

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Weak Pseudo – 2 – Absorbing Submodules And Related Concepts

Haibat K. Mohmmadal

Sada E. Radeef

dr.mohammadali2013@gmail.com

floweriraq767@gmail.com

Department Of Mathematics, College Of Computer Sciences and Mathematics, University Of Tikrit, Tikrit, Tikrit, Iraq.

Article history: Received, 19, May, 2020, Accepted 23, June, 2020, Published in April 2021

Doi: 10.30526/34.2.2615

Abstract

Let R be a commutative ring with identity and E be a unitary left R – module .We introduce and study the concept Weak Pseudo – 2 – Absorbing submodules as generalization of weakle – 2 – Absorbing submodules, where a proper submodule A of an R – module E is called Weak Pseudo – 2 – Absorbing if $0 \neq rsx \in A$ for r, s $\in R$, x $\in E$, implies that rx $\in A + soc(E)$ or sx $\in A + soc(E)$ or rs $\in [A + soc(E) :_R E]$. Many basic properties, characterizations and examples of Weak Pseudo – 2 – Absorbing submodule in some types of modules are introduced.

Key word : weakly – 2 – Absorbing submodules , essential submodule , socal of modules , multiplication modules , Z – regular modules , WP – 2 – Absorbing submodules .

1. Introduction

The concept of weakly -2 – Absorbing submodule was first introduced by Darani and Soheilnia as generalization of weakly prime submodule, where a proper submodule A of an R – module E is called a weakly prime submodule of E if $0 \neq te \in A$, for $t \in R$, $e \in E$ implies that either $e \in A$ or $t \in [A :_R E]$, where $[A :_R E] = \{s \in R : sE \subseteq A\}$ [1], and a proper submodule A of an R- module E is called a weakly -2 – Absorbing submodule of E , if $0 \neq ste \in A$, for s, $t \in R$, $e \in E$ implies that either se $\in A$ or te $\in A$ or st $\in [A :_R E]$ [2].

Recently , several generalizations of weakly -2 – Absorbing submodules have been introduced [3,4,5]. In our paper , we introduce a new generalization of weakly -2 – Absorbing submodule which we callWeak Pseudo -2 – Absorbing submodule , where a proper submodule A of an R – module E is said to be Weak Pseudo -2 – Absorbing

submodule if $0 \neq \text{ste} \in A$, for s, t $\in R$, $e \in E$, implies that either se $\in A + \text{soc}(E)$ or te $\in A + \text{soc}(E)$ or st $\in [A + \text{soc}(E) :_R E]$. Soc (E) is the intersection of all essential submodules of E [6]. A nonzero submodule N of an R – module E is called an essential if N $\cap K \neq (0)$ for all nonzero submodules K of E [6]. Every weakly prime submodule of an R – module is weakly – 2 – Absorbing [7]. Recall that an R – module E is cyclic if $E = \langle x \rangle$ for $x \in E$ [8]. Recall that an R – module E is a semi simple if soc (E) = (0) [6]. It is well known that an R – module E is a semi simple if and only if soc $(\frac{E}{N}) = (\frac{\text{soc}(E) + N}{N})$ for each submodule of E [6 , Ex.12(c)]. The set $[N :_E I] = [x \in E : x I \subseteq N]$, where N is a submodule of E , and I is an ideal of R $[N :_E I]$ and is a submodule of E containing N. $[N :_E R] = N$ and $[I :_E R] = I$ [9]. Recall that an R – module E is a multiplication if every submodule A of E is of the form A = IE for some ideal I of R , Equivalently A = $[A :_R E] E$ [10]. Recall that an R – module E is a faithful if Ann $(E) = \{r \in R : rE = (0)\}$ [8].

2. Basic properties of WP - 2 – Absorbing submodules . In this part of the paper , we introduce the definition of WP - 2 – Absorbing submodules and , thus truth some of it's basic properties , examples and characterizations.

Definition .1.

A proper submodule A of an R – module E is said to be Weak Pseudo – 2 – Absorbing (for shorten WP – 2 – Absorbing) submodule of E, if $0 \neq \text{ste} \in A$, for s, t $\in R$, e $\in E$, implies that se $\in A + \text{soc}(E)$ or te $\in A + \text{soc}(E)$ or st $\in [A + \text{soc}(E) :_R E]$. And an ideal J of a ring R is said to be WP – 2 – Absorbing ideal of R, if J is a WP – 2 – Absorbing R – submodule of an R – module R.

Example and Remarks .2.

1. In the Z – module Z_{36} , the only essential submodules are $\langle \overline{2} \rangle$, $\langle \overline{3} \rangle$, $\langle \overline{6} \rangle$ and Z_{36} itself thus Soc (Z_{36}) = $\langle \overline{6} \rangle$ = { $\overline{0}$, $\overline{6}$, $\overline{12}$, $\overline{18}$, $\overline{24}$, $\overline{30}$ }

2. It is clear that the submodules of the Z – module Z_{36} are $\langle \overline{4} \rangle, \langle \overline{6} \rangle, \langle \overline{9} \rangle, \langle \overline{12} \rangle$ and $\langle \overline{18} \rangle$ are WP – 2 – Absorbing submodules .

3. The submodules $\langle \overline{12} \rangle$ and $\langle \overline{18} \rangle$ of the Z – module Z₃₆ are not weakly – 2 – Absorbing submodules, since $0 \neq 2 \cdot 3$, $\overline{2} \in \langle \overline{12} \rangle$ for 2, $3 \in \mathbb{Z}$, $\overline{2} \in \mathbb{Z}_{36}$ but 2. $\overline{2} = \overline{4} \notin \langle \overline{12} \rangle$ and 3. $\overline{2} = \overline{6} \notin \langle \overline{12} \rangle$ and 2. $3 = 6 \notin [\langle \overline{12} \rangle :_{\mathbb{Z}} \mathbb{Z}_{36}] = 12 \mathbb{Z}$.

4. The submodule $\langle \overline{2} \rangle$, $\langle \overline{3} \rangle$ of the Z- module Z_{36} are weakly -2 – Absorbing submodules of Z_{36} because they are weakly prime submodules of Z - Z_{36} .

5. It is clear that the submodules $\langle \overline{4} \rangle$, $\langle \overline{6} \rangle$ and $\langle \overline{9} \rangle$ of the Z – module Z₃₆ are weakly -2 – Absorbing submodules.

6. It is clear that every weakly -2 – Absorbing submodule of an R – module E is a WP – 2 – Absorbing , but not conversely , the following example shows that : -- In the Z – module Z₃₆, the submodule $<\overline{18} >$ is a WP – 2- Absorbing by (2), but $<\overline{18} >$ is not weakly – 2 – Absorbing submodule by (3).

7. It is clear that every weakly prime submodule of an R – module E is a WP – 2 – Absorbing but not conversely. The following example explains that in the Z- module Z_{36} , the submodule $\langle \bar{4} \rangle$ is a WP – 2 – Absorbing by (2). But $\langle \bar{4} \rangle$ is not weakly prime submodule, since $0 \neq 2$. $\bar{2} \in \langle \bar{4} \rangle$ for $2 \in Z$, $\bar{2} \in Z_{36}$, but $\bar{2} \notin \langle \bar{4} \rangle$ and $2 \notin [\langle \bar{4} \rangle :_Z Z_{36}] = 4Z$.

8. In general ,the submodule nZ of the Z – module Z is weakly – 2 – Absorbing if n = 0, P, P^2 and pq by [7, Rems. And Exs. (1.2.2) (3)]. Hence the submodules nZ of the Z – module Z is a WP – 2 – Absorbing if n = 0, P, P^2 and pq by (6).

9. The submodules 12Z and 18Z of the Z – module Z are not WP – 2 – Absorbing because soc (Z) = (0) [8]. That is $0 \neq 2 \cdot 3 \cdot 2 \in 12Z$ for 2, 3, $2 \in Z$, but $2 \cdot 2 \notin 12Z + \text{soc} (Z)$ and $3 \cdot 2 \notin 12Z + \text{soc} (Z)$ and $2 \cdot 3 \notin [12Z + \text{soc} (Z) :_Z Z] = 12Z$.

Also, $0 \neq 2$. $3 \cdot 3 \in 18Z$ for $2, 3 \in Z$, but $2.3 \notin 18Z + soc (Z)$ and $3.3 \notin 18Z + soc (Z)$ and $2.3 \notin [18Z + soc (Z):_Z Z] = 18Z$.

10. If A is a WP – 2 – Absorbing submodule of an R – module E, then [A :_R E] need not to be WP – 2 – Absorbing ideal of R. For example the submodule $<\overline{18}>$ of the Z – module Z₃₆ is a WP – 2 – Absorbing submodule by (2), but [$<\overline{18}>$: _Z Z₃₆] = 18Z is not WP – 2 – Absorbing ideal of Z by (9).

11. The intersection of two WP – 2 – Absorbing submodules of an R- module E need not to be WP – 2 – Absorbing submodule .For example the submodules 3Z, 4Z are WP – 2 – Absorbing submodule of the Z – module Z by (8), but $3Z \cap 4Z = 12Z$ is not WP – 2 – Absorbing submodul by (9). The following results are characterizations of WP – 2 – Absorbing submodules .

Proposition 3.

A proper submodule A of an R- module E is a WP – 2 – Absorbing submodule of E if and only if for any t, $s \in R$ with $ts \notin [A + soc(E):_R E]$ we have $[A:_E ts] \subseteq [0:_E ts] \cup [A + soc(E):_E t] \cup [A + soc(E):_E s]$

Proof : (\Rightarrow)

Let $e \in [A :_E ts]$ with $ts \notin [A + soc(E) :_R E]$, then $tse \in A$. If $0 \neq tse$, it follows that either $te \in A + soc(E)$ or $se \in A + soc(E)$, that is either $e \in [A + soc(E) :_E t]$ or $e \in [A + soc(E) :_E s]$. If tse = 0 then $e \in [0 :_E ts]$. Hence $e \in [0 :_E ts] \cup [A + soc(E) :_E t] \cup [A + soc(E) :_E s]$. Therefore $[A :_E st] \subseteq [0 :_E ts] \cup [A + soc(E) :_E t] \cup [A + soc(E) :_E t] \cup [A + soc(E) :_E t]$.

(⇐) Let $0 \neq tse \in A$ for $t, s \in R$, $e \in E$ with $ts \notin [A + soc (E):_R E]$. It follows by hypothesis $e \in [A:_E ts]$ and $e \notin [0:_E ts]$, implies that $e \in [A + soc (E):_E t] \cup [A + soc (E):_E s]$. Hence either $te \in A + soc (E)$ or $se \in A + soc (E)$. Therefore A is aWP -2 – Absorbing submodule of E.

Proposition 4.

A proper submodule A of an R – module E is a WP – 2 – Absorbing if $0 \neq tsK \subseteq A$ for t, s \in R and K is a submodule of E, implies that either $tK \subseteq A + soc (E)$ or $sK \subseteq A + soc (E)$) or $ts \in [A + soc (E):_R E]$.

Proof : (\Rightarrow)

Let $0 \neq tsK \subseteq A$, for $t, s \in R$, K is a submodule of E. Suppose that $ts \notin [A + soc (E) :_R E]$, tK $\not\subseteq A + soc (E)$ and $sK \not\subseteq A + soc (E)$. Then,there exists $e_1, e_2 \in K$ such that $te_1 \notin A + soc (E)$ and $se_2 \notin A + soc (E)$. Now $0 \neq tse_1 \in A$ and $ts \notin [A + soc (E) :_R E]$, then by proposition (3) we have $e_1 \in [A :_E st] \subseteq [0 :_E ts] \cup [A + soc (E) :_E t] \cup [A + soc (E)]$ $) :_E s]$. But $e_1 \notin [0 :_E ts]$ and $e_1 \notin [A + soc (E) :_E t]$. It follows that $e_1 \in [A + soc (E) :_E t]$ s], that is, $se_1 \in A + soc (E)$. Again $0 \neq tse_2$ and $ts \notin [A + soc (E) :_R E]$ and $e_2 \notin [A + soc (E)]$ $(E) :_E s]$, it follow that $te_2 \in A + soc (E)$. Now, $0 \neq ts (e_1 + e_2) \in A$ and $ts \notin [A + soc (E)]$ $) :_R E]$, then $(e_1 + e_2) \in [A :_E ts]$ and $(e_1 + e_2) \notin [0 :_E ts]$, it follows by proposition (3) either $(e_1 + e_2) \in [A + soc (E) :_E t]$ or $(e_1 + e_2) \in [A + soc (E) :_E s]$. That is either $t(e_1 + e_2) \in [A + soc (E) :_E t]$ or $(e_1 + e_2) \in [A + soc (E) :_E t]$. That is either $te_1 + e_2 \in A + soc (E)$ or $s(e_1 + e_2) \in A + soc (E)$. If $t(e_1 + e_2) = te_1 + te_2 \in A + soc (E)$, and $te_2 \in A + soc (E)$, then $te_1 \in A + soc (E)$. Which is a contradiction .

If $s(e_1 + e_2) = se_1 + se_2 \in A + soc (E)$ and $se_1 \in A + soc (E)$, then $se_2 \in A + soc (E)$ which is a contradiction.

Hence either $tK \subseteq A + soc(E)$ or $sK \subseteq A + soc(E)$ or $ts \in [A + soc(E):_R E]$.

 (\Leftarrow) Trivial, so we omitted it.

Proposition 5.

A proper submodule A of a cyclic R – module E is a WP – 2 – Absorbing if and only if for each t, $s \in R$ with $ts \notin [A + soc (E) :_R E]$ we have $[A :_R tse] \subseteq [0 :_R tse] \cup [A + soc (E) :_R te] \cup [A + soc (E) :_R se]$.

Proof : (\Rightarrow)

Let $t, s \in R$, with $ts \notin [A + soc (E) :_R E]$ and let $r \in [A :_R tse]$, it follows that $ts(re) \in A$. If $0 \neq ts(re) \in A$ and A is a WP - 2 - Absorbing and $ts \notin [A + soc (E) :_R E]$, then either tre $\in A + soc (E)$ or sre $\in A + soc (E)$, that is either $r \in [A + soc (E) :_R te]$ or $r \in [A + soc (E) :_R se]$. If tsre = 0, implies that $r \in [0 : tse]$. Hence $r \in [0 :_R tse] \cup [A + soc (E) :_R te] \cup [A + soc (E) :_R se]$. Therefore $[A :_R tse] \subseteq [0 :_R tse] \cup [A + soc (E) :_R te] \cup [A + soc (E) :_R te]$.

 $(\Leftarrow) \text{ Since E is cyclic , then } E = \langle e_1 \rangle \text{ for some } e_1 \in E \text{ . Let } 0 \neq tse \in A \text{ for } t, s \in R \text{ , } e \in E \text{ with } ts \notin [A + soc (E) :_R E]. \text{Since } e \in E \text{ then } e = re_1 \text{ for some } r \in R \text{ , that is } 0 \neq ts(re_1) \in A \text{ ,it follows that } r \in [A :_R tse_1] \subseteq [0 :_R tse_1] \cup [A + soc (E) :_R te_1] \cup [A + soc (E) :_R te_1] \cup [A + soc (E) :_R te_1] \text{ or } r \in [A + se_1]. \text{ But } r \notin [0 :_R tse_1] (since 0 \neq tsre_1) \text{ , therefore } , r \in [A + soc (E) :_R te_1] \text{ or } r \in [A + se_1] \text{ or } r \in$

soc (E) :_R se₁], it follows that tre₁ \in A + soc (E) or sre₁ \in A + soc (E). That is te \in A + soc (E) or se \in A + soc (E). Therefore A is a WP - 2 – Absorbing submodule of E.

Proposition 6.

A proper submodule N of an R – module E is a WP – 2 – Absorbing submodule of E if and only if (0) \neq IJL \subseteq N for some ideals I, J of R and some submodule L of E implies that either IL \subseteq N + soc (E) or JL \subseteq N + soc (E) or IJ \subseteq [N + soc (E):_R E].

Proof : (\Rightarrow)

Let $(0) \neq IJL \subseteq N$ for some ideals I,J of R and some submodule L of E with $IJ \not\subseteq [N + soc (E) :_R E]$. To prove that $IL \subseteq N + soc (E)$ or $JL \subseteq N + soc (E)$. Suppose that $IL \not\subseteq N + soc (E)$ and $JL \not\subseteq N + soc (E)$, that is there exist $a_1 \in I$ and $a_2 \in J$ such that $a_1L \not\subseteq N + soc (E)$ and $a_2L \not\subseteq N + soc (E)$. Now, $(0) \neq a_1a_2L \subseteq N$, and N is aWP - 2 - Absorbing submodule of E, then by proposition (4) either $a_1 L \subseteq N + soc (E)$ or $a_2L \subseteq N + soc (E)$ or $a_1a_2 \in [N + soc (E) :_R E]$. Since $IJ \not\subseteq [N + soc (E) :_R E]$, there exists $b_1 \in I$ and $b_2 \in J$ such that $b_1b_2 \notin [N + soc (E) :_R E]$. But $(0) \neq b_1b_2L \subseteq N$ and N is aWP - 2 - Absorbing submodule of E, and $b_1b_2 \notin [N + soc (E) :_R E]$, then by proposition (4) either $b_1L \subseteq N + soc (E)$ or $b_2L \subseteq N + soc (E)$.

Now : -- (1) If $b_1L \subseteq N + soc (E)$ and $b_2L \not\subseteq N + soc (E)$. Since $(0) \neq a_1b_2L \subseteq N$ and $b_2L \not\subseteq N + soc (E)$ and $a_1L \not\subseteq N + soc (E)$, then by proposition (4) $a_1b_2 \in [N + soc (E) :_R E]$. Since $b_1L \subseteq N + soc (E)$ and $a_1L \not\subseteq N + soc (E)$, we get $(a_1 + b_1) L \not\subseteq N + soc (E)$. For there more $(0) \neq (a_1 + b_1)b_2 L \subseteq N$ and N is a WP – 2 – Absorbing with $(a_1 + b_1)L \not\subseteq N + soc (E)$, $b_2L \not\subseteq N + soc (E)$, it follows that by proposition (4) $(a_1 + b_1)b_2 = a_1b_2 + b_1b_2 \in [N + soc (E) :_R E]$, but $a_1b_2 \in [N + soc (E) :_R E]$, then $b_1b_2 \in [N + soc (E) :_R E]$.

(2) If $b_2L \subseteq N + soc (E)$ and $b_1L \not\subseteq N + soc (E)$, so by similar steps of (1) we get a contradiction.

(3) If $b_1L \subseteq N + soc(E)$ and $b_2L \subseteq N + soc(E)$, since $b_2L \subseteq N + soc(E)$ and $a_2L \not\subseteq N + soc(E)$, we get $(a_2 + b_2)L \not\subseteq N + soc(E)$. But $(0) \neq a_1(a_2 + b_2)L \subseteq N$ and N is a WP – 2 – Absorbing with $a_1L \not\subseteq N + soc(E)$ and $(a_2 + b_2)L \not\subseteq N + soc(E)$ then, we get $a_1(a_2 + b_2) \in [N + soc(E) :_R E]$. Since $a_1a_2 \in [N + soc(E) :_R E]$ and $a_1a_2 + a_1b_2 \in [N + soc(E) :_R E]$.

Now, $(0) \neq (a_1 + b_1) a_2 \in N$ and $a_2L \not\subseteq N + soc(E)$ and $(a_1 + b_1) L \not\subseteq N + soc(E)$, it follows by proposition $(4) (a_1 + b_1) a_2 = a_1 a_2 + b_1 a_2 \in [N + soc(E) :_R E]$ and since $a_1 a_2 \in [N + soc(E) :_R E]$, we get $b_1 a_2 \in [N + soc(E) :_R E]$. Since $(0) \neq (a_1 + b_1) (a_2 + b_2) L \subseteq N$ and $(a_1 + b_1) L \not\subseteq N + soc(E)$ and $(a_2 + b_2) L \not\subseteq N + soc(E)$ then by proposition (4) we have $(a_1 + b_1) (a_2 + b_2) = a_1 a_2 + a_1 b_2 + b_1 a_2 + b_1 b_2 \in [N + soc(E) :_R E]$. But $a_1 a_2$, $b_1 a_2$, $a_1 b_2 \in [N + soc(E) :_R E]$, we get $b_1 b_2 \in [N + soc(E) :_R E]$ which is a contradiction. Thus $IL \subseteq N + soc(E)$ or $JL \subseteq N + soc(E)$.

(\Leftarrow) Trivial, so we omittedit

The following corollaries are adirect consequence of proposition (6).

Corollary 7.

A proper submodule A of an R – module E is a WP – 2 – Absorbing submodule of E if and only if (0) \neq IJx \subseteq A for some ideals I, J of R and x \in E, implies that either Ix \subseteq A + soc (E) or Jx \subseteq A + soc (E) or IJ \subseteq [A + soc (E):_R E].

Corollary 8.

A proper submodule A of an R – module E is a WP – 2 – Absorbing submodule of E if and only if $(0) \neq sIL \subseteq A$ for some $s \in R$ and ideal I of R and some submodule L of E, implies that either $sL \subseteq A + soc (E)$ or $IL \subseteq A + soc (E)$ or $sI \subseteq [A + soc (E) :_R E]$.

Corollary 9.

A proper submodule A of an R – module E is a WP – 2 – Absorbing submodule of E if and only if (0) \neq sIx \subseteq A for some s \in R, ideal I of R and some x \in E, implies that either sx \in A + soc (E) or Ix \subseteq A + soc (E) or sI \subseteq [A + soc (E) :_R E].

Proposition 10.

Let A be a WP – 2 – Absorbing submodule of an R – module E and B is a submodule of E with $B \subseteq A$ then $\frac{A}{B}$ is a WP – 2 – Absorbing submodule of an R – module $\frac{E}{B}$.

Proof : Let $0 \neq ts (x + B) = stx + B \in \frac{A}{B}$ for s, $t \in R$, $x + B \in \frac{E}{B}$, $x \in E$. It follows that $tsx \in A$. If tsx = 0 then ts(x + B) = 0 which is a contradiction. thus $0 \neq tsx \in A$ implies that either $tx \in A + soc (E)$ or $sx \in A + soc (E)$ or $tsE \subseteq A + soc (E)$. It follow that either $t(x + B) \in \frac{A + soc(E)}{B}$ or $s(x + B) \in \frac{A + soc(E)}{B}$ or $\frac{tsE}{B} \subseteq \frac{A + soc(E)}{B}$. That is either $t(x + B) \in \frac{A}{B} + \frac{A + soc(E)}{B} \subseteq \frac{A}{B} + soc (\frac{E}{B})$ or $s(x + B) \in \frac{A + soc(E)}{B} \subseteq \frac{A}{B} + \frac{A + soc(E)}{B} \subseteq \frac{A}{B} + soc (\frac{E}{B})$ or $s(x + B) \in \frac{A}{B} = \frac{A + soc(E)}{B} = \frac{A}{B} + soc (\frac{E}{B})$ or $ts \frac{E}{B} \subseteq \frac{A}{B} + \frac{A + soc(E)}{B} \subseteq \frac{A}{B} + soc (\frac{E}{B})$. Hence, $\frac{A}{B}$ is a WP - 2 - Absorbing submodule of an R - module $\frac{E}{B}$.

Proposition .11.

Let A, B be submodules of semi simple R – module E with B \subseteq A. If B and $\frac{A}{B}$ are WP – 2 – Absorbing submodules of E, $\frac{E}{B}$ respectively, then A is a WP – 2 – Absorbing submodule of E.

Proof:

Let $0 \neq tsx \notin A$ for $t, s \in R$, $x \in E$, then $0 \neq ts(x + B) = tsx + B \in \frac{A}{B}$. If $0 \neq tsx \in B$ and B is a WP – 2 – Absorbing, implies that either $tx \in B + soc(E) \subseteq A + soc(E)$ or $sx \in B + soc(E) \subseteq A + soc(E)$ or $tsE \subseteq B + soc(E) \subseteq A + soc(E)$. Thus A is a WP – 2 –

Absorbing submodule of E. Assume that $tsx \notin B$, it follows that $0 \neq ts(x + B) \in \frac{A}{B}$. But $\frac{A}{B}$ is a WP - 2 - Absorbing submodule of $\frac{E}{B}$ implies that either $t(x + B) \in \frac{A}{B} + soc((E))$ or $s(x + B) = \frac{A}{B} + soc((E))$ or $s(x + B) = \frac{A}{B} + soc((E))$. Since E is a semi simple then $soc(\frac{E}{B}) = \frac{soc(E) + B}{B}$. It follows that either $t(x + B) \in \frac{A}{B} + \frac{B + soc(E)}{B}$ or $s(t + B) \subseteq \frac{A}{B} + \frac{B + soc(E)}{B}$ or $s(t + B) \subseteq \frac{A}{B} + \frac{B + soc(E)}{B}$ or $s(t + B) \subseteq \frac{A}{B} + \frac{B + soc(E)}{B}$ or $s(t + B) \subseteq \frac{A}{B} + \frac{B + soc(E)}{B}$ or $s(t + B) \subseteq \frac{A}{B} + \frac{A + soc(E)}{B}$. But $B \subseteq A$, implies that $B + soc(E) \subseteq A + soc(E)$, hence $\frac{A}{B} + \frac{B + soc(E)}{B} \subseteq \frac{A}{B} + \frac{A + soc(E)}{B}$. Since $\frac{A}{B} \subseteq \frac{A + soc(E)}{B}$ implies that $\frac{A}{B} + \frac{A + soc(E)}{B} = \frac{A + soc(E)}{B}$. that is either $t(x + B) \in \frac{A + soc(E)}{B}$ or $s(x + B) \in \frac{A + soc(E)}{B}$, it follows that either $tx \in A + soc(E)$ or $sx \in A + soc(E)$ or $tsE \subseteq A + soc(E)$.

E). Thus A is WP - 2 - Absorbing submodule of E.

Proposition 12.

Let A be a proper submodule of an R – module E with soc (E) \subseteq A. Then A is a WP – 2 – Absorbing submodule of E so if and only if [A :_E I] is a WP – 2 – Absorbing submodule of E for each ideal I of R.

Proof : (\Rightarrow)

Let $(0) \neq tsB \subseteq [A :_E I]$ for $t, s \in R$, B is a submodule of E, then $(0) \neq tsIB \subseteq A$, implies that either $tIB \subseteq A + soc (E)$ or $sIB \subseteq A + soc (E)$ or $tsE \subseteq A + soc (E)$. But soc $(E) \subseteq A$, then A + soc (E) = A. that is either $tIB \subseteq A$ or $sIB \subseteq A$ or $tsE \subseteq A$. Thus, either $tB \subseteq [A :_E I]$ or $sB \subseteq [A :_E I]$ or $tsE \subseteq A \subseteq [A :_E I]$. It follows that either $tB \subseteq [A :_E I] \subseteq [A :_E I] + soc (E)$ or $sB \subseteq [A :_E I] \subseteq [A :_E I] + soc (E)$ or $tsE \subseteq [A :_E I] \subseteq [A :_E I] = [A :_E I] + soc (E)$. Hence, $[A :_E I]$ is a WP – 2 – Absorbing submodule of E.

 (\Leftarrow) Since [A :_E I] is a WP – 2 – Absorbing subodule for every non zero ideal I of R. Put I = R, we get [A :_E R] = A is a WP – 2 – Absorbing submodule of E.

We need to introduce the following definition.

Definition 13. Let A be a WP – 2 – Absorbing submodule of an R – module E and r, $s \in R$, $e \in E$, we say that (r, s, e) is WP – triple zero of A if rse = 0, $re \notin A + soc (E)$, $se \notin A + soc (E)$ and $rs \notin [A + soc (E) :_R E]$.

Proposition 14. If A is a WP – 2 – Absorbing submodule of E with (r, s, e) is a WP – trible zero of A for some r, $s \in R$, $e \in E$. Then rsA = (0).

Proof : Suppose rsA \neq (0), then rsa \neq 0 for some a \in A. Since (r, s, e) is a WP – triple zero of A then rse = 0, re \notin A + soc (E), se \notin A + soc (E) and rs \notin [A + soc (E):_R E]. Since $0 \neq$ rsa \in A and A is a WP – 2 – Absorbing submodule of E and rs \notin [A + soc (E):_R E]. E], then either ra \in A + soc (E) or sa \in A + soc (E).

Now, $0 \neq rs(e + a) = rse + rsa = rsa \in A$, and $rs \notin [A + soc(E):_R E]$, then either $r(e + a) = re + ra \in A + soc(E)$ or $s(e + a) = se + sa \in A + soc(E)$. If $re + sa \in A + soc(E)$ and $ra \in A + soc(E)$ implies that $re \in A + soc(E)$ contradiction. If $se + sa \in A + soc(E)$ and $sa \in A + soc(E)$, implies that $se \in A + soc(E)$ contradiction. Hence, rsA = (0).

Proposition 15. If A is a WP – 2 – Absorbing submodule of E with (r, s, e) is a WP – triple zero of A for some r, $s \in R$, $e \in E$, then [A :_R E]re = [A :_R E]se = (0).

Proof : Suppose that $[A :_R E]$ se $\neq (0)$ then yse $\neq o$ for some $y \in [A :_R E]$. Since (r, s, e) is a WP – triple zero of A, rse = 0 and re $\notin A + soc(E)$, se $\notin A + soc(E)$ and rs $\notin [A + soc(E) :_R E]$. We have $0 \neq yse \in A$ and A is a WP – 2 – Absorbing submodule of E, then either $ye \in A + soc(E)$ or se $\in A + soc(E)$ or $ys \in [A + soc(E) :_R E]$. Now, $0 \neq (r + y)$ se = rse + yse = yse $\in A$ and A is a WP – 2 – Absorbing submodule, then either $(r + y)e = re + ye \in A + soc(E)$ or se $\in A + soc(E)$ or $(r + y)s \in [A + soc(E) :_R E]$.Since $ye \in A + soc(E)$ and if re + $ye \in A + soc(E)$ or $(r + y)s \in [A + soc(E) :_R E]$.Since $ye \in A + soc(E)$ and if re + $ye \in A + soc(E)$, it follows that re $\in A + soc(E)$ a contradiction. If $(r + y)s = rs + ys \in [A + soc(E) :_R E]$ and $ys \in [A + soc(E) :_R E]$, then rs $\in [A + soc(E) :_R E]$ a contradiction. Thus $[A :_R E]$ se = (0).

Proposition 16. If A is a WP – 2 – Absorbing submodule of E with (r, s, e) is a WP – triple zero of A for some r, $s \in R$, $e \in E$. Then r[A :_R E]e = s[A :_R E]e = (0).

Proof : Suppose that $r[A:_R E] e \neq (0)$, then there exists $x \in [A:_R E]$ such that $rxe \neq 0$. But (r, s, e) is a WP – triple zero of A, rse = 0, re \notin A + soc (E) or se \notin A + soc (E) and rs \notin [A + soc $(E):_R E$].

For $0 \neq rxe \in A$ and A is a WP – 2 – Absorbing submodule of E, then either $re \in A + soc (E)$ E) or $xe \in A + soc (E)$ or $rx \in [A + soc (E) :_R E]$. Now, $0 \neq r(s + x)e = rse + rxe = rxe \in A$, and A is a WP – 2 – Absorbing submodule, then either $re \in A + soc (E)$ or $(s + x)e = se + xe \in A + soc (E)$ or $r(s + x) = rs + rx \in [A + soc (E) :_R E]$. That is $re \in A + soc (E)$ a contradiction. If $(s + x)e = se + xe \in A + soc (E)$, implies that $se \in A + soc (E)$ E) a contradiction. If $rs + rx \in [A + soc (E) :_R E]$, implies that $rs \in [A + soc (E) :_R E]$ a contradiction. Thus $r[A :_R E]e = (0)$. In similary way $s[A :_R E]e = (0)$.

As direct consequence of proposition (16), we get the following corollary :

Corollary 17. If A is a WP – 2 – Absorbing submodule of an R – module E with (r, s, e) is a WP – triple zero of A for some r, $s \in R$, $e \in E$, then $r [A:_R E] A = s [A:_R E] A = (0)$.

Proposition 18. If A is a WP – 2 – Absorbing submodule of E with (r, s, e) is a WP – triple zero of A for some r, $s \in R$, $e \in E$, then $[A:_R E] sA = [A:_R E] rA = (0)$.

Proof : Suppose that $[A :_R E]$ sA $\neq (0)$, then $xsa \neq (0)$ for some $x \in [A :_R E]$, $a \in A$. Since (r, s, e) is a WP – triple zero of A, then rse = 0, $re \notin A + soc (E)$, se $\notin A + soc (E)$ and $rs \notin [\notin A + soc (E) :_R E]$. For $0 \neq xsa \in A$, it follows that either $xa \in A + soc (E)$ or $sa \in A + soc (E)$ or $xs \in [A + soc (E) :_R E]$. We have (r + x) s (a + e) = rsa + rse + soc (E)

 $\begin{aligned} xsa + xse &= xsa \in A \\ \text{proposition (16)). That is } 0 \neq (r + x)(a + e) = ra + re + xa + xe \in A \text{, implies that } re \in A \\ + \text{soc (E) a contradiction or s(a + e) = sa + se \in A + soc (E) implies that se \in A + soc (E) \\ a \text{ contradiction or (r + x)s = rs + xs } \in [A + \text{soc (E) :}_R E], \text{ implies that } rs \in [A + \text{soc (E)}] \\ :_R E] \text{ a contradiction .Thus [A :}_R E] \text{ sA = (0).} \end{aligned}$

In similar steps , we can show that $[A:_R E]rA = (0)$.

Proposition 19. If A is a WP – 2 – Absorbing submodule of E with (r, s, e) is a WP – triple zero of A for some r, $s \in R$, $e \in E$, then $[A:_R E][A:_R E]e = (0)$.

Proof : Suppose that $[A :_R E] [A :_R E] e \neq (0)$, then $0 \neq xye \in A$ for some x, $y \in [A :_R E]$. E]. For (r, s, e) is a WP – triple zero of A, then rse = 0, re $\notin A + soc (E)$, se $\notin A + soc (E)$ and rs $\notin [A + soc (E) :_R E]$.

Now, $0 \neq xye \in A$, implies that either $xe \in A + soc (E)$ or $ye \in A + soc (E)$ or $xy \in [A + soc (E) :_R E]$.

Now, $0 \neq (r + x)(s + y)e = rse + rye + xse + xye = xye \in A$ (since rse = 0, rye = 0, xse = 0 by proposition (16)). It follows that either $(r + x)e = re + xe \in A + soc (E)$, implies that $re \in A + soc (E)$ a contradiction. or $(s + y)e = se + ye \in A + soc (E)$, implies that $se \in A + soc (E)$ a contradiction, or $(r + x)(s + y) = rs + ry + xs + xy \in [A + soc (E) :_R E]$, implies that $rs \in [A + soc (E) :_R E]$ a contradiction.

Hence $[A:_{R} E] [A:_{R} E] e = (0)$.

Proposition 20. If A is a WP – 2 – Absorbing submodule of E with (r, s, e) is a WP – triple zero of A for some r, $s \in R$, $e \in E$, then $[A:_R E][A:_R E]A = (0)$.

Proof : By proposition (14) and proposition (19).

Proposition 21. Let A be a WP – 2 – Absorbing submodule of E and $rsB \subseteq A$ for some r, s $\in \mathbb{R}$, and some submodule B of E with (r, s, x) is not WP – triple zero of A for every $x \in \mathbb{B}$. If $rs \notin [A + soc(E):_R E]$, then $rx \in A + soc(E)$ or $sx \in A + soc(E)$.

Proof : Suppose that (r, s, x) is not WP – triple zero of A for every $x \in B$ and suppose that $rB \not\subseteq A + soc (E)$ and $sB \not\subseteq A + soc (E)$, then $ry_1 \notin A + soc (E)$ or $sy_2 \notin A + soc (E)$ for some $y_1, y_2 \in B$. If $0 \neq rsy_1 \in A$ with $rs \notin [A + soc (E) :_R E]$ and since $ry_1 \notin A + soc (E)$ then $sy_1 \in A + soc (E)$ (for A is a WP – 2 – Absorbing submodule). If $rsy_1 = 0$ and $ry_1 \notin A + soc (E)$, $rs \notin [A + soc (E) :_R E]$ and (r, s, y_1) is not WP – triple zero of A, we get $sy_1 \in A + soc (E)$. By similar arguments since (r, s, y_1) is not WP – triple zero of A, we get $ry_2 \in A + soc (E)$. Now, $rs (y_1 + y_2) \in A$ and $(r_1 s, y_1 + y_2)$ is not WP – triple zero of A + soc (E).

If $r(y_1 + y_2) = ry_1 + ry_2 \in A + soc (E)$ and $ry_2 \in A + soc (E)$, we get $ry_1 \in A + soc (E)$ is a contradiction.

If $s(y_1 + y_2) = sy_1 + sy_2 \in A + soc(E)$ and $sy_1 \in A + soc(E)$ then $sy_2 \in A + soc(E)$ is a contradiction.

Hence $rB \subseteq A + soc(E)$ or $sB \subseteq A + soc(E)$.

Proposition 22. Let A, B be WP – 2 – Absorbing submodule of E with B is not contained in A and either soc (E) \subseteq A or soc (E) \subseteq B. Then A \cap B is a WP – 2 – Absorbing submodule of E.

Proof : It is clear that $A \cap B$ is a proper submodule of B and B is a proper submodule of E, implies that $A \cap B$ is a proper submodule of E. Let $(0) \neq rsL \subseteq A \cap B$ for r, $s \in R$, L is a submodule of E, it follows that $(0) \neq rsL \subseteq A$ and $(0) \neq rsL \subseteq B$. But A, B are WP – 2 – Absorbing submodule of E, then either $rL \subseteq A + soc(E)$ or $sL \subseteq A + soc(E)$ or $rsE \subseteq A + soc(E)$ or $rsE \subseteq A + soc(E)$ and $rL \subseteq B + soc(E)$ or $sL \subseteq B + soc(E)$ or $rsE \subseteq B + soc(E)$. Thus, either $rL \subseteq (A + soc(E)) \cap (B + soc(E))$ or $sL \subseteq (A + soc(E)) \cap (B + soc(E))$ or $rsE \subseteq (A + soc(E)) \cap (B + soc(E))$. If $soc(E) \subseteq B$ then B + soc(E) = B, it follows that either $rL \subseteq (A + soc(E)) \cap B$ or $sL \subseteq (A + soc(E)) \cap B$. Again Since $soc(E) \subseteq B$, then by Modular Law $(A + soc(E)) \cap B = (A \cap B) + soc(E)$. Thus either $rL \subseteq (A \cap B) + soc(E)$ or $sL \subseteq (A \cap B) + soc(E)$. Thus A $\cap B$ is a WP – 2 – Absorbing submodule of E.

Recall that for any submodules A , K a multiplication R – module E with A = IE , B = JE , for some ideals I, J of R, the product AB = IJE = IB. In particular AE = IEE = IE = A, and for any $x \in E$, A = Ix [2].

The following propositions are characterizations of WP - 2 – Absorbing submodules is class of multiplication modules.

Proposition 23. Let E be a multiplication R – module, and A be a proper submodule of E. Then A is a WP – 2 – Absorbing submodule of E if and only if $(0) \neq L_1L_2L_3 \subseteq A$ for some submodules L_1, L_2, L_3 of E implies that either $L_1L_3 \subseteq A + \text{soc}(E)$ or $L_2L_3 \subseteq A + \text{soc}(E)$) or $L_1 L_2 \subseteq A + \text{soc}(E)$.

Proof : (\Rightarrow) Let (0) $\neq L_1L_2L_3 \subseteq A$ for some submodules L_1 , L_2 , L_3 of E. But E is a multiplication, then $L_1 = I_1E$, $L_2 = I_2E$, $L_3 = I_3E$ for some ideals I_1 , I_2 , I_3 of R. That is (0) $\neq L_1L_2L_3 = I_1$ I₂ I₃ $E \subseteq A$. But A is a WP – 2 – Absorbing submodule of E, then by proposition (6) either I₁ I₃E $\subseteq A + \text{soc}(E)$ or $I_2 I_3E \subseteq A + \text{soc}(E)$ or $I_1I_2 \subseteq [A + \text{soc}(E) + \text{soc}(E) + \text{soc}(E) + \text{soc}(E)$ or $L_2L_3 \subseteq A + \text{soc}(E)$ or $L_2L_3 \subseteq A + \text{soc}(E)$ or $L_2L_3 \subseteq A + \text{soc}(E)$ or $L_1L_2 \subseteq A + \text{soc}(E)$.

 (\Leftarrow) Let $(0) \neq I_1 I_2 L \subseteq A$ for I_1 , I_2 are ideals of R, L is submodule of E. Since E is a multiplication, then $L = I_3 E$ for some ideal I_3 of R. That is $(0) \neq I_1 I_2 I_3 E \subseteq A$. Put $L_1 = I_1 E$ and $L_2 = I_2 E$, then $(0) \neq L_1 L_2 L \subseteq A$, it follows by hypothesis that either $L_1 L \subseteq A + \text{soc}$ (E) or $L_2 L \subseteq A + \text{soc}$ (E) or $L_1 L_2 \subseteq A + \text{soc}$ (E). That is either $I_1 L \subseteq A + \text{soc}$ (E) or $I_2 L \subseteq A + \text{soc}$ (E) or $I_1 I_2 E \subseteq A + \text{soc}$ (E), (ie $I_1 I_2 \subseteq [A + \text{soc} (E) :_R E]$. Thus, by proposition (6) A is a WP – 2 – Absorbing submodule of E.

The following corollary is a direct consequence of proposition (23).

Corollary 24. Let E be a multiplication R – module and A be a proper submodule of E. Then A is a WP – 2 – Absorbing submodule of E if and only if $(0) \neq L_1L_2 \in \subseteq A$ for some submodules L_1, L_2 of E and $e \in E$, implies that either $L_1e \subseteq A + \text{soc}(E)$ or $L_2e \subseteq A + \text{soc}(E)$ or $L_1 L_2 \subseteq A + \text{soc}(E)$.

It is well known that if E is a faithful multiplication R – module then soc (E) = soc (R)E [11,coro. (2.14) (i)].

Proposition 25. Let E be a faithful multiplication R – module and A be a proper submodule of E. Then A is a WP – 2 – Absorbing submodule of E if and only if $[A:_R E]$ is a WP – 2 – Absorbing ideal of R.

Proof : (⇒) Let (0) ≠ I₁I₂ I₃ ⊆ [A :_R E] for I₁, I₂, I₃ are ideals of R, it follows that (0) ≠ I₁I₂ I₃ E ⊆ A. But E is a multiplication then (0) ≠ I₁I₂ I₃ E = L₁L₂L₃ ⊆ A by taking L₁ = I₁E, L₂ = I₂E and L₃ = I₃E. Now since A is a WP – 2 – Absorbing, then by proposition (23) either L₁ L₃ ⊆ A + soc (E) or L₂L₃ ⊆ A + soc (E) or L₁L₂ ⊆ A + soc (E). But E is a faithful multiplication then soc (E) = soc (R)E. Thus either I₁ I₃E ⊆ [A :_R E]E + soc (R) E + soc (R)E or I₂ I₃ E ⊆ [A :_R E]E + soc (R)E. Thus either I₁ I₃ ⊆ [A :_R E]E + soc (R)E. That is either I₁ I₃ ⊆ [A :_R E] + soc (R) or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₂ I₃ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ I₂ ⊆ [A :_R E] + soc (R) Or I₁ C = [A :_R E] + soc (R) Or I₁ C = [A :_R E] + soc (R) Or I₁ C = [A :_R E] + soc (R) Or I₁ C = [A :_R E] + soc (B :_R C] + soc (B :_R C] +

 $(\Leftarrow) \text{ Let } (0) \neq I_1I_2L \subseteq A \text{ for } I_1 \text{, } I_2 \text{ are ideals of } R \text{ and } L \text{ is submodule of } E. \text{ Since } E \text{ is a multiplication }, \text{ then } L = I_3E \text{ for some ideal } I_3 \text{ of } R \text{ . That is } (0) \neq I_1 I_2 I_3 E \subseteq A \text{ , it follows that } (0) \neq I_1 I_2 I_3 \subseteq [A:_R E] \text{ . But } [A:_R E] \text{ is a } WP - 2 - Absorbing ideal of } R \text{ , then by proposition } (6) \text{ either } I_1 I_3 \subseteq [A:_R E] + \text{ soc } (R) \text{ or } I_2 I_3 \subseteq [A:_R E] + \text{ soc } (R) \text{ or } I_2 I_3 \subseteq [A:_R E] + \text{ soc } (R) \text{ or } I_1 I_2 \subseteq [A:_R E] + \text{ soc } (R) \text{ . Thus either } I_1 I_3 E \subseteq [A:_R E]E + \text{ soc } (R)E \text{ or } I_2 I_3 E \subseteq [A:_R E] \text{ end } I_3 E \subseteq [A:_R E]E + \text{ soc } (R)E \text{ or } I_2 I_3 E \subseteq [A:_R E]E + \text{ soc } (R)E \text{ or } I_1 I_2 E \subseteq [A:_R E]E + \text{ soc } (R)E \text{ or } I_1 L \subseteq A + \text{ soc } (E) \text{ or } I_2 L \subseteq A + \text{ soc } (E) \text{ or } I_1 I_2 E \subseteq A + \text{ soc } (E), (\text{ ie } I_1 I_2 \subseteq [A + \text{ soc } (E):_R E]. \text{ Hence by proposition } (6) \text{ A is a } WP - 2 - Absorbing submodule of } E.$

It is well known that cyclic R- module is multiplication [10]. We get the following corollary:

Corollary 26. Let E be faithful cyclic R – module and A be a proper submodule of E. Then A is a WP – 2 – Absorbing if and only if $[A:_R E]$ is a WP – 2 – Absorbing ideal of R.

Proposition .27. Let E be a faithful finitely generated multiplication R – module and I be a WP – 2 – Absorbing ideal of R. Then , IE is a WP – 2 – Absorbing submodule of E.

Proof : Let $(0) \neq rI_1K \subseteq IE$ for $r \in R$, I_1 be an ideal of R, K is a submodule of E. It follows that $0 \neq rI_1I_2E \subseteq IE$ f or some ideal I_2 of R. Since E is a finitely generated multiplication, then by[2 coro. of Theo. (9)] we have $0 \neq rI_1I_2 \subseteq I + ann(E) = I$. But I is a WP – 2 – Absorbing, then,by corollary (8) either $rI_2 \subseteq I + soc(R)$ or $I_1I_2 \subseteq I + soc(R)$ or $rI_1 \subseteq [I + soc(R):_R R] = I + soc(R)$. That is either $rI_2E \subseteq IE + soc(R)E$ or $I_1I_2 \subseteq I + soc(E)$.

or $I_1K\subseteq IE$ + soc (E) or $\ r\ I_1\subseteq$ [IE + soc (E) :_R E]. Therefore ,by corollary (8) IE is a WP – 2 – Absorbing submodule of E .

It is well known that cyclic R – modules are finitely generated [8], we get the following corollary which is a direct consequence of proposition (27)

Corollary 28. Let E be a faithful cyclic R – module , and I be a WP – 2 – Absorbing ideal of R. Then , IE is a WP – 2 – Absorbing submodule of E .

3 . Conclusion A new generalization of weakly -2 – Absorbing submodule was introduced , and many characterizations were given. The definition of WP – triple zero of WP – 2 – Absorbing submodules were introduced. A lot of basic properties of these concepts were established. Among the main new characterizations of WP – 2 – Absorbing submodules are the following :

• A proper submodule A of E is a WP-2 – Absorbing if and only if for any t, $s \in R$ with ts $\notin [A + soc(E):_R E]$; we have $[A:_E ts] \subseteq [0:_E ts] \cup [A + soc(E):_E t] \cup [A + soc(E):_E t]$

• A proper submodule A of E is a WP-2 – Absorbing if and only if $0 \neq tsK \subseteq A$ for t, $s \in R$ and K is a submodule of E, implies that either $tK \subseteq A + soc(E)$ or $sK \subseteq A + soc(E)$ or $ts \in [A + soc(E):_R E]$.

• A proper submodule A of a cyclic R – module E is a WP-2 – Absorbing if and only if for each t, $s \in R$ with $ts \notin [A + soc(E):_R E]$, we have $[A:_R tse] \subseteq [0:_R tse] \cup [A + soc(E):_R te] \cup [A + soc(E):_R te] \cup [A + soc(E):_R te]$.

• A proper submodule N of E is a WP- 2 – Absorbing if and only if $(0) \neq IJL \subseteq N$ for some ideal I, J of R and submodule L of E implies that either $IL \subseteq N + soc(E)$ or $JL \subseteq N + soc(E)$ or $IJ \subseteq [N + soc(E) :_R E]$.

• If A is a WP- 2 – Absorbing submodule of E with (r, s, e) is a WP – triple zero of A for some t, $s \in R$, $e \in E$. Then, rsA = (0), $[A :_R E] re = (0)$, $r [A :_R E] e = (0)$, $r [A :_R E] A = (0)$, $[A :_R E] sA = (0)$ and $[A :_R E] [A :_R E] A = (0)$.

• A proper submodule A of multiplication module E is a WP-2 – Absorbing if and only if (0) $\neq L_1L_2L_3 \subseteq A$ for some submodules L_1 , L_2 , L_3 of E implies that either $L_1L_3 \subseteq A + soc$ (E) or $L_2L_3 \subseteq A + soc$ (E) or $L_1L_2 \subseteq A + soc$ (E).

References

1. Be hboodi M.; Koohy H. Weakly Prime Modules .Vietnam J. Math., **2004** ,*32*,*2*,185–196.

2. Darani, A.Y.; Soheilniai. F. 2 – Absorbing and Weakly – 2 – Absorbing Submodules , *Tahi Journal Math*, **2011**, 9, 577 – 584.

3. Haibat, K.M. ; Khalaf, H. A. Weakly Semi -2 – Absorbing Submodules . *Journal of Anbar For Pure Science*, **2018**, *12*, *2*, 57 – 62.

4. Wissam, A. H. ; Haibat, K. M. WN - 2 – Absorbing Submodules and WNS - 2 – Absorbing Submodules , *Ibn Al* – *Haitham Journal For Pure and Appl. Sci.* **2018** , *31*, *3* ,118 –125 .

5. Haibat, K.M.; Khalaf, H. A. Weakly Quasi – 2 – Absorbing Submodules *Tikrit Journal or Pure Science* **, 2018** *,13 ,7 ,*101 – 104 .

6. Goodearl, K. R. Ring Theory, Marcel Dekker, Inc. New York, 1976.

7. Khalaf, H. A. Some Generalizations Of 2 – Absorbing Submodules, M. Sc. Thesis, University of Tikrit, **2018**.

8. Kash, F.Modules and Rings, London Math. Soc. Monographs New York, Academic Press **1982**.

9. Sharpe, D. W.; Vomos, P. Injective Modules, Cambridge University, press, 1972.

10. Barnard, A. Multiplication, Journal of Alscbra, 1981, 7, 174-178.

11. El – Bast, Z. A.;Smith, P. F. Multiplication Modules ,Comm. In Algebra,**1988** ,*16*,*4*,755 – 779.

12. Smith P. F. Some Remarks of Multiplication Modules, Arch. Math, **1988**, 50, 233 – 235.