize by ($\mathrm{X}, \mathrm{T}, \mathrm{i}$), [3-5].
Mashhour, Abd El- Monsef and El- Deeb, present the concept of "pre- open set", a set \mathbb{A} in (X, Tִ) is a pre-open when $\mathbb{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathbb{A}))$ [6]. Many researchers at that time used this concept in their studies [7-9].

Also, Ahmed and Esmaeel [10], use this concept to provide an $\dot{\mathrm{C}}$ - pre - g-closed set (symbolizes it, $\dot{\mathrm{f}} \mathrm{f}$ - closed). If $\mathbb{A}-\Psi \in \dot{f}$ and \amalg is a pre-open set, implies to cl(A) - $\amalg \in \dot{f}$, so a set \mathbb{A} in ($\mathrm{X}, \mathrm{T}, \dot{1}$) is fipg - closed. And the set \mathbb{A} in X claims $\dot{\Gamma}$-pre-g-open set (symbolizes it, $\dot{\mathrm{f}} \mathrm{fg}$ - open), if $X-\mathbb{A}$ is fpg -closed. The collection of all $\mathfrak{f} p g$-closed sets (respectively, $\mathrm{f} p \mathrm{~g}$ - open sets) in (X, T , f) symbolizes it $\mathfrak{f} \mathrm{pg}-\mathrm{C}(\mathrm{X})$ (respectively, $\mathrm{f} \mathrm{pg}-\mathrm{O}(\mathrm{X})$). And $\mathrm{f} \mathrm{fg}-\mathrm{O}(\mathrm{X})$ is finer than T .
 element $r_{1} \neq r_{2}$, there is an fpg-open set containing only one of them (respectively there is an
fipg-open sets \amalg_{1} and \amalg_{2}, satisfies $r_{1} \in\left(\amalg_{1}-\Psi_{2}\right)$ and $r_{2} \in\left(\amalg_{2}-\amalg_{1}\right)$, there is an $\dot{\mathrm{p}}$ g-open sets \amalg_{1} and \amalg_{2}, satisfies $r_{1} \in \amalg_{1}$ and $r_{2} \in \amalg_{2}$ such that $\amalg_{1} \cap \amalg_{2}=\emptyset$) [11].
The main point of this article is to provide new types of games in ideal spaces by using the concept of $\mathfrak{f} \mathrm{pg}$ - open set.

2. \tilde{f}-Pre-g- openness on Game.

This portion is to provide new types of game by using the concept of fpg-openness, where the relationships between them are discussed. In the theory of game , there is always at least two participants called players P_{1} and P_{2}. Denoted for player one by P_{1} and symbolizes for player two by P_{2} and G be a game between two players P_{1} and P_{2}. The set of choices $I_{1}, I_{2}, I_{3}, \ldots \ldots, I_{m}$ for each player. These choices are claims round, steps or options. In this research with games of type "Two-Zero-Sum Games". The games will be defined between two players and the payoff for any one of them equals to the loose of other player [11-13]

A function S is a strategy for P_{1} as follows $S=\left\{S_{\underline{m}}: \mathbb{A}_{\mathrm{m}-1} \times B_{m-1} \rightarrow \mathbb{A}_{m}\right.$, such that $\left.\left(\mathbb{A}_{1}, \mathrm{~B}_{1}, \cdots \cdots, \mathbb{A}_{\mathrm{m}-1}, \mathrm{~B}_{\mathrm{m}-1}\right)=\mathbb{A}_{\mathrm{m}}\right\}$ similarly a function T is a strategy for P_{2} as follows $\mathrm{T}=$ $\left\{T_{\mathrm{m}} ; \mathbb{A}_{\mathrm{m}} \times \mathrm{B}_{\mathrm{m}-1} \rightarrow \mathrm{~B}_{\mathrm{m}}\right.$, such that $\left.\left(\mathbb{A}_{1}, \mathrm{~B}_{1},-\cdots---\mathbb{A}_{\mathrm{m}-1}, \mathrm{~B}_{\mathrm{m}-1}, \mathbb{A}_{\mathrm{m}}\right)=\mathrm{B}_{\mathrm{m}}\right\}$. [15].
In this work, we provide the winning and losing strategy for any player P in the game G , if P has a winning strategy in G which symbolizes $(P \hookrightarrow G)$, if P does not has a winning strategy symbolizes ($\mathrm{P} \leftrightarrow \mathrm{G}$), if P has a losing strategy symbolizes ($\mathrm{P} \hookleftarrow \mathrm{G}$) and if P does not has a losing strategy symbolizes ($\mathrm{P} \leftarrow \mathrm{G}$).

Definition 2.1. Let (X, T) be a topological space, define a game $\mathrm{G}\left(\mathrm{T}_{0}, \mathrm{X}\right)$ (respectively, $G\left(\dot{T}_{0}, \dot{\mathrm{I}}\right)$)as follows: The two players P_{1} and P_{2} play an inning for each natural numbers, in the m - th inning, the first round, P_{1} will choose $x_{\underline{m}} \neq \zeta_{\underline{m}}$. Next, P_{2} choose $\amalg_{\underline{m}} \in T$ (respectively $\amalg_{\underline{m}} \in$ fipg- $O(X)$) such that $x_{\underline{m}} \in \rrbracket_{\underline{m}}$ and $\varsigma_{\varsigma_{m}} \notin \rrbracket_{\underline{m}}, \quad P_{2} \quad$ wins \quad in the game where $B=$ $\left\{\amalg_{1}, \amalg_{2}, \amalg_{3}, \ldots, \amalg_{\underline{m}}, \ldots\right\}$ satisfies that for all $x_{m} \neq \varsigma_{m}$ in X there exist $\amalg_{\underline{m}} \in B$ such that $x_{m} \in \amalg_{m}$ and $\varsigma_{\mathrm{m}} \notin \amalg_{\mathrm{m}}$. Other hand P_{1} wins.

Remark 2.2. For any ideal topological space ($\mathrm{X}, \mathrm{T}, \mathrm{i}$):
1.if $\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{T}_{0}, X\right)\right)$ then $\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{T}_{0}, \dot{\mathrm{I}}\right)\right.$).
2.if $\left(\mathrm{P}_{2} \hookleftarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \mathrm{X}\right)\right)$ then $\left(\mathrm{P}_{2} \hookleftarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \dot{\mathrm{I}}\right)\right.$).
3.if $\left(\mathrm{P}_{1} \hookrightarrow G\left(\dot{\mathrm{~T}}_{0}, \dot{\mathrm{I}}\right)\right.$) then $\left(\mathrm{P}_{1} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \mathrm{X}\right)\right)$.

Proposition 2.3. If $(\mathrm{X}, \underline{T}, \dot{\mathrm{f}}))$ is $\dot{\mathrm{T}}_{0}$-space (respectively, $\dot{\mathrm{f} p g}$ - $\dot{\mathrm{T}}_{0}$ - space $) \longleftrightarrow\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \mathrm{X}\right)\right)$. (respectively, $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{T}_{0}, \dot{\mathrm{I}}\right)\right.$).
Proof: since ($\mathrm{X}, \mathrm{T}, \dot{\mathrm{I}}$) is $\dot{\mathrm{T}}_{0}$ - space (respectively, f pg - $\dot{\mathrm{T}}_{0}$-space), then, in the m - th inning, any choice for the first player $P_{1}, x_{m} \neq \zeta_{m}$, the second player P_{2} can be found $\Psi_{m} \in T$ (respectively, $\amalg_{\underline{m}} \in$ fipg- $\mathrm{O}(\mathrm{X}))$) $\amalg_{2} \in \mathrm{~T}$ (respectively $\amalg_{\mathrm{m}} \in \dot{\mathrm{f}} \mathrm{pg}-\mathrm{O}(\mathrm{X})$). So $\quad \mathrm{B}=\left\{\amalg_{1}, \amalg_{2}, \amalg_{3}, \ldots, \amalg_{\mathrm{m}}, \ldots\right\}$ is the winning strategy for P_{2}.
(\Leftarrow) Clear.
Corollary 2.4. $\left(P_{2} \hookrightarrow G\left(\dot{T}_{0}, X\right)\right)$ (respectively, $\left(P_{2} \hookrightarrow G\left(\dot{T}_{0}, \dot{f}\right)\right) \longleftrightarrow \forall x_{1} \neq x_{2}$ in $X, \exists \dot{F} \in F$ (respectively $\exists \dot{\mathrm{F}} \in \dot{\mathrm{f} p g C}(\mathrm{X})$) such that, $\mathrm{x}_{1} \in \dot{\mathrm{~F}}$ and $x_{2} \notin \dot{\mathrm{~F}}$.

Corollary 2.5. If $(X, T, \dot{\Gamma})$ is \dot{T}_{0}-space (respectively, fipg- $\dot{\mathrm{T}}_{0}$-space $) \longleftrightarrow\left(\mathrm{P}_{1} \leftrightarrow \underset{(}{ }\left(\dot{\mathrm{T}}_{0}, \mathrm{X}\right)\right)$. (respectively $\left(\mathrm{P}_{1} \rightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \dot{\mathrm{I}}\right)\right.$).

Proposition 2.6. If $(\mathrm{X}, \mathrm{T}, \dot{\mathrm{f}})$ is not $\dot{\mathrm{T}}_{0}$-space (respectively, not $\dot{\mathrm{f}} \mathrm{pg}$ - $\dot{\mathrm{T}}_{0}$-space $) \longleftrightarrow\left(\mathrm{P}_{1} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \mathrm{X}\right)\right)$ (respectively, $\left(\mathrm{P}_{1} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \dot{\mathrm{I}}\right)\right.$).

Corollary 2.7. If (X, TC, $\dot{\mathrm{F}})$ is not $\dot{\mathrm{T}}_{0}$-space (respectively not $\dot{\mathrm{f}} \mathrm{pg}$ - $\dot{\mathrm{T}}_{0}$-space $) \longleftrightarrow\left(\mathrm{P}_{2} \leftrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \mathrm{X}\right)\right)$ (respectively $\left(\mathrm{P}_{2} \rightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \dot{\mathrm{I}}\right)\right.$).

Definition 2.8. Let ($\mathrm{X}, \underline{T}, \dot{\mathrm{I}}$) be a topological space, define a game $\mathrm{G}\left(\dot{\mathrm{T}}_{1}, \mathrm{X}\right)$ (respectively $G\left(\mathrm{~T}_{1}, \dot{\mathrm{f}}\right)$)as follows: The two players P_{1} and P_{2} play an inning for each natural numbers, in the m-th inning, the first round, P_{1} will choose $x_{m} \neq \varsigma_{m}$ where $x_{\underline{m}}, \varsigma_{m} \in X$. Next, P_{2} choose $Џ_{\underline{m}}, \bigvee_{m} \in$
 game where $\mathrm{B}=\left\{\left\{\amalg_{1}, \mathrm{v}_{1}\right\},\left\{\amalg_{2}, \mathrm{v}_{2}\right\} \ldots,\left\{\amalg_{\mathrm{m}}, \mathrm{V}_{\mathrm{m}}\right\} \ldots\right\}$ satisfies that for all $x_{\mathrm{m}} \neq \varsigma_{\mathrm{m}}$ in X there exist $\left\{\amalg_{\underline{m}}, \mathrm{~V}_{\mathrm{m}}\right\} \in$ B such that $\mathrm{x}_{\underline{m}} \in\left(\amalg_{\underline{m}}-\mathrm{V}_{\underline{m}}\right)$ and $\varsigma_{\underline{m}} \in\left(\mathrm{~V}_{\mathrm{m}}-\amalg_{\underline{m}}\right)$. Other hand P_{1} wins.

Remark 2.9. For any ideal topological space($\mathrm{X}, \mathrm{T}, \mathrm{I}$):

1. if $\left(P_{2} \hookrightarrow G\left(\dot{T}_{1}, X\right)\right)$ then $\left(P_{2} \hookrightarrow G\left(\dot{T}_{1}, \dot{\mathrm{I}}\right)\right)$.
2. if $\left(P_{2} \hookleftarrow G\left(\dot{T}_{1}, X\right)\right)$ then $\left(P_{2} \hookleftarrow G\left(\dot{T}_{1}, \dot{f}\right)\right)$.
3. if $\left(\mathrm{P}_{1} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{1}, \dot{\mathrm{I}}\right)\right.$) then $\left(\mathrm{P}_{1} \hookrightarrow \underset{\mathrm{C}}{\left(\dot{T}_{1}, X\right)}\right)$.

Proposition 2.10. If (X, Ṭ, $\dot{\mathrm{f}}$) is $\dot{\mathrm{T}}_{1}$-space (respectively fipg- $\dot{\mathrm{T}}_{1}$-space $\longleftrightarrow\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{1}, \mathrm{X}\right)\right.$). (respectively, $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\mathrm{T}_{1}, \dot{\mathrm{I}}\right)\right.$).
Proof: (\Rightarrow) Let (X, T, i, be a topological space, in the first round, P_{1} will choose $\mathrm{x}_{1} \neq \varsigma_{1}$. Next, since ($\mathrm{X}, \mathrm{T}, \dot{\mathrm{I}}$) is $\dot{\mathrm{T}}_{1}$-space (respectively $\dot{\mathrm{f}}_{\mathrm{p}}$ - $\dot{\mathrm{T}}_{1}$-space) P_{2} can be found $\underline{\Psi}_{1}, \mathrm{v}_{1} \in \mathrm{~T}$ (respectively $\amalg_{1}, \mathrm{v}_{1} \in$ fpg- $\left.O(\mathrm{X})\right)$ such that $x_{1} \in\left(\amalg_{1}-\mathrm{V}_{1}\right)$ and $\varsigma_{1} \in\left(\mathrm{v}_{1}-\amalg_{1}\right)$, in the second round, P_{1} will choose $x_{2} \neq \varsigma_{2}$. Next, P_{2} can be found $\amalg_{2}, \underline{v}_{2} \in T$ (respectively $\amalg_{2}, \underline{y}_{2} \in$ fipg- $O(X)$) such that $x_{2} \in \amalg_{2}-\underline{v}_{2}$ and $\varsigma_{2} \in\left(\mathrm{y}_{2}-\amalg_{2}\right)$, in the m-th round P_{1} will choose $\mathrm{x}_{\mathrm{m}} \neq \varsigma_{\mathrm{m}}$, Next, P_{2} can be
 So $B=\left\{\left\{\amalg_{1}, v_{1}\right\},\left\{\amalg_{2}, \underline{\varphi}_{2}\right\}, \ldots,\left\{\amalg_{m}, v_{m}\right\}, \ldots\right\}$ is the winning strategy for P_{2}.
(\Leftarrow) Clear.
Corollary 2.11. $\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{T}_{1}, \mathrm{X}\right)\right)$ (respectively, $\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{\mathrm{~T}}_{1}, \dot{\mathrm{r}}\right)\right) \longleftrightarrow \forall \mathrm{x}_{1} \neq \mathrm{x}_{2}$ in $\mathrm{X}, \exists \dot{\mathrm{F}}_{1}, \dot{\mathrm{~F}}_{2} \in \underset{5}{ }$ (respectively $\exists \dot{\mathrm{F}}_{1}, \dot{\mathrm{~F}}_{2} \in \dot{\mathrm{f}} \mathrm{g}-\mathrm{C}(\mathrm{X})$) such that, $\mathrm{x}_{1} \in \dot{\mathrm{~F}}_{1}$ and $x_{2} \notin \dot{\mathrm{~F}}_{1}$ and $\mathrm{x}_{1} \notin \dot{\mathrm{~F}}_{2}$ and ${x_{2}}^{\in} \dot{\mathrm{F}}_{2}$.

Corollary 2.12. (X, T, $\dot{\mathrm{f}})$ is $\dot{\mathrm{T}}_{1}$-space (respectively, fipg- $\dot{\mathrm{T}}_{1}$-space) $\longleftrightarrow\left(\mathrm{P}_{1} \leftrightarrow \underset{\mathrm{G}}{ }\left(\dot{\mathrm{T}}_{1}, \mathrm{X}\right)\right)$. (respectively $\left(\mathrm{P}_{1} \rightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{1}, \dot{\mathrm{r}}\right)\right.$).

Proposition 2.13. ($\mathrm{X}, \mathrm{T}, \dot{\mathrm{I}}$) is not $\dot{\mathrm{T}}_{1}$-space (respectively, not $\dot{\mathrm{f}} \mathrm{gg}-\dot{\mathrm{T}}_{1}$-space $\longleftrightarrow\left(\mathrm{P}_{1} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{1}, \mathrm{X}\right)\right)$ (respectively $\left(\mathrm{P}_{1} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{1}, \dot{\mathrm{I}}\right)\right.$).

Corollary 2.14. (X, Ț, $\dot{\mathrm{f}})$ is not $\dot{\mathrm{T}}_{1}$-space (respectively, not $\dot{\mathrm{f} p g}$ - $\dot{\mathrm{T}}_{1}$-space $) \longleftrightarrow\left(\mathrm{P}_{2} \rightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{1}, \mathrm{X}\right)\right)$ (respectively $\left(\mathrm{P}_{2} \rightarrow \mathrm{G}\left(\mathrm{T}_{1}, \dot{\mathrm{I}}\right)\right.$).

Definition 2.15. [10], [13] Let (X, T) be topological space, define a game $\underset{(}{G}\left(\dot{T}_{2}, X\right)$ (respectively $\left.G\left(\dot{T}_{2}, \dot{\mathrm{f}}\right)\right)$ as follows: The two players P_{1} and P_{2} play an inning for each natural numbers, in the m-th inning, the first round, P_{1} will choose $x_{\underline{m}} \neq \varsigma_{m}$. Next, P_{2} choose $\amalg_{\underline{m}}$, $\bigvee_{\underline{m}}$ are disjoint, $\amalg_{\underline{m}}$,
$\mathrm{V}_{\mathrm{m}} \in \mathrm{T}$ (respectively, $\left.\amalg_{\underline{m}}, \mathrm{~V}_{\mathrm{m}} \in \dot{\mathrm{f}} \mathrm{pg}-\mathrm{O}(\mathrm{X})\right)$ such that $\mathrm{x}_{\mathrm{m}} \in \amalg_{\underline{m}}$ and $\varsigma_{\mathrm{m}} \in \mathrm{v}_{\mathrm{m}} . \mathrm{P}_{2}$ wins in the game where $B=\left\{\left\{\amalg_{1}, \mathrm{v}_{1}\right\},\left\{\amalg_{2}, \mathrm{~V}_{2}\right\}, \ldots,\left\{\amalg_{\mathrm{m}}, \mathrm{V}_{\mathrm{m}}\right\}, \ldots\right\}$ satisfies that for all $\mathrm{x}_{\mathrm{m}} \neq \varsigma_{\mathrm{m}}$ in X , there exist $\left\{\amalg_{\underline{m}}, \mathrm{~V}_{\mathrm{m}}\right\} \in B$, such that ${\underset{\mathrm{x}}{\mathrm{m}}} \in \amalg_{\mathrm{m}}$ and $\varsigma_{\mathrm{m}} \in \mathrm{v}_{\mathrm{m}}$. Other hand P_{1} wins.
Remark 2.16. For any ideal topological space ($\mathrm{X}, \mathrm{T}, \mathrm{i}$):

1. if $\left(P_{2} \hookrightarrow G\left(\dot{T}_{2}, X\right)\right)$ then $\left(P_{2} \hookrightarrow G\left(\dot{T}_{2}, \dot{I}\right)\right)$.
2. if $\left(\mathrm{P}_{2} \hookleftarrow \mathrm{G}\left(\dot{T}_{2}, \mathrm{X}\right)\right)$ then $\left(\mathrm{P}_{2} \hookleftarrow \mathrm{G}\left(\dot{\mathrm{T}}_{2}, \dot{\mathrm{I}}\right)\right.$).
3. if $\left(P_{1} \hookrightarrow G\left(\dot{T}_{2}, \dot{X}\right)\right)$ then $\left(P_{1} \hookrightarrow G\left(\dot{T}_{2}, X\right)\right)$.

Proposition 2.17. If (X, T, $\dot{\mathrm{f}})$ is $\dot{\mathrm{T}}_{2}$-space (respectively, fipg- $\dot{\mathrm{T}}_{2}$-space) $\longleftrightarrow\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}_{\mathrm{T}}\left(\dot{\mathrm{T}}_{2}, \mathrm{X}\right)\right)$. (respectively, $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{T}_{2}, \dot{\mathrm{I}}\right)\right.$).
Proof: (\Rightarrow) Let ($\mathrm{X}, \mathrm{T}, \mathrm{f}$) be a topological space, in the first round, P_{1} will choose $\mathrm{*}_{1} \neq \varsigma_{1}$. Next, since ($\mathrm{X}, \mathrm{T}, \dot{\mathrm{I}}$) is $\dot{\mathrm{T}}_{2}$ - space (respectively, f_{f} - $\dot{\mathrm{T}}_{2}$ - space), P_{2} can be found \amalg_{1} and $\mathrm{v}_{1} \in \mathrm{~T}$ (respectively \amalg_{1} and $v_{1} \in$ fpg- $\left.O(X)\right)$ such that $x_{1} \in \bigsqcup_{1}$ and $\varsigma_{1} \in \stackrel{v}{1}, \amalg_{1} \cap v_{1}=\emptyset$, in the second round, P_{1} will choose $*_{2} \neq \varsigma_{2}$. Next, P_{2} choose \amalg_{2} and $\mathrm{v}_{2} \in T$ (respectively \amalg_{1} and $\mathrm{v}_{2} \in$ fipg- $\mathrm{O}(\mathrm{X})$) such that $*_{2} \in$ \amalg_{2} and $\varsigma_{2} \in \varphi_{2}, \amalg_{2} \cap \varphi_{2}=\emptyset$, in the m-th round, P_{1} will choose $x_{m} \neq \varsigma_{m}$. Next, P_{2} choose
 \emptyset.
So $B=\left\{\left\{\amalg_{1}, \mathrm{v}_{1}\right\},\left\{\amalg_{2}, \mathrm{~V}_{2}\right\}, \ldots,\left\{\amalg_{m}, \mathrm{~V}_{\mathrm{m}}\right\} \ldots\right\}$ is the winning strategy for P_{2}.
(\Leftarrow) Clear.
 (respectively, $\left(\mathrm{P}_{1} \rightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{2}, \dot{\mathrm{I}}\right)\right.$).

Proposition 2.19. (X, TC, $\dot{\mathrm{f}})$ is not $\dot{\mathrm{T}}_{2}$-space(respectively not $\dot{\mathrm{f} p g}$ - $\dot{\mathrm{T}}_{2}$-space $) \longleftrightarrow\left(\mathrm{P}_{1} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{2}, \mathrm{X}\right)\right)$ (respectively $\left(\mathrm{P}_{1} \leftrightarrows \mathrm{G}\left(\dot{T}_{2}, \dot{1}\right)\right.$).

Corollary 2.20. (X, T, $\dot{\mathrm{f}})$ is not $\dot{\mathrm{T}}_{2}$-space (respectively not $\dot{\mathrm{f}}_{\mathrm{p}}$ - $\dot{\mathrm{T}}_{0}$-space $) \longleftrightarrow\left(\mathrm{P}_{2} \leftrightarrow \underset{\mathrm{G}}{ }\left(\dot{\mathrm{T}}_{2}, \mathrm{X}\right)\right.$) (respectively $\left(\mathrm{P}_{2} \rightarrow \mathrm{G}\left(\dot{T}_{2}, \hat{\mathrm{I}}\right)\right.$).

Remark 2.21. For any space ($T, \mathrm{X}, \mathrm{I}$)

1. $\left(P_{2} \hookrightarrow G\left(\dot{T}_{i+1}, X\right)\right)\left(\right.$ respectively $\left.G\left(\dot{T}_{i+1}, \dot{1}\right)\right) ; i=\{0,1\}$ then $\left(P_{2} \hookrightarrow G\left(\dot{T}_{i}, X\right)\right)\left(\right.$ respectively $G\left(\dot{T}_{i}, \dot{i}\right)$).
2. $\left(\mathrm{P}_{2} \rightarrow G\left(\dot{T}_{i+1}, X\right)\right)\left(\right.$ respectively $\left.G\left(\dot{T}_{i+1}, \dot{1}\right)\right) ; i=\{0,1\}$ then $\left(P_{2} \leadsto G\left(\dot{T}_{i}, X\right)\right)\left(\right.$ respectively $G\left(\dot{T}_{i}, \dot{1}\right)$).

The following (fig) illustrates the relationships given in Remark 2.2

Figure 1. The winning strategy for P_{2} in $G\left(\dot{T}_{i}, X\right), i=\{0,1,2\}$

Remark 2.22. For any space ($T, X, i)$

1. $\left(\mathrm{P}_{1} \hookrightarrow \mathrm{G}\left(\dot{T}_{\mathrm{i}}, \mathrm{X}\right)\right)$ (respectively $\mathrm{G}_{\mathrm{T}}\left(\dot{T}_{\mathrm{i}}, \dot{\mathrm{I}}\right)$); $\mathrm{i}=\{0,1\}$ then $\left(\mathrm{P}_{1} \hookrightarrow \mathrm{G}\left(\dot{T}_{\mathrm{i}+1}, \mathrm{X}\right)\right)$ (respectively $\mathrm{G}_{\mathrm{T}}\left(\dot{T}_{\mathrm{i}+1}, \dot{\mathrm{I}}\right)$).

The following Figure illustrates the relationships given in Remark 2.22:

Figure 2. The winning strategy for P_{1} in $\underset{(}{ }\left(\dot{T}_{i}, X\right), i=\{0,1,2\}$

3. The games with open functions via f pg-open sets.

By using open function via fipg-open sets; you can determine the winning strategy for any players in $\left.G\left(\dot{T}_{i}, X\right)\right)$; and $G\left(\dot{T}_{i}, \dot{1}\right)$ where $\mathrm{i}=\{0,1,2\}$.

Definition 3.1. (1) A function $\mathrm{f}:(\mathrm{X}, \mathrm{T}, \mathrm{i}) \rightarrow(\mathrm{Y}, \mathrm{T}, \mathfrak{f})$ is

1. f -pre-g-open function, symbolizes fpgo-function if $f(\amalg)$ is a fpg -open set in Y whenever \amalg is an fpg-open set in X.
2. f^{*} - pre-g-open function, symbolizes f^{*} pgo-function if $f(\amalg)$ is a jpg-open set in Y whenever \amalg is an open set in X .
3. $\mathrm{f}^{* *}$-pre-g-open function, symbolizes $\AA^{* *}$ pgo-function if $f(\amalg)$ is an open in Y whenever \amalg is an fpg-open set in X.

Proposition 3.1. If the function $f:(X, T, \tilde{Y}) \rightarrow(\Upsilon, T, \mathfrak{j})$ is surjective open (respectively \dot{f}-pre-g-open function) and ($\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{i}, \mathrm{X}\right)$) (respectively $\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{\mathrm{~T}}_{i}, \dot{\mathrm{I}}\right)\right.$) then ($\mathrm{P}_{2} \hookrightarrow \underset{G}{\left(\mathrm{~T}_{i}, ' \Upsilon\right)}$ (respectively ($\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{i}, \mathfrak{j}\right)$), where ($\mathrm{i}=0$, 1and 2 respectively).
$\operatorname{Proof}(\mathbf{1})$. In the game $\underset{(}{ }\left(\dot{\mathrm{T}}_{i}, \mathrm{Y}\right)$ (respectively, $\mathrm{G}\left(\dot{\mathrm{T}}_{i}, \mathfrak{j}\right)$) where $(\mathrm{i}=0)$, in the first round, P_{1} will choose $\varsigma_{1} \neq \mathrm{z}_{1}$ such that $\varsigma_{1}, \mathrm{z}_{1} \in ' \Upsilon$. Next, P_{2} in $G\left(\dot{T}_{0}, ' \Upsilon\right)$ (respectively P_{2} in $G\left(\dot{T}_{0}, \dot{f}\right)$ will hold account $\mathrm{f}^{-1}\left(\varsigma_{1}\right), \mathrm{f}^{-1}\left(\mathrm{z}_{1}\right) \in \mathrm{X}, \mathrm{f}^{-1}\left(\varsigma_{1}\right) \neq \mathrm{f}^{-1}\left(\mathrm{z}_{1}\right)$, but $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\mathrm{T}_{0}, \mathrm{X}\right)\right.$) (respectively ($\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \dot{\mathrm{i}}\right)$), $\exists \Psi_{1} \in T$ (respectively $\exists \Psi_{1} \in \dot{\mathrm{f} p g}-\mathrm{O}(\mathrm{X})$), $\mathrm{f}^{-1}\left(\varsigma_{1}\right) \in \amalg_{1}$ and $\mathrm{f}^{-1}\left(\mathrm{z}_{1}\right) \notin \amalg_{1}$ since f is an open respectively $\dot{\mathrm{f}}$-pre-g-open function then $\varsigma_{1} \in \mathrm{f}\left(\amalg_{1}\right)$ and $\mathrm{z}_{1} \notin \mathrm{f}\left(\amalg_{1}\right)$ this implies P_{2} in $\underset{(}{ }\left(\mathrm{T}_{0}, ' \mathrm{Y}\right)$ (respectively P_{2} in $G\left(\dot{T}_{0}, \mathfrak{j}\right)$) choose $f\left(\amalg_{1}\right)$ is open (respectively jpg-open sets), in the second round, P_{1} in $G\left(\dot{T}_{0}, ' Y\right)$ (respectively P_{1} in $G\left(\dot{T}_{0}, \mathfrak{j}\right)$ choose $\varsigma_{2} \neq z_{2}$ such that $\varsigma_{2}, z_{2} \in \Upsilon$. Next, P_{2} in $G\left(\dot{T}_{0}, ' \Upsilon\right) \quad$ (respectively P_{2} in $G\left(\dot{T}_{0}, \dot{f}\right)$) will hold account $f^{-1}\left(\varsigma_{2}\right), \mathfrak{f}^{-1}\left({\underset{c}{2}}_{2}\right) \in X, \mathrm{f}^{-1}\left(\varsigma_{2}\right) \neq$ $\mathrm{f}^{-1}\left(\mathrm{z}_{2}\right)$, but $\quad\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \mathrm{X}\right)\right)$, (respectively $\quad\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \dot{\mathrm{H}}\right)\right.$), $\exists \amalg_{2} \in T$ (respectively $\exists \amalg_{2} \in$ fipg- $\mathrm{O}(\mathrm{X})), \mathrm{f}^{-1}\left(\varsigma_{\mathrm{m}}\right) \in \amalg_{2}$ and $\mathrm{f}^{-1}({\underset{\mathrm{z}}{2}}) \notin \amalg_{2}$, then $\varsigma_{2} \in \mathrm{f}\left(\Psi_{2}\right)$ and $\mathrm{z}_{2} \notin \mathrm{f}\left(\amalg_{2}\right)$ this implies P_{2} in $G\left(\dot{T}_{0}, ' \Upsilon\right)$ (respectively P_{2} in $G\left(\dot{T}_{0}, ' Y\right)$ will choose $f\left(\amalg_{2}\right)$ is open (respectively jpg-open sets) and in the $\underset{\sim}{m}$-th round, P_{1} in $G\left(\dot{T}_{0}, ' \Upsilon\right)$ (respectively P_{1} in $G\left(\dot{T}_{0}, \mathfrak{j}\right)$ choose $\varsigma_{\mathrm{m}} \neq \mathrm{z}_{\mathrm{m}}$ such that $\varsigma_{\underline{m}}, \mathrm{z}_{\mathrm{m}} \in{ }^{\prime} \Upsilon$. Next, P_{2} in $G\left(\dot{T}_{0}, ' Y\right)$ (respectively P_{1} in $G\left(\dot{T}_{0}, \dot{f}\right)$ will hold account $f^{-1}\left(\varsigma_{m}\right), f^{-1}\left(\mathbf{z}_{m}\right) \in X$, $\mathrm{f}^{-1}\left(\varsigma_{\underline{m}}\right) \neq \mathrm{f}^{-1}(\underline{\mathrm{z}} \mathrm{m}), \quad$ but $\quad\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}_{(}\left(\dot{\mathrm{T}}_{0}, \mathrm{X}\right)\right), \quad$ (respectively $\quad\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{\mathrm{~T}}_{0}, \dot{\mathrm{i}}\right)\right.$), \quad so, $\exists \amalg_{\underline{m}} \in$
 $f\left(\amalg_{m}\right)$; this implies P_{2} in $G\left(\dot{T}_{0}, ' Y\right)$ (respectively P_{2} in $G\left(\dot{T}_{0}, \dot{f}\right)$ will choose $f\left(\amalg_{m}\right)$ is open (respectively jpg-open sets); thus $B=\left\{f\left\{\amalg_{1}\right\}, f\left\{\amalg_{2}\right\}, \ldots, f\left\{\Psi_{m}\right\} \ldots\right\}$ is the winning strategy for P_{2} in $\underset{(}{G}\left(\mathrm{~T}_{0}, ' \Upsilon\right)$ (respectively, P_{2} in $\mathrm{G}\left(\mathrm{T}_{0}, \mathfrak{j}\right)$).
 $z_{m p}$ such that $\varsigma_{m}, z_{m} \in \Upsilon$. Next, P_{2} in $G\left(G_{1}, \Upsilon\right)$ (respectively, P_{2} in $G\left(\dot{T}_{1}, f\right)$ will hold account $\mathrm{f}^{-1}\left(\varsigma_{\mathrm{m}}\right), \mathrm{f}^{-1}\left(\mathrm{z}_{\mathrm{m}}\right) \in \mathrm{X}, \mathrm{f}^{-1}\left(\varsigma_{\mathrm{m}}\right) \neq \mathrm{f}^{-1}\left(\mathrm{z}_{\mathrm{m}}\right)$, but $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{1}, \mathrm{X}\right)\right.$) (respectively, $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{1}, \dot{\mathrm{I}}\right)\right.$), $\exists \rrbracket_{\underline{m}}, \mathrm{~V}_{\mathrm{m}} \in \mathrm{T}$ (respectively $\left.\exists \rrbracket_{\underline{m}}, \mathrm{~V}_{\mathrm{m}} \in \dot{\mathrm{f} p g}-\mathrm{O}(\mathrm{X})\right), \mathrm{f}^{-1}\left(\varsigma_{1}\right) \in\left(\amalg_{\mathrm{m}}-\mathrm{V}_{\mathrm{m}}\right)$ and $\mathrm{f}^{-1}\left(\mathrm{z}_{\mathrm{m}}\right) \in\left(\mathrm{V}_{\mathrm{m}}-\amalg_{\mathrm{m}}\right)$ and since f is an open ,respectively \dot{f}-pre-g-open function; this implies P_{2} in $G\left(\dot{T}_{1}, ' Y\right)$ (respectively P_{2} in $G\left(\dot{T}_{1}, \mathfrak{j}\right)$) choose $f\left(\amalg_{m}\right), f\left(\mathrm{v}_{\mathrm{m}}\right)$ are open (respectively jpg-open sets), thus $B=$ $\left\{\left\{f\left(\amalg_{1}\right), f\left(\mathrm{v}_{1}\right)\right\},\left\{f\left(\amalg_{2}\right), f\left(\mathrm{~V}_{2}\right)\right\}, \ldots,\left\{f\left(\amalg_{\mathrm{m}}\right), f\left(\mathrm{v}_{\mathrm{m}}\right)\right\} \ldots\right\}$ is the winning strategy for P_{2} in $\left.G\left(\dot{\mathrm{~T}}_{1}, ' \Upsilon\right)\right)$ (respectively P_{2} in $G\left(\dot{T}_{1}, \dot{f}\right)$).In the same way, we can proof ($\mathrm{P}_{2} \hookrightarrow G\left(\dot{T}_{2},{ }^{\prime} \Upsilon\right)$ (respectively $\left(\mathrm{P}_{2} \hookrightarrow\right.$ $\left.G\left(\dot{T}_{1}, \mathfrak{f}\right)\right)$ but $f\left(\amalg_{\underline{m}}\right) \cap f\left(\varphi_{m}\right)=\emptyset$.Thus, $B=\left\{\left\{f\left(\amalg_{1}\right), f\left(v_{1}\right)\right\},\left\{f\left(\amalg_{2}\right), f\left(\varphi_{2}\right)\right\}, \ldots,\left\{f\left(\amalg_{m}\right), f\left(\varphi_{m}\right)\right\} \ldots\right\}$ is the winning strategy for P_{2} in $\bar{G}\left(\dot{\mathrm{~T}}_{2}, \mathrm{Y}\right)\left(\right.$ respectively P_{2} in $G\left(\dot{\mathrm{~T}}_{2}, \mathfrak{f}\right)$).
Proposition 3.3. If the function $\mathrm{f}:(\mathrm{X}, \mathrm{T}, \dot{\mathrm{I}}) \rightarrow(\mathrm{Y}, \mathrm{T}, \mathfrak{j})$ is surjective f^{*} pgo-function and $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{i}, \mathrm{X}\right)\right)$, then, $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{i}, \mathfrak{j}\right)\right)$, where ($\mathrm{i}=0,1$ and 2 respectively).
Proof (1). In the game $G\left(\dot{T}_{i}, \mathfrak{j}\right)$, where ($\mathrm{i}=0$), in the first round, P_{1} will choose $\varsigma_{1} \neq \mathrm{z}_{1}$ such that $\varsigma_{1}, \mathrm{z}_{1} \in \Upsilon$. Next, P_{2} in $G\left(\mathrm{~T}_{0}, \mathfrak{f}\right)$ will hold account $\mathrm{f}^{-1}\left(\varsigma_{1}\right), \mathrm{f}^{-1}\left(\mathrm{z}_{1}\right) \in \mathrm{X}, \mathrm{f}^{-1}\left(\varsigma_{1}\right) \neq \mathrm{f}^{-1}\left(\mathrm{z}_{1}\right)$, but $\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{T}_{0}, X\right)\right), \exists \rrbracket_{1} \in T, \mathrm{f}^{-1}\left(\varsigma_{1}\right) \in \amalg_{1}$ and $\mathrm{f}^{-1}\left(\mathrm{z}_{1}\right) \notin \amalg_{1}$, and since f is $\dot{\Gamma}^{*}$ pgo-function this implies P_{2} in $G\left(\dot{T}_{0}, X\right)$ will choose $f\left(\amalg_{1}\right)$ is a jpg-open set, in the second round, P_{1} in $G\left(\dot{T}_{0}, \mathfrak{f}\right)$ choose $\varsigma_{2} \neq \mathrm{z}_{2}, \varsigma_{2}, \mathrm{z}_{2} \in \Upsilon$. Next, P_{2} in $\mathrm{G}_{\left(\dot{T}_{0}, \mathfrak{f}\right)}$ will hold account $\mathrm{f}^{-1}\left(\varsigma_{2}\right), \mathrm{f}^{-1}\left(\mathrm{z}_{2}\right) \in \mathrm{X}, \mathrm{f}^{-1}\left(\varsigma_{2}\right) \neq$ $\mathrm{f}^{-1}\left(\mathrm{z}_{2}\right)$, but $\left(\mathrm{P}_{2} \hookrightarrow G\left(\mathrm{~T}_{0}, \mathrm{X}\right)\right), \exists \amalg_{2} \in \mathrm{~T}, \mathrm{f}^{-1}\left(\varsigma_{2}\right) \in \amalg_{2}$ and $\mathrm{f}^{-1}\left(\mathrm{z}_{2}\right) \notin \amalg_{2}$, this implies P_{2} in $G\left(\dot{T}_{0}, X\right)$ will choose $f\left(\amalg_{2}\right)$ is a jpg-open set and in m-th round P_{1} in $G\left(\dot{T}_{0}, f\right)$ choose $\varsigma_{m} \neq \mathrm{z}_{\mathrm{m}}$,
 $\left(P_{2} \hookrightarrow G\left(\dot{T}_{0}, X\right)\right), \exists \amalg_{\underline{m}} \in T, f^{-1}\left(\varsigma_{m}\right) \in \amalg_{\underline{m}}$ and $f^{-1}\left(\mathrm{z}_{\mathrm{m}}\right) \notin \amalg_{\underline{m}}$, this implies P_{2} in $G\left(\dot{T}_{0}, X\right)$ will choose $f\left(\amalg_{m}\right)$ is a jpg-open set, thus $B\left\{\left\{\left\{\amalg_{1}\right\}, f\left\{\amalg_{2}\right\} \ldots, f\left\{\amalg_{m}\right\} \ldots\right\}\right.$ is the winning strategy for P_{2} in $\left.\mathrm{G}\left(\mathrm{T}_{0}, \mathrm{X}\right)\right)$.
(2). In the game $G\left(\dot{T}_{i}, \mathfrak{j}\right)$ where $(i=1)$, in the m-th round P_{1} in $G\left(\dot{T}_{1}, \mathfrak{j}\right)$ choose $\varsigma_{\mathrm{m}} \neq \mathrm{z}_{\mathrm{m}}$,

 $G\left(\dot{\mathrm{~T}}_{1}, \mathrm{X}\right)$ will choose $\mathrm{f}\left(\amalg_{\mathrm{m}}\right)$ and $\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)$ are jpg-open sets, thus $B=\left\{\left\{\mathrm{f}\left(\amalg_{1}\right), f\left(\mathrm{y}_{1}\right)\right\}\right.$, $\left.\left\{f\left(\amalg_{2}\right), f\left(\varphi_{2}\right)\right\}, \ldots,\left\{f\left(\amalg_{m}\right), f\left(\varphi_{m}\right)\right\} \ldots\right\}$ is the winning strategy for P_{2} in $\left.G\left(\dot{T}_{1}, X\right)\right)$. By the same way we can $\operatorname{proof}\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{T}_{2}, X\right)\right)$ but, $f\left(\Psi_{\mathrm{m}}\right) \cap f\left(\mathrm{v}_{\mathrm{m}}\right)=\emptyset$. Thus $B=f\left(\Psi_{\underline{m}}\right) \cap f\left(\mathrm{v}_{\mathrm{m}}\right)=\varnothing$ is the winning strategy for P_{2} in $\left.G\left(\dot{T}_{2}, X\right)\right)$.

Corollary. If the function $f:(X, T ̣) \rightarrow(Y, T)$ is a surjective open function and $\mathrm{P}_{2} \hookrightarrow G\left(\dot{\mathrm{~T}}_{i}, \mathrm{X}\right)$, then $P_{2} \hookrightarrow G\left(\dot{T}_{i}, \dot{f}\right)$, where $i=\{0,1,2\}$.
Proposition 3.4. If the function $f:(X, T, i) \rightarrow(Y, T, j)$ is a surjective $\dot{f}^{* *}$ pgo-function and $\left(P_{2} \hookrightarrow G\left(\dot{T}_{0}, \dot{I}\right)\right.$ then, $\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{T}_{0}, ' Y\right)\right.$, where ($\mathrm{i}=0$, 1and 2 respectively).
Proof($\mathbf{1}$). In the game $G\left(\dot{T}_{i}, ' \Upsilon\right)$ where $(i=0)$, in the first round, P_{1} in $G\left(\dot{T}_{0}, ' \Upsilon\right)$ will choose $\varsigma_{1} \neq \mathrm{z}_{1}$ such that $\varsigma_{1}, \mathrm{z}_{1} \in{ }^{\prime} \mathrm{Y}$. Next, P_{2} in $G\left(\dot{T}_{0}, \Upsilon\right)$ will hold account $\mathrm{f}^{-1}\left(\varsigma_{1}\right), \mathrm{f}^{-1}\left(\mathrm{z}_{1}\right) \in \mathrm{X}, \mathrm{f}^{-1}\left(\varsigma_{1}\right) \neq$ $\mathrm{f}^{-1}\left(\mathrm{z}_{1}\right)$, but $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \dot{\mathrm{I}}\right), \exists \amalg_{1} \in \hat{\mathrm{p}} \mathrm{pg} 0(\mathrm{X}), \mathrm{f}^{-1}\left(\varsigma_{1}\right) \in \amalg_{1}\right.$ and $\mathrm{f}^{-1}\left(\mathrm{z}_{1}\right) \notin \amalg_{1}, \varsigma_{1} \in \mathrm{f}\left(\amalg_{1}\right)$ and $\mathrm{z}_{1} \notin$ $f\left(\mathrm{y}_{1}\right)$ and since f is $\dot{\mathrm{f}}{ }^{* *}$ pgo-function this implies P_{2} in $G\left(\dot{T}_{0}, \dot{\mathrm{I}}\right)$ will choose $\mathrm{f}\left(\amalg_{1}\right)$ such that $\varsigma_{1} \in$ $f\left(\amalg_{1}\right), z_{1} \notin f\left(\amalg_{1}\right)$ open, in the second round, P_{1} in $G\left(T_{0}, ' \Upsilon\right)$ choose $\varsigma_{2} \neq z_{2}, \varsigma_{2}, z_{2} \in ' \Upsilon$. Next, P_{2} in $G\left(\dot{T}_{0}, ' \Upsilon\right)$ will hold account $f^{-1}\left(\varsigma_{2}\right), f^{-1}\left(\mathrm{z}_{2}\right) \in X, \mathrm{f}^{-1}\left(\varsigma_{2}\right) \neq \mathrm{f}^{-1}\left(\mathrm{z}_{2}\right)$, but $\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{\mathrm{~T}}_{0}, \dot{\mathrm{I}}\right)\right.$, $\exists \Psi_{2} \in \mathrm{fpgO}(\mathrm{X}), \mathrm{f}^{-1}\left(\varsigma_{2}\right) \in \amalg_{2}$ andf $^{-1}\left(\mathrm{z}_{2}\right) \notin \amalg_{2}, \varsigma_{2} \in \mathrm{f}\left(\amalg_{2}\right)$ and $\mathrm{z}_{2} \notin \mathrm{f}\left(\mathrm{y}_{2}\right)$ this implies P_{2} in $G\left(\dot{T}_{0}, \dot{1}\right)$ will choose $f\left(\Psi_{2}\right)$ and in m-th round P_{1} choose $\varsigma_{\mathrm{m}} \neq \mathrm{z}_{\mathrm{m}}, \varsigma_{\mathrm{m}}, \mathrm{z}_{\mathrm{m}} \in{ }^{\prime} \Upsilon$. Next, P_{2} in $G\left(\dot{T}_{0}, ' Y\right)$ will hold account $f^{-1}\left(\varsigma_{\mathrm{m}}\right), \mathrm{f}^{-1}\left(\mathrm{z}_{\mathrm{m}}\right) \in \mathrm{X}, \mathrm{f}^{-1}\left(\varsigma_{\mathrm{m}}\right) \neq \mathrm{f}^{-1}(\mathrm{z} \underset{\mathrm{m}}{ })$, but $\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{\mathrm{~T}}_{0}, \dot{\mathrm{I}}\right)\right.$, $\exists \amalg_{\mathrm{m}} \in \mathrm{fpgO}(\mathrm{X}), \mathrm{f}^{-1}\left(\varsigma_{\mathrm{m}}\right) \in \amalg_{\mathrm{m}}$ and $\mathrm{f}^{-1}\left(\mathrm{z}_{\mathrm{m}}\right) \notin \amalg_{\underline{m}}, \varsigma_{\mathrm{m}} \in \mathrm{f}\left(\amalg_{\mathrm{m}}\right)$ and $\mathrm{z}_{\mathrm{m}} \notin \mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)$ this implies P_{2} in $G\left(\dot{T}_{0}, \dot{1}\right)$ will choose $\mathrm{f}\left(\amalg_{\mathrm{m}}\right)$; thus $\mathrm{B}=\left\{\mathrm{f}\left(\amalg_{1}\right), \mathrm{f}\left(\amalg_{2}\right), \ldots, \mathrm{f}\left(\amalg_{\mathrm{m}}\right) \ldots\right\}$ is the winning strategy for P_{2} in $G\left(\mathrm{G}_{0}, \mathrm{Y}\right)$).
(2). In the game $G\left(\dot{T}_{i},{ }^{\prime} \Upsilon\right)$ where $(i=1)$, in the $\underset{m}{ }$-th round P_{1} choose $\varsigma_{\mathrm{m}} \neq \mathrm{z}_{\mathrm{m}}, \varsigma_{\mathrm{m}}, \mathrm{z}_{\mathrm{m}} \in{ }^{\prime} \Upsilon$. Next,
 $G\left(\dot{T}_{1}, \dot{\mathrm{I}}\right), \exists \amalg_{\underline{m}}, \mathrm{~V}_{\mathrm{m}} \in \mathrm{fpg}-\mathrm{O}(\mathrm{X}), \mathrm{f}^{-1}\left(\varsigma_{\mathrm{m}}\right) \in\left(\amalg_{\underline{m}}-\mathrm{V}_{\mathrm{m}}\right)$ and $\mathrm{f}^{-1}\left(\mathrm{z}_{\mathrm{m}}\right) \in\left(\mathrm{y}_{\mathrm{m}}-\amalg_{\underline{m}}\right)$, so P_{2} in $\mathrm{G}_{(}\left(\mathrm{T}_{1}, \dot{\mathrm{I}}\right)$ will choose $\mathrm{f}\left(\mathrm{H}_{\mathrm{m}}\right), \mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)$;thus $\quad \mathrm{B}=$ $\left\{\left\{f\left(\amalg_{1}\right), f\left(\mathrm{v}_{1}\right)\right\},\left\{f\left(\amalg_{2}\right), f\left(\mathrm{v}_{2}\right)\right\}, \ldots,\left\{f\left(\amalg_{\mathrm{m}}\right), f\left(\mathrm{v}_{\mathrm{m}}\right)\right\} ..\right\}$ is the winning strategy for P_{2} in $\left.G\left(\mathrm{~T}_{1}, ' \Upsilon\right)\right)$.
In the same way, we can proof $\left(\mathrm{P}_{2} \hookrightarrow\left(\dot{\mathrm{~T}}_{2}, ' \Upsilon\right)\right)$, but $f\left(\amalg_{\mathrm{m}}\right) \cap \mathrm{f}\left(\mathrm{y}_{\mathrm{m}}\right)=\varnothing$.
Thus $B=\left\{\left\{f\left(\amalg_{1}\right), f\left(\mathrm{v}_{1}\right)\right\},\left\{f\left(\amalg_{2}\right), f\left(\mathrm{v}_{2}\right)\right\}, \ldots,\left\{f\left(\amalg_{\underline{m}}\right), f\left(\mathrm{v}_{\mathrm{m}}\right)\right\} \ldots\right\}$ is the winning strategy for P_{2} in $G\left(\dot{T}_{2}, ' Y\right)$).

4. The games with a continuous function via fipg-open sets.

In this part, we will using continuous function via fipg- open set to explain a winning strategy for P_{1} and P_{2} in $G\left(\dot{T}_{i}, X\right)$ and $G\left(\dot{T}_{i}, \dot{I}\right)$ where $I=\{0,1,2\}$.

Definition 3.6. (1) A function $f:(X, T, T) \rightarrow(Y, G, j)$ is;

1. \dot{f}-pre-g-continuous function, symbolizes $\mathfrak{f} p g$-continuous, if $\mathrm{f}^{-1}(\mathrm{y}) \in \dot{\mathrm{f}} \mathrm{pgO}(\mathrm{X})$ for all $\mathrm{y} \in \mathrm{G}$.
2.Strongly- \mathfrak{f}-pre-g-continuous function, Symbolizes strongly-fipg-continuous, if $\mathfrak{f}^{-1}(\underset{\text { en }}{ }) \in \mathrm{T}$, for all $\mathrm{y} \in \mathrm{jpgO}(\mathrm{Y})$.
2. $\dot{\mathrm{I}}$-pre-g-irresolute function, symbolizes $\dot{\mathrm{I} p g}$-irresolute, if $\mathrm{f}^{-1}(\mathrm{y}) \in \dot{\mathrm{f}} \mathrm{fO}(\mathrm{X})$ for all $\mathrm{y} \in \mathfrak{j p g O}(\mathrm{Y})$.

Proposition 4.6. If the function $\mathrm{f}:(\mathrm{X}, \mathrm{T}, \dot{\mathrm{i}}) \rightarrow(\Upsilon, \mathrm{G}, \mathfrak{f})$ is an injective $\dot{\mathrm{I}}$-pre-g-continuous function and $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{i},{ }^{\prime} \mathrm{Y}\right)\right.$ then $\left(\mathrm{P}_{2} \hookrightarrow \underset{(}{\mathrm{T}}\left(\dot{\mathrm{T}}_{i}, \dot{\mathrm{Y}}\right)\right.$), where ($\mathrm{i}=0,1$ and 2 respectively).
$\operatorname{Proof}(\mathbf{1})$. In the game $G\left(\dot{\mathrm{~T}}_{i}, \dot{\mathrm{I}}\right)$ where $(\mathrm{i}=0)$, in the first round, P_{1} will choose $\mathrm{x}_{1} \neq \mathrm{r}_{1}$ such that, x_{1}, $r_{1} \in X$. Next, P_{2} in $G\left(\dot{T}_{0}, \dot{f}\right)$ will hold account $f\left(x_{1}\right), f\left(r_{1}\right) \in ' Y, f\left(x_{1}\right) \neq f\left(r_{1}\right)$, but $\left(P_{2} \hookrightarrow\right.$ $G\left(\dot{T}_{0}, ' \Upsilon\right), \exists \mathrm{v}_{1} \in \mathrm{G}, \quad \mathrm{f}\left(\mathrm{x}_{1}\right) \in \mathrm{v}_{1}$ and $\mathrm{f}\left(\mathrm{r}_{1}\right) \notin \mathrm{v}_{1}$, but f is $\dot{\mathrm{p}} \mathrm{pg}$-continuous function, so $\mathrm{f}^{-1}(\mathrm{y}) \in$ $\hat{\mathrm{f} g O}(\mathrm{X})$, this implies P_{2} in $G\left(\dot{\mathrm{~T}}_{0}, \dot{\mathrm{I}}\right)$ choose $\mathrm{f}^{-1}\left(\mathrm{v}_{1}\right)$ is an $\mathrm{fpgO}(\mathrm{X})$, in the second round, P_{1} in $G\left(\dot{T}_{0}, \dot{I}\right)$ will choose $x_{2} \neq r_{2}$ such that $x_{2}, r_{2} \in X$. Next, P_{2} in $G\left(\dot{T}_{0}, X\right)$ will hold account $f\left(x_{2}\right)$, $\mathrm{f}\left(\mathrm{r}_{2}\right) \in \Upsilon, \mathrm{f}\left(\mathrm{x}_{2}\right) \neq \mathrm{f}\left(\mathrm{r}_{2}\right)$, but $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, ' \Upsilon\right), \exists \mathrm{y}_{2} \in \mathrm{~T}, \mathrm{f}\left(\mathrm{x}_{2}\right) \in \mathrm{y}_{2}\right.$ and $\mathrm{f}\left(\mathrm{r}_{2}\right) \notin \mathrm{y}_{2}$, this implies P_{2}
 that $x_{m}, r_{m} \in X$. Next, P_{2} in $G\left(\mathrm{~T}_{0}, X\right)$ choose $f\left(x_{m}\right), f\left(r_{\underline{m}}\right) \in{ }^{\prime} \Upsilon, f\left(x_{m}\right) \neq f\left(r_{\underline{m}}\right)$, but $\left(P_{2} \hookrightarrow\right.$
 an $\dot{\mathrm{fpgO}}(\mathrm{X})$ thus $\left.\mathrm{B}=\left\{\mathrm{f}^{-1}\left(\mathrm{v}_{1}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{2}\right), \ldots, \mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)\right\} \ldots\right\}$ is winning strategy for P_{2} in $\underset{(}{\mathrm{T}}\left(\dot{\mathrm{T}}_{0}, \dot{\mathrm{i}}\right)$).
(2) In the game $G\left(\dot{T}_{i}, \dot{I}\right)$ where $(i=1)$, in m-th round P_{1} in $G\left(\dot{T}_{1}, \dot{I}\right)$ will choose $x_{m} \neq r_{m}$ such that $x_{\underline{m}}, r_{\underline{m}} \in X$. Next, P_{2} in $G\left(\dot{T}_{1}, X\right)$ will hold account $f\left(x_{\underline{m}}\right), f\left(r_{\underline{m}}\right) \in \Upsilon, f\left(x_{\underline{m}}\right) \neq f\left(r_{\underline{m}}\right)$,
 $G\left(\dot{T}_{1}, \tilde{f}\right)$ choose $\mathrm{f}^{-1}\left(\amalg_{\mathrm{m}}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)$, are $\mathrm{fpgO}(\mathrm{X})$, thus
$\mathrm{B}=$ $\left\{\left\{f^{-1}\left(\amalg_{1}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{1}\right)\right\},\left\{\mathrm{f}^{-1}\left(\amalg_{2}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{2}\right)\right\}, \ldots,\left\{\mathrm{f}^{-1}\left(\amalg_{\mathrm{m}}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)\right\} \ldots\right\}$ is winning strategy for P_{2} in $G\left(\dot{T}_{1}, \dot{\mathrm{I}}\right)$). By the same way we can prove $\mathrm{P}_{2} \hookrightarrow G\left(\dot{\mathrm{~T}}_{2}, \dot{\mathrm{I}}\right)$.but $\mathrm{f}^{-1}\left(\amalg_{\mathrm{m}}\right) \cap \mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)=\emptyset$, thus $B=$ $\left\{\left\{f^{-1}\left(\amalg_{1}\right), \mathrm{f}^{-1}\left(\mathrm{v}_{1}\right)\right\},\left\{\mathrm{f}^{-1}\left(\amalg_{2}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{2}\right)\right\}, \ldots,\left\{\mathrm{f}^{-1}\left(\amalg_{\mathrm{m}}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)\right\} \ldots\right\}$ is winning strategy for P_{2} in $G\left(\dot{T}_{2}, \dot{I}\right)$.
Proposition 4.7. If the function $f:(X, T, i) \rightarrow(Y, T, \dot{f})$ is an injective strongly- $\dot{\mathrm{p} p g}$ - continuous and $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{i}, \mathfrak{f}\right)\right)$ then $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{i}, \mathrm{X}\right)\right)$ where $\quad(\mathrm{i}=0,1$ and 2 respectively).
$\operatorname{Proof}(1)$. In the game $G\left(\dot{T}_{i}, X\right)$ where ($\mathrm{i}=0$), in the first round, P_{1} will choose $\mathrm{x}_{1} \neq \mathrm{r}_{1}$ such that $\mathrm{x}_{1}, \mathrm{r}_{1} \in \mathrm{X}$. Next, P_{2} in $\underset{(}{\mathrm{G}}\left(\mathrm{T}_{0}, \mathrm{X}\right)$) will hold account $\mathrm{f}\left(\mathrm{x}_{1}\right), \mathrm{f}\left(\mathrm{r}_{1}\right) \in \mathrm{Y}, \mathrm{f}\left(\mathrm{x}_{1}\right) \neq \mathrm{f}\left(\mathrm{r}_{1}\right)$, but $\left(\mathrm{P}_{2} \hookrightarrow\right.$ $G\left(\dot{T}_{0}, \dot{f}\right)$, so $\left.\exists \mathrm{v}_{1} \in \mathfrak{j p g} 0(\Upsilon)\right), f\left(\mathrm{x}_{1}\right) \in \mathrm{v}_{1}$ and $f\left(\mathrm{r}_{1}\right) \notin \mathrm{v}_{1}$ but f is strongly- $\mathfrak{f} \mathrm{pg}$ - continuous then, $\mathrm{f}^{-1}\left(\mathrm{y}_{1}\right) \in \mathrm{T}$ this implies P_{2} in $G\left(\dot{T}_{0}, \mathrm{X}\right)$ choose $\mathrm{f}^{-1}\left(\mathrm{y}_{1}\right)$, in the second round, P_{1} in $\mathrm{G}_{\mathrm{T}}\left(\dot{\mathrm{T}}_{0}, \mathrm{X}\right)$ choose $x_{2} \neq r_{2}$ such that $x_{2}, r_{2} \in X$. Next, P_{2} in $G\left(\dot{T}_{0}, X\right)$ will hold account $f\left(x_{2}\right), f\left(\mathrm{r}_{2}\right) \in{ }^{\prime} \mathrm{Y}, \mathrm{f}\left(\mathrm{x}_{2}\right) \neq$ $\mathrm{f}\left(\mathrm{r}_{2}\right)$, but $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \dot{\mathrm{f}}\right), \exists \mathrm{v}_{2} \in \operatorname{jpgO}(\mathrm{Y})\right), \mathrm{f}\left(\mathrm{x}_{2}\right) \in \mathrm{y}_{2}$ and $\mathrm{f}\left(\mathrm{r}_{2}\right) \notin \mathrm{y}_{2}$, this implies P_{2} in $\mathrm{G}\left(\mathrm{T}_{0}, \mathrm{X}\right)$ choose $f^{-1}\left(v_{2}\right)$ and in m-th round, P_{1} in $G\left(\dot{T}_{0}, X\right)$ choose $x_{m} \neq r_{m}, x_{m}, r_{m} \in X$. Next, P_{2} in $G\left(\dot{T}_{0}, X\right)$ will hold account $f\left(x_{\underline{m}}\right)$, $f\left(r_{\underline{m}}\right) \in \Upsilon, f\left(x_{\underline{m}}\right) \neq f\left(r_{\underline{m}}\right)$, but $\left(P_{2} \hookrightarrow G\left(\dot{T}_{0}, \mathfrak{f}\right)\right.$, $\exists v_{\underline{m}} \in \mathfrak{j p g O}(\Upsilon)$, $f\left(x_{\mathrm{m}}\right) \in \mathrm{v}_{\mathrm{m}}$ and $\mathrm{f}\left(\mathrm{r}_{\mathrm{m}}\right) \notin \mathrm{y}_{\mathrm{m}}$, this implies P_{2} in $G\left(\dot{T}_{0}, X\right)$ choose $\mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right) \in \mathrm{T}$, thus $B=$ $\left\{f^{-1}\left\{\mathrm{v}_{1}\right\}, \mathrm{f}^{-1}\left\{\mathrm{v}_{2}\right\} \ldots, \mathrm{f}^{-1}\left\{\mathrm{v}_{\mathrm{m}}\right\} ..\right\}$ is winning strategy for P_{2} in $G\left(\mathrm{~T}_{0}, \mathrm{X}\right)$.
(2). In the game $G\left(\dot{T}_{i}, X\right)$, where ($i=1$), in the m-th round P_{1} in $G\left(\dot{T}_{1}, X\right)$ choose $x_{m} \neq r_{m}$ such that $x_{\underline{m}}, r_{\underline{m}} \in X, P_{2}$ in $G\left(\dot{T}_{1}, X\right)$ will hold account $f\left(x_{m}\right), f\left(r_{m}\right) \in ' \Upsilon, f\left(x_{m}\right) \neq f\left(r_{m}\right)$, but $\left(P_{2} \hookrightarrow\right.$
 implies P_{2} in $\underset{(}{G}\left(\dot{T}_{1}, X\right)$ choose $f^{-1}\left(\amalg_{m}\right), f^{-1}\left(\mathrm{y}_{\mathrm{m}}\right) \in T$. Thus
$B=\left\{\left\{f^{-1}\left(\amalg_{1}\right), f^{-1}\left(\mathrm{y}_{1}\right)\right\},\left\{f^{-1}\left(\amalg_{2}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{2}\right)\right\}, \ldots,\left\{\mathrm{f}^{-1}\left(\amalg_{\mathrm{m}}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)\right\} \ldots\right\}$ is \quad winning \quad strategy for P_{2} in $G\left(\dot{T}_{1}, X\right)$. In the same way, we can prove $P_{2} \hookrightarrow G\left(\dot{T}_{2}, X\right)$, but $\mathfrak{f}^{-1}\left(\amalg_{m}\right) \cap f^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)=\emptyset$. Thus $B=\left\{\left\{f^{-1}\left(\amalg_{1}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{1}\right)\right\},\left\{\mathrm{f}^{-1}\left(\amalg_{2}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{2}\right)\right\}, \ldots,\left\{\mathrm{f}^{-1}\left(\amalg_{\mathrm{m}}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)\right\} \ldots\right\}$ is winning strategy for P_{2} in $G\left(\dot{T}_{2}, \dot{\mathrm{i}}\right)$).

Corollary 4.8. Let $f:(X, T, \dot{f}) \rightarrow(\Upsilon, T, \mathfrak{j})$ is injective Strongly-fpg-continuous function and $\left(P_{2} \hookrightarrow\right.$ $G\left(\dot{T}_{i}, \mathfrak{j}\right)$, then $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{i}, \dot{\mathrm{I}}\right)\right.$, where ($\mathrm{i}=0,1$ and 2 respectively $)$.

Proposition 4.9. If the function $f:(X, T, \dot{f}) \rightarrow(\Upsilon, \mathrm{G}, \dot{f})$ is an injective open continuous (respectively $\dot{\tilde{f}}$-pre-g-irresolute function) and ($\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\mathrm{T}_{0}, ' \mathrm{Y}\right)$ respectively $\left(\mathrm{P}_{2} \hookrightarrow G\left(\dot{T}_{0}, \dot{f}\right)\right.$) then $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{T}_{0}, \mathrm{X}\right)\right.$ (respectively $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \dot{\mathrm{I}}\right)\right.$).
$\operatorname{Proof}(1)$: In the game $G\left(\dot{T}_{0}, X\right)\left(\right.$ respectively in $G\left(\dot{T}_{0}, \dot{\mathrm{I}}\right)$), in the first round, P_{1} will choose $\mathrm{x}_{1} \neq \mathrm{r}_{1}$,
 but $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \mathrm{Y}\right)\right.$ (respectively $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{0}, \mathfrak{j}\right)\right.$), $\exists \mathrm{v}_{1} \mathrm{G}$ (respectively $\exists \mathrm{v}_{1} \mathrm{jpgO}(\mathrm{Y})$), $\mathrm{f}\left(\mathrm{x}_{1}\right) \in$ v_{1} and $f\left(r_{1}\right) \notin \mathrm{v}_{1}$ and \quad since $f f$ is open continuous (respectively \dot{f}-pre-g-irresolute function)this implies P_{2} in $G\left(\dot{\mathrm{~T}}_{0}, \mathrm{X}\right)$ (respectively in $G\left(\dot{\mathrm{~T}}_{0}, \dot{\mathrm{I}}\right)$) choose $\mathrm{f}^{-1}\left(\mathrm{v}_{1}\right)$, in the second round, P_{1} in $G\left(\dot{T}_{0}, \mathrm{X}\right)$ (respectively in $G\left(\dot{T}_{0}, \dot{1}\right)$) choose $x_{2} \neq r_{2}$ such that $x_{2}, r_{2} \in X$. Next, P_{2} in $G\left(\dot{T}_{0}, X\right)$ (respectively P_{2}
 $\left.G\left(\dot{T}_{0}, \dot{f}\right)\right), \exists \mathrm{v}_{2} \in \mathrm{G}$ (respectively $\left.\exists \mathrm{v}_{2} \in \mathfrak{j p g O}(\Upsilon)\right), f\left(\mathrm{x}_{2}\right) \in \mathrm{v}_{2}$ and $\mathrm{f}\left(\mathrm{r}_{2}\right) \notin \mathrm{v}_{2}$, this implies P_{2} in $G\left(T_{0}, X\right)$ (respectively P_{2} in $G\left(\dot{T}_{0}, \dot{1}\right)$ choose $f^{-1}\left(\mathrm{y}_{2}\right)$ and in m-th step P_{1} in $G\left(\dot{T}_{0}, X\right)$ (respectively in $G\left(\dot{T}_{0}, \dot{1}\right)$) choose $x_{\mathrm{m}} \neq \mathrm{r}_{\mathrm{m}}, x_{\mathrm{m}}, \mathrm{r}_{\mathrm{m}} \in \mathrm{X}$. Next, P_{2} in $G\left(\dot{T}_{0}, X\right)$ (respectively P_{2} in $G\left(\dot{T}_{0}, \dot{\mathrm{I}}\right)$ choose $\left.f\left(x_{\underline{m}}\right), f\left(r_{\underline{m}}\right) \in ' \Upsilon\right), f\left(x_{\underline{m}}\right) \neq f\left(r_{\underline{m}}\right)$, but($\left.P_{2} \hookrightarrow G\left(\dot{T}_{0}, ' Y\right)\right)\left(\right.$ respectively $\left(P_{2} \hookrightarrow G\left(\dot{T}_{0}, \dot{f}\right)\right), \exists v_{\underline{m}} \in$ G (respectively $\exists \mathrm{v}_{\mathrm{m}} \in \operatorname{jpgO}(\Upsilon), \mathrm{f}\left(\mathrm{x}_{\mathrm{m}}\right) \in \mathrm{v}_{\mathrm{m}}$ and implies P_{2} in $G\left(\dot{T}_{0}, X\right)$ respectively P_{2} in $G\left(\dot{T}_{0}, \dot{\mathrm{I}}\right)$ choose $\mathfrak{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)$, thus $\quad \mathrm{B}=$ $\left\{f^{-1}\left\{\mathrm{v}_{1}\right\}, \mathrm{f}^{-1}\left\{\mathrm{v}_{2}\right\} \ldots, \mathrm{f}^{-1}\left\{\mathrm{y}_{\mathrm{m}}\right\} \ldots\right\}$ is winning strategy for P_{2} in $G\left(\dot{T}_{0}, \mathrm{X}\right)$) (respectively P_{2} in $G\left(\dot{T}_{0}, \dot{1}\right)$.
(2). In the game $G\left(\dot{T}_{1}, X\right)$, (respectively $G\left(\dot{T}_{1}, \dot{\mathfrak{j}}\right)$), in the m-th round, P_{1} in $\underset{(}{ }\left(\dot{\mathrm{T}}_{1}, X\right)$ (respectively in $G\left(\dot{T}_{1}, \dot{\mathrm{I}}\right)$) choose $\mathrm{x}_{\mathrm{m}} \neq \mathrm{r}_{\mathrm{m}}$ such that $\mathrm{x}_{\mathrm{m}}, \mathrm{r}_{\mathrm{m}} \in \mathrm{X}$. Next, P_{2} in $G\left(\dot{T}_{1}, X\right)$ (respectively P_{2} in $G\left(\dot{T}_{1}, \dot{\mathrm{I}}\right)$

 in $\left.\underset{\left(\mathrm{T}_{1}\right.}{1}, \mathrm{X}\right)\left(\right.$ respectively P_{2} in $\left.\underset{\left(\mathrm{T}_{1}, \dot{\mathrm{I}}\right)}{ }\right)$ choose $\mathrm{f}^{-1}\left(\amalg_{\mathrm{m}}\right), \mathrm{f}^{-1}\left(\mathrm{v}_{\mathrm{m}}\right)$ thus $\quad B=$ $\left\{\left\{f^{-1}\left(\amalg_{1}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{1}\right)\right\},\left\{f^{-1}\left(\amalg_{2}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{2}\right)\right\}, \ldots,\left\{\mathrm{f}^{-1}\left(\amalg_{\mathrm{m}}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)\right\} \ldots\right\} \quad$ is \quad winning \quad strategy \quad for P_{2} in $G\left(\dot{T}_{1}, X\right)$ (respectively P_{2} in $G\left(\dot{T}_{1}, \dot{\mathrm{I}}\right)$). By the same way we can prove $P_{2} \rightarrow \underset{T}{G}\left(\dot{T}_{2}, X\right)$ respectively, P_{2} in $G\left(\dot{\mathrm{~T}}_{2}, \dot{\mathrm{I}}\right)$, but $\mathrm{f}^{-1}\left(\amalg_{\mathrm{m}}\right) \cap \mathrm{f}^{-1}\left(\mathrm{v}_{\mathrm{m}}\right)=\varnothing$ thus $\quad B=$ $\left\{\left\{f^{-1}\left(\amalg_{1}\right), f^{-1}\left(\varphi_{1}\right)\right\},\left\{f^{-1}\left(\amalg_{2}\right), f^{-1}\left(\varphi_{2}\right)\right\}, \ldots,\left\{\mathrm{f}^{-1}\left(\amalg_{\mathrm{m}}\right), \mathrm{f}^{-1}\left(\mathrm{y}_{\mathrm{m}}\right)\right\} \ldots\right\}$ is winning strategy for P_{2} in $\left.G\left(\dot{T}_{2}, X\right)\right)\left(\right.$ respectively P_{2} in $G\left(\dot{\mathrm{~T}}_{2}, \dot{\mathrm{I}}\right)$.

Corollary 4.10. If $\mathrm{f}:(\mathrm{X}, \mathrm{T}) \rightarrow(\mathrm{Y}, \mathrm{T})$ is homeo then $\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{i}, \mathrm{X}\right)\right) \longleftrightarrow\left(\mathrm{P}_{2} \hookrightarrow \mathrm{G}\left(\dot{\mathrm{T}}_{i}, ' \mathrm{Y}\right)\right)$ such that ($\mathrm{i}=0,1$ and 2 respectively).

5.Conclusion

The main aim of this work is to submit new near open sets which are called \mathfrak{f}-pre-g-closed sets and it is complement \hat{f}-pre-g-open set, and interested also in studying new species of the games by application separation axioms via f-pre-g-open sets and gives the strategy of winning and losing to any one of the two players in $G\left(\dot{T}_{i}, X\right), i=\{0,1,2\}$.

Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 34(3)2021

References

1. Kuratowski, K. Topology. New York: Academic Press. 1933, I.
2. Vaidyanathaswamy, V. the Localization theory in set topology. proc. Indian Acad. Sci. 1945. 20, 51-61.
3. Abd El- Monsef, ME.; Nasef, AA., Radwan, AE.; Esmaeel RB. On α - open sets with respect to an ideal. JAST. 2014,5,3, 1-9.
4. Esmaeel, RB.; Nasir AI. Some properties of Ĩ-semi-open soft sets with respect to soft ideals. Int J Pure Appl Math. 2016, 111, 4, 545-561.
5. Nasef, A. A.; Radwan, A. E.; Esmaeel, RB. Some properties of α-open sets with respect to an ideal. Int J Pure Appl Math. 2015,102, 4, 613-630..
6. Mashhour, AS.; Abd El- Monsef, ME.; El- Deeb, S N. On pre topological Spaces. Bull. Math. Della Soc. R.S. derouman, 1984. 28,76, 39-45.
7. Mahmood, SI. On Generalized Regular Continuous Functions in Topological spaces. Ibn AlHaitham Jour. for Pure \& Appl. Sci. 2012, 25, 3, 377-376.
8. Nasir, AI.; Esmaeel, RB., on α-J-space, JARDCS. 2019,11,01-special Issue: 1379-1382.
9. Zinah, T. Al hawez. On generalized b*-Closed Sets in Topological spaces. Ibn Al-Haitham Jour. for Pure \& Appl. Sic. 2015, 28, 3, 205-213.
10. Ahmed, A. Jassam; Esmaeel, RB. Convergences via İ-pre-g-open set, Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 2020.
11. Aumann, RJ, Survey of repeated game, in Aumann RJ et al. (eds) Essays in Game Theory and Mathematical Economics in Honor. of Oscar Morgentern. 1981.
12. Banks, JS.; Sundaram, R K. Repeated games. finite automata and complexity, Games and Economic Behaviour. 1990, 2, 97-117.
13. Maynard Smith J. Evolutionary and theory of games. CUP. 1982.
14. Michael, Mastodon- Gibbons, An Introduction to Game. The Advanced Book Program, Addison-Wesley Pub. Co. Advanced Book Program. 1992.
Thomas LC, Game Theory and Applications. Ellis Harwood series. Chi Chester, England. 1986
