

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Weakly Approximaitly Quasi-Prime Submodules And Related Concepts

Haibat K. Mohammadali

Shahad J. Mahmood

dr,mohammadali 2013@gmail.com

hasanenjassm@gmail.com

Department Of Mathematics ,College Of Computer Sciences And Mathematics ,University Of Tikrit, Tikrit, Iraq

Article history: Received, 21, April ,2020, Accepted 21, June, 2020, Published in April 2021

Doi: 10.30526/34.2.2613

Abstract

Let R be commutative Ring , and let T be unitary left R – module .In this paper ,WAPP-quasi prime submodules are introduced as new generalization of Weakly quasi prime submodules , where proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever $0 \neq \text{rst} \in C$, for r, s $\in R$, t $\in T$, implies that either r t $\in C + \text{soc}(T)$ or s t $\in C + \text{soc}(T)$.Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.

Keywords: Weakly quasi prime submodules ,WAPP-quasi prime submodules , Socle of modules , Z-Regular modules , Projective modules .

1. Introduction

Throughout this paper , all rings are commutative with identity , and all modules are left unitary R-modules . Weakly quasi prim submodules was first introduced and studied in 2013 by [1] as a generalization of a weakly prime submodule , where proper submodule C of R-module T was called weakly prime submodule of C , if whenever $0\neq at\in C$, for a $\in R$, t $\in T$, implies that either t $\in C$ or aT $\subseteq C$ [2] , and a proper submodule C of R-module T is called weakly quasi prime submodule of T , if whenever $0\neq abt\in C$, for a , b $\in R$ t $\in T$, implies that either at $\in C$ or bt $\in C$. Recently many generalization of weakly quasi prime submodules were introduced see [3, 4, 5]. In this research we introduced another generalization of weakly quasi prime submodule of T , if whenever $0\neq abt\in C$ for a, b $\in R$, t $\in T$ implies that either at $\in C$ there are proper submodule C of R-module T is called WAPP-quasi prime submodule of T , if whenever $0\neq abt\in C$ for a, b $\in R$, t $\in T$ implies that either at $\in C$ +soc(T). Soc(T) is the socle of a module T, defined by the intersection of all essential submodule of T [6], where a nonzero submodule A of an R-module T is called module T is called T is called that R-module T is called T is called that R-module T is ca

multiplication if every submodule C of T is of the form IT for some ideal I of R , in particular C=[C:_R T] T [7]. Let A and B be a submodule of multiplication module T with A=IM and B=JT for some ideals I ,J of R , then AB=IJT=IB . In particular AT=ITT=IT=A. Also for any t ϵ T , At=A<t >= It [8]. Recall that an R-module T is faithful , if ann(T)= (0) [7] .A R-module T is a projective if for any epimorphism f from R-module X into X and for any homomorphism g from Tin to X there exists a homomorphism h from T in to X such that f o h=g [7].Recall that an R-module T is a Z-regular , if for each t ϵ T there exists f ϵ T^{*}=Hom(T,R) such that t=f(t)t [10]

2.Basic Properties of WAPP-Quasi Prime Submodule

In this section, we introduced the definition of WAPP-quasi prime submodules and established some of its basic properties, characterization and examples.

Definition(1)

A proper submodule C of an R – module T is called Weakly approximaitly quasi prime submodule of T (for short WAPP-quasi prime submodule), if whenever $0\neq$ abt ϵ C, for a, b ϵ R, t ϵ T, implies that either at ϵ C+Soc(T) or bt ϵ C+Soc(T).

And an ideal J of ring R is called WAPP-quasi prime ideal of R if J is WAPP- quasi prime submodule of R-module T.

Examples and Remarks(2)

- 1. The submodule C= $\langle \overline{12} \rangle$ of the Z-module Z₂₄ is a WAPP-quasi prime submodule of Z₂₄, since Soc(Z₂₄)= $\langle \overline{4} \rangle$, and for $0\neq$ abt $\epsilon \langle \overline{12} \rangle = \{\overline{0}, \overline{12}\}$ for a,b ϵZ , $t\epsilon Z_{24}$, implies that either at $\epsilon \langle \overline{12} \rangle +$ Soc(Z₂₄) or bt $\epsilon \langle \overline{12} \rangle +$ Soc(Z₂₄). That is either at $\epsilon \langle \overline{12} \rangle +$ Soc(Z₂₄)= $\langle \overline{4} \rangle$ or bt $\epsilon \langle 12 \rangle +$ Soc(Z₂₄)= $\langle \overline{4} \rangle$ thus $0\neq 2.3$. $\overline{2}\epsilon \langle \overline{12} \rangle$ for 2,3, ϵZ , $\overline{2}\epsilon Z_{24}$ implies that 2. $\overline{2}=\overline{4}\epsilon \langle \overline{12} \rangle + \langle \overline{4} \rangle = \langle \overline{4} \rangle = \{\overline{0}, \overline{4}, \overline{8}, \overline{12}, \overline{16}, \overline{20}\}$.
- 2. The submodule 12Z of the Z-module Z is not WAPP-quasi prime submodule, since Soc(Z)=(0) and whenever 0≠3.4.1 ∈ 12Z, for 3,4,1 ∈Z, implies that 3.1 ∉ 12Z+Soc(Z) and 4.1 ∉ 12Z+Soc(Z)
- **3.** It is clear that every weakly quasi prime submodule of an R-module T is WAPP-quasi prime but not conversely .

The following example explains that :

Consider the Z-module Z₂₄, and the submodule C= $\langle \bar{6} \rangle = \{\bar{0}, \bar{6}, \bar{12}, \bar{18}\}$, C is not weakly quasi prime submodule of Z₂₄ since 2.3. $\bar{1} \in C = \langle \bar{6} \rangle$, for 2,3 $\in Z$, $\bar{1} \in Z_{24}$, implies that 2. $\bar{1}=\bar{2}\neq\langle \bar{6} \rangle$ and 3. $\bar{1}=\bar{3} \notin \langle \bar{6} \rangle$. Bat C is a WAPP-quasi prime submodule of Z₂₄, since $Soc(Z_{24})=\langle \bar{4} \rangle$, and whenever $0\neq$ abt $\in C = \langle \bar{6} \rangle = \{\bar{0}, \bar{6}, \bar{12}, \bar{18}\}$ for a, b $\in Z$, t $\in Z_{24}$ implies that either at $\in C + Soc(Z_{24})=\langle \bar{6} \rangle +\langle \bar{4} \rangle = \langle \bar{2} \rangle$ or bt $\in C + Soc(Z_{24})=\langle \bar{6} \rangle +\langle \bar{4} \rangle =\langle \bar{2} \rangle$.

That is $0 \neq 2.3$. $\overline{1} \in C$, for $2,3 \in \mathbb{Z}$, $\overline{1} \in \mathbb{Z}_{24}$, implies that $2.\overline{1} \in C + \text{Soc}(\mathbb{Z}_{24}) = \langle \overline{2} \rangle$.

4. It is clear that ever weakly prime submodule of an R-module T is a WAAP-quasi prime but not conversely .

The following example explains that :

Consider the Z-module Z_{24} and the submodule $C = \langle \overline{12} \rangle = \{\overline{0}, \overline{12}\}$. From (1), C is WAPPquasi prime submodule of Z_{24} . But C is not weakly prime submodule of Z_{24} . Since if $0 \neq$ $3.\overline{4} \in C$, for $3\epsilon Z$, $\overline{4}\epsilon Z_{24}$, but $\overline{4} \notin C$ and $3\notin [C:Z_{24}]=6Z$

5. The residual of WAPP-quasi prime submodule C of an R-module T needs not to be WAPP-quasi prime ideal of R .

The following example explains that :

We have seen in(1) that the submodule C= $<\overline{12}>$ of the Z – module Z₂₄ is a WAPP-quasi prime but [C:_Z Z₂₄]=[$<\overline{12}>$:_Z Z₂₄]=12Z is not WAPP-quasi prime ideal by (2).

- **6.** The submodules PZ of a Z-module Z is a WAPP-quasi prime if and only if P is prime number
- 7. The intersection of two WAPP-quasi prime submodule of R-module, T need, not to be WAPP-quasi prime submodule of T for example:

The submodule 2Z and 5Z of the Z-module Z are WAPP-quasi prime submodule by (6).

But $2Z \cap 5Z=10Z$ is not WAPP-quasi prime submodule of the Z - module Z, since $0 \neq 2.5.1 \in 10Z$, for $2,5,1 \in Z$ but $2.1=2 \notin 10Z+Soc(Z)$ and $5.1=5 \notin 10Z+Soc(Z)$

The following proposition are characterizations of WAPP-quasi prime submodules .

Proposition(3)

Let *T* be an R – modul and C be proper submodul of T, then C is WAPP – quasi prime sub modul of T if and only if, whenever $0 \neq rsB \subseteq C$, for r, s \in R, B is submodul of T, implies that either r B \subset C +Soc(T) or s B \subset C +Soc(T).

Proof:

(⇒) Assum that C is AWPP-quasi prime submodule of T and 0≠rsB⊆C. For r, s ∈R, B is a submodule of T, with r B⊄ C+ Soc(T) and s B⊄ C +Soc(T), that is there exists a nonzero elements b₁, b₂ ∈B such that rb₁ ∉C +Soc(T) and s b₂ ∉ C +Soc(T).Now 0≠rsb₁ €C, and C is WAPP-quasi prime submodule and r b₁ ∉C +Soc(T), implies that s b₁ €C +Soc(T). Also 0≠rsb₂ €C, and C is a WAPP-quasi prime submodule of T, and sb₂ ∉C +Soc(T) ...,implies that rb₂€C+Soc(T). Again since 0≠rs(b₁+b₂)€C and C is WAPP-quasi prime submodule of T, implies that either r(b₁+b₂)€C +Soc(T) or s(b₁+b₂)€C +Soc(T). If r(b₁+b₂)€C +Soc(T) , that is rb₁+rb₂€C+Soc(T) , and since rb₂€C+Soc(T), it follows that rb₁€C+Soc(T) which is contradiction. If s(b₁+b₂)€C +Soc(T) which is contradiction. Hence r B⊆C +Soc(T) or s B ⊆C +Soc(T).

(⇐)

Let $0\neq rst \in C$, for r, s $\in R$, t $\in T$, it follows that $0\neq rs < t \geq \subseteq C$, so by hypothesis either $r < t \geq \subseteq C + Soc(T)$ or $s < t \geq \subseteq C + Soc(T)$. That is either r t $\in C + Soc(T)$ or s t $\in C + Soc(T)$. Hence C is WAPP – quasi prime submodul of T.

Proposition(4)

Let *T* be R – module and C be proper submodule of T. Then C is WAPP – quasi prime submodul of T if and only if whenever $0 \neq IJB \subseteq C$, for I,J are ideals of R and B is a submodule of T, implies that either IB \subseteq C +Soc(T) or JB \subseteq C +Soc(T).

Proof:

(⇒)Assume that 0≠IJB⊆C . For I,J are ideal of R , B is a submodule of T , with IB⊄C+Soc(T) and J B⊄C +Soc(T), so there exists a nonzero elements b₁,b₂ ∈ B and a nonzero elements r ∈I , s ∈J such that rb₁ ∉C +Soc(T) and sb₂∉ C +Soc(T).Now 0≠rsb₁ €C , and C is a WAPP-quasi prime submodule and rb₁∉ C+Soc(T) , implies that sb₁€ C+Soc(T). Also 0≠rsb2€C , and C is a WAPP-quasi prime submodule of T, and sb₂ ∉C+Soc(T) .,implies that rb₂€C+Soc(T). Again 0≠rs(b₁+b₂)€C and C is WAPP-quasi prime submodule of T , implies that either r(b₁+b₂)€C +Soc(T) or s(b₁+b₂)€C +Soc(T) . If r(b₁+b₂)€C +Soc(T) , that is rb₁+rb₂€C+Soc(T) , that is sb₁+sb₂€C+Soc(T) and sb₁€C+Soc(T), implies that sb₂€C+Soc(T) which is contradiction. Hence IB⊆C+Soc(T) or JB⊆C+Soc(T).

(⇐)

Suppose that $0\neq rst \in C$, for r, s $\in R$, t $\in T$, that is $0\neq <r><s><t>\subseteq C$, so by our assumption either $(r)(t)\subseteq C+$ Soc(T) or $(r)(t)\subseteq C+$ Soc(T). That is either $rt \in C +$ Soc(T) or st $\in C +$ Soc(T). Hence C is WAPP-quasi prime submodule of T.

As a direct consequence of the above propositions, we get the following corollaries.

Corollary(5)

Let T be R – module and C be proper submodule of T. Then C is WAPP – quasi prime submodule of T iff whenever $0 \neq r$ It $\subseteq C$, for r ϵ R, I is an ideals of R and t ϵ T, implies that either r t ϵ C +Soc(T) or I t \subseteq C +Soc(T).

Corollary(6)

Let T be R – module and C be proper submodule of T. Then C is WAPP – quasi prime submodule of T iff whenever $0 \neq IJt \subseteq C$, for J, , I is an ideals of R and t \in T, implies that either J t \subseteq C +Soc(T) or It \subseteq C +Soc(T).

Corollary(7)

Let *T* be R – module and C be proper submodule of T. Then C is WAPP – quasi prime submodul of T if and only if, for each $r \in R$ and every ideal I of R and every submodule B of T, with $0 \neq rIB \subseteq C$, implies that either $rB \subseteq C + Soc(T)$ or $IB \subseteq C + Soc(T)$.

Proposition(8)

Let T be R – module and C be proper submodule of T. Then C is WAPP – quasi prime submodul of T if and only if for each r,s \in R, [C:rs] \subseteq [0:T rs] \cup [C+Soc(T):T r] \cup [C+Soc(T):T s].

Proof:

(⇒)Let t ϵ [C:_T rs], implies that rst ϵ C .If rst=0, then t ϵ [0:_T rs], and hence t ϵ [0:_T rs] \cup [C+Soc(T)::_T r] \cup [C+Soc(T)::_T s] .Suppose that 0≠rst ϵ C and since C is WAPP-quasi prime submodule of T, it follows that either rt ϵ C +Soc(T) or st ϵ C +Soc(T), implies that either t ϵ [C+Soc(T):_T r] or t ϵ [C+Soc(T):_T s]. That is t ϵ [0:_T rs] \cup [C+Soc(T)::_T r] \cup [C+Soc(T)::_T s].

(⇐)Assume that $0\neq rst \in C$, for $r,s \in R$, $t \in T$, implies that $t \in [C:_T rs] \subseteq [0:_T rs] \cup [C + Soc(T):+:_T r] \cup [C + Soc(T):_T s]$. But $0\neq rst$, then $t \notin [0:_T rs]$, hence $t \in [C + Soc(T):_T r] \cup [C + Soc(T):_T s]$, it follows that $rt \in C + Soc(T)$ or $st \in C + Soc(T)$.Hence, C is WAPP-quasi prime submodule of T.

Proposition(9)

Let *T* be R – modul and C be proper submodul of T. Then C is WAPP – quase priem submodul of T iff for every $r \in R$, and $t \in T$ with $rt \notin C + Soc(T)$, $[C:_R rt] \subseteq [0:_R rt] \cup [C+Soc(T):_R t]$

Proof:

(⇒)Suppose that C is WAPP-quase ,and let $s\in[C:_R rt]$, implies that $rst\in C$. If rst=0 then $s\in[0:_R r]$, hence $s\in[0:_R rt]\cup[C+Soc(T):_R t]$. If $0\neq rst\in C$ and C is a WAPP-quasi prime submodule of T and $rt\notin C$ +Soc(T) ,then $st\in C+Soc(T)$ that is $s\in[C+Soc(T):_R t]$. Hence $s\in[0:_R rt]\cup[C+Soc(T):_R t]$. Thus , $[C:_R rt]\subseteq[0:_R rt]\cup[C+Soc(T):_R t]$.

As a direct consequence of proposition (9) and proposition (3), we get the following corollary:

Corollary(10)

Let *T* be R – modul and C be proper submodul of T. Then C is WAPP – quase prim submodul of T iff for every $r \in R$, and any submodule B of T with $rB \not\subset C$ +Soc(T), $[C:_R rB] \subseteq [0:_R rB] \cup [C+Soc(T):_R B]$

As a direct consequence of proposition (9) and proposition (4)we get the following corollary.

Corollary(11)

Let T be R – module and C be proper submodule of T. Then C is WAPP – quasi prime submodule of T iff for every ideal I of R, and every submodule B of T with $IB \not\subset C + Soc(T)$, $[C:_R IB] \subseteq [0:_R IB] \cup [C+Soc(T):_R B]$.

Proposition(12)

Let *T* be R – module and C be proper submodule of T. Then for every s, $r \in R$, and $t \in T$, $[C:_R rst] \subseteq [0:_R rst] \cup [C+Soc(T):_R rt]] \cup [C+Soc(T):_R st]$.

Proof:

Suppose that $e\in[C:_R rst]$, implies that $rs(et)\in C$. If rs(et)=0, implies that $e\in[0:_R rst]$ and hence $e\in[0:_R rst]\cup[C+Soc(T):_R r t]$ $]\cup[C+Soc(T):_R s t]$. If $rs(et)\neq 0$, and C is a WAPP-quasi prime submodule of T, then either $r(et)\in C+Soc(T)$ or $s(et)\in C+Soc(T)$. That is either $e\in[C+Soc(T):_R rt]$ or $e\in[C+Soc(T):_R st]$ thus $e\in[0:_R rst]\cup[C + Soc(T):_R r t]$ $]\cup[C + Soc(T):_R s t]$. Therefore, $[C:_R rst]\subseteq[0:_R rst]\cup[C + Soc(T):_R r t]$ $]\cup[C + Soc(T):_R s t]$.

The following are characterizations in the multiplication module.

Proposition(13)

Let T be multiplcation R_module and C be proper submodule of T. Then C is a WAPP – quasi prime submodule of T iff $0 \neq K_1K_2t \subseteq C$, for some submodules K_1 , K_2 of T, and $t \in T$ implies that either $K_1t \subseteq C + Soc(T)$ or $K_2t \subseteq C + Soc(T)$.

Proof:

(⇒) Suppos that C is WAPP – quasi prime submodul of T, and $0 \neq K_1K_2t \subseteq C$ for some submodules K_1 , K_2 of T, and $t \in T$. Since T is a multiplication, then $K_1=IT$ and $K_2=JT$ for some ideals I,J of R. Thus $0 \neq K_1K_2t=IJt \subseteq C$. Since C is a WAPP-quasi prime submodule of T then by corollary (6) either $It\subseteq C + Soc(T)$ or $Jt\subseteq C + Soc(T)$. Hence either $K_1t\subseteq C + Soc(T)$ or $K_2t\subseteq C + Soc(T)$.

(\Leftarrow) Assume that $0\neq$ IJt \subseteq C, for some ideals I,J of R,t \in T. That is $0\neq$ K₁K₂t \subseteq C for K₁=IT and K₂=JT. It follows that either K₁t \subseteq C+Soc(T) or K₂t \subseteq C+Soc(T); that is It \subseteq C + Soc(T) or Jt \subseteq C + Soc(T). Hence C is a WAPP-quasi prime submodule of T by corollary(6).

Proposition(14)

Let T be multiplcation R_module and C be proper submodule of T. Then C is WAPP – quasi prime submodule of T iff $0 \neq K_1K_2H \subseteq C$, for some submodules K_1, K_2 and H of T, implies that either $K_1H \subseteq C + Soc(T)$ or $K_2H \subseteq C + Soc(T)$.

Proof:

(⇒) Assume that $0\neq K_1K_2H \subseteq C$ for some submodules K_1 , K_2 and H of T. Since T is a multiplication, then $K_1=IT$, $K_2=JT$ for some ideals I,J of R hence $0\neq K_1K_2H=IJH \subseteq C$. But C is WAPP-quasi prime submodule of T then by proposition (4) either IH \subseteq C + Soc(T). or JH \subseteq C + Soc(T)... Hence either $K_1H\subseteq$ C + Soc(T). or $K_2H\subseteq$ C + Soc(T)...

(\Leftarrow) Let $0\neq IJH\subseteq C$, where I, J are ideals of R, and H is a submodule of T. Since T is multiplication, then $0\neq IJH=K_1K_2H\subseteq C$, hence by assumption either $K_1H\subseteq C + Soc(T)$ or $K_2H\subseteq C + Soc(T)$. That is either $IH\subseteq C + Soc(T)$ or $JH\subseteq C + Soc(T)$. Thus by proposition (4)C is WAPP-quasi prime submodul of T.

It is well – knwon that if T is Z – regular R – module , then Soc(T)=Soc(R)T [11;prop.(3-25)].

Proposition(15)

Let T be Z_regular multiplcation R_module and C be proper submodule of T. Then C is WAPP – quasi prime submodul of T iff $[C:_R T]$ is WAPP- quasi prime ideal of R.

proof:

(⇒)Suppose that C is WAPP – quasi prime submodule of T and let $0\neq abI \subseteq [C:_R T]$, for $a,b\in R$, I is an ideal of R .it follows that $0\neq ab(IT)\subseteq C$. Since C is WAPP- quasi prime submodule of T, then by proposition(3) either $aIT\subseteq C+Soc(T)$ or $bIT\subseteq C+Soc(T)$.But T is a Z –regular module, then Soc(T)=Soc(R)T, and since T is multiplication, then $C=[C:_R T]T$. Hence either $aIT\subseteq [C:_R T]T+Soc(R)T$ or $bIT\subseteq [C:_R T]T+Soc(R)T$. Thus either $aI\subseteq [C:_R T]+Soc(R)$ or $bI\subseteq [C:_R T]+Soc(R)$. Hence by proposition $[C:_R T]$ is a WAPP- quase priem ideal of R.

(\Leftarrow)Suppose that [C:_RT] is a WAPP-quasi prime ideal of R , and $0\neq rsB \subseteq C$, for $r,s \in R$, and B is a submodule of T. Since T is a multiplication , then B=IT , for some ideal I of R ,that is $0\neq rsI T \subseteq C$, it follows that $0\neq rsI \subseteq [C:_R T]$. For [C:_RT] is a WAPP-quasi prime ideal , then by proposition(3) either $rI \subseteq [C:_R T] + Soc(R)$ or $sI \subseteq [C:_R T] + Soc(R)$, it follows that either $rIT \subseteq [C:_R T]T + Soc(R)T$ or $sIT \subseteq [C:_R T]T + Soc(R)T$. But T is a Z-regular Soc(T)=Soc(R)T and since T is a multiplication , then $[C:_R T]T = C$. Thus either $rB \subseteq C + Soc(T)$. Hence by proposition (3) C is a WAPP-quasi prime submodule of T.

It is well-known that if an R-module T is projective, then Soc(T)=Soc(R)T [11;prop.(3-24)]

Proposition(16)

Let T be a projective multiplication R-module and C be a proper submodule of T. Then C is WAPP-quasi prime submodule of T if and only if $[C:_R T]$ is a WAPP- quasi prime ideal of R.

Proof:

 $(\Rightarrow) Let 0 \neq rIJ \subseteq [C:_R T] , for r \in R , I ,J are ideal of R .then 0 \neq rI(JT) \subseteq C . Since C is WAPP$ $quasi prime submodule of T , then by corollary(7) either r(JT) \subseteq C+Soc(T) or$ $I(JT) \subseteq C+Soc(T).Now since T is a projective module , then Soc(T)=Soc(R)T , and since T is$ $multiplication , then C=[C:_R T]T . Hence either r(JT) \subseteq [C:_R T]T+Soc(R)T or$ $I(JT) \subseteq [C:_R T]T+Soc(R)T. It follows that , either rJ \subseteq [C:_R T]+Soc(R) or IJ \subseteq [C:_R T]+Soc(R) .$ $Hence by corollary(7) [C:_R T] is a WAPP-quasi prime ideal of R.$

(\Leftarrow)Let T $0 \neq rIB \subseteq C$, for r ϵR , I is an ideal in R, and B is submodule of. Since T is a multiplication, then B=JT ,for some ideal J of R .Thus $0 \neq rIJ T \subseteq C$, implies that $0 \neq rIJ \subseteq [C:_R T]$ T]. But [c:_RT] is a WAPP-quasi prime ideal, then by corollary(7) either $rJ \subseteq [C:_R T] + Soc(R)$ or $IJ \subseteq [C:_R T] + Soc(R)$, that is either $rJT \subseteq [C:_R T]T + Soc(R)T$ or $IJT \subseteq [C:_R T]T + Soc(R)T$. Since T is a projective then Soc(T) = Soc(R)T and since T is a multiplication, then $[C:_R T]T = C$. Thus

either $rB\subseteq C+Soc(T)$ or $IB\subseteq C+Soc(T)$. Hence by corollary (7) C is a WAPP-quasi prime submodule of T.

We need to recall the following lemma before we introduce the next proposition .

Lemma(17)[12, coro, of theo, (9)]

Let T be a finitely generated multiplication R-module and I ,J are ideals of R . Then $IT \subseteq JT$ if and only if $I \subseteq J + ann_R$ (T).

Proposition(18)

Let T be a finitely generated multiplcation Z_regular R_module and I is WAPP – quasi prime ideal of R with annR (T) \subseteq I. Then IT is an WAPP-quasi prime submodule of T.

Proof:

Let $0 \neq I_1 \ I_2 \ B \subseteq IT$, for I_1, I_2 are is ideals of R, and B is submodul of T. Since T is a multiplication then B=J T for some ideal J of R. That is Let $0 \neq I_1 \ I_2 \ (J \ T) \subseteq IT$, it follows by lemma (17) $0 \neq I_1 \ I_2 \ J \subseteq I + \operatorname{ann}_R(T)$. But $\operatorname{ann}_R(T) \subseteq I$, implies that $I + \operatorname{ann}_R(T) = I$. That is $0 \neq I_1 \ I_2 \ J \subseteq I$. But I is a WAPP-quasi prime ideal of R, then by proposition (4) either $0 \neq I_1 \ J \subseteq I + \operatorname{Soc}(R)$ or $0 \neq I_2 \ J \subseteq I + \operatorname{Soc}(R)$. It follows that either $0 \neq I_1 \ J T \subseteq IT + \operatorname{Soc}(R)$ T or $0 \neq I_2 \ J T \subseteq IT + \operatorname{Soc}(R)$. But T is a Z-regular then $\operatorname{soc}(R)T = \operatorname{Soc}(T)$. Hence either $0 \neq I_1 \ B \subseteq IT + \operatorname{Soc}(T)$ or $0 \neq I_2 \ B \subseteq IT + \operatorname{Soc}(T)$. Thus by proposition (4) IT is WAPP-quasi prime submodule of T.

Proposition(19)

Let T be a finitely generated multiplication projective R-module and I is a WAPPquasi prime ideal of R with ann_R (T) \subseteq I. Then IT is WAPP-quasi prime submodule of T.

Proof:

Let $0 \neq rI_1 \ B \subseteq IT$, for $r \in R$, I_1 is an ideal of R, and B is submodule of T. Since T is multiplication then B=JT for some ideal J of R. That is Let $0 \neq rI_1 \ (J \ T) \subseteq IT$, it follows by lemma (17) $0 \neq rI_1 \ J \subseteq I + ann_R(T)$. But $ann_R(T) \subseteq I$, implies that $I + ann_R(T) = I$. Hence $0 \neq rI_1 \ J \subseteq I$, and since I is WAPP-quasi prime ideal of R, then by corollary (7) either $0 \neq I_1 \ J \subseteq I + Soc(R)$. That is either $0 \neq I_1 \ J \ T \subseteq IT + Soc(R)T$ or $0 \neq r \ J \ T \subseteq IT + Soc(R)T$. But T is a projective then soc(R)T = Soc(T). Thus either $0 \neq I_1 \ B \subseteq IT + Soc(T)$ or $0 \neq r \ B \subseteq IT + Soc(T)$. Hence by corollary (7) IT is WAPP-quasi prime submodule of T.

It is well-known that cyclic R-module is multiplication [13], and since cyclic R-module is a finitely generated, we get the following corollaries:

Corollary(20)

Let T be a cyclic Z-regular R-module and I is WAPP-quasi prime ideal of R with ann_R $(T) \subseteq I$. Then IT is an WAPP-quasi prime submodule of T.

Corollary(21)

Let T be a cyclic projective R-module and I is an WAPP-quasi prime ideal of R with ann_R (T) \subseteq I. Then IT is an WAPP-quasi prim submodule of T.

It is well-known that if a submodule C of an R-module T is essential in T, then Soc(C)=Soc(T) [6, P.29].

Proposition(22)

Let T be R-module and A,B are submodules of T with $A \not\subset B$ and B is an essential in T. If A is an WAPP-quasi prime submodule of T, then A is a WAPP-quasi prime submodule of B.

Proof:

Let $0\neq rst \in A$, for $r,s \in R$, $t \in B$, that is $t \in T$. Since A is a WAPP-quasi prime submodule of T, then either $rt \in A + Soc(T)$ or $st \in A + Soc(T)$. But B is essential in T, then soc(B)=Soc(T). That is either $rt \in A + Soc(B)$ or $st \in A + Soc(B)$. Hence A is an WAPP-quasi prime submodule of B.

Corollary(23)

Let T be R-module ,and A,B are submodules of T with $A \not\subset B$ and $Soc(T) \subseteq Soc(B)$. Then A is a WAPP-quasi prime submodule of B.

It well-known that if A is a submodule of an R-module T , then $Soc(A)=A\cap Soc(T)$ [9,lema 2.3.15]

Proposition(24)

Let T be R – module , and A, B are submodules of T with B not contain in A ,and $Soc(T) \subseteq B$. If A is a WAPP-quasi prime submodule of T , then A \cap B is a WAPP-quasi prime submodule of B.

Proof:

It is clear that $A \cap B$ is an proper submodule of B.Now ,let $0 \neq rst \in A \cap B$, for $r,s \in R$, $t \in B$, implies that $0 \neq rst \in A$, since A is a WAPP-quasi prime submodule of T, then either $rt \in A+Soc(T)$ or $st \in A+Soc(T)$, hence either $rt \in (A+Soc(T)) \cap B$ or $st \in (A+Soc(T)) \cap B$. Since $Soc(T) \subseteq B$, then by module law either $rt \in (A \cap B) + (B \cap Soc(T))$ or $st \in (A \cap B) + (B \cap Soc(T))$. That is either $rt \in (A \cap B) + Soc(B)$ or $st \in (A \cap B) + Soc(B)$. Thus $A \cap B$ is a WAPP-quasi prime submodule of B.

It well-known that for each submodule A of an R-module T , then Soc(A)=A, then $A \subseteq Soc(T)[9,theo.(9.1.4)(c)]$.

Proposition(25)

Let T be an R – module , and A, B are submodules of T with B not contain in A, with Soc(A)=A and soc(B)=B. Then $A \cap B$ is a WAPP-quasi prime sub module of T.

Proof:

Let $0 \neq rsL \subseteq A \cap B$, for $r, s \in R$, L is submodule of T, then $0 \neq rs L \subseteq A$, and $0 \neq rs L \subseteq B$. But both A, B are WAPP-quasi prime submodule of T, then either $rL \subseteq A+Soc(T)$ or $sL \subseteq A+Soc(T)$, and $rL \subseteq B+Soc(T)$ or $sL \subseteq B+Soc(T)$. But Soc(A)=A and soc(B)=B, then $A \subseteq Soc(T)$ and $B \subseteq Soc(T)$, hence A+Soc(T)=Soc(T) and B+Soc(T)=Soc(T), $A \cap B \subseteq Soc(T)$, implies that $A \cap B + Soc(T)=Soc(T)$, so either $rL \subseteq Soc(T)=A \cap B + Soc(T)$ or $sL \subseteq Soc(T)=A \cap B + Soc(T)$. Hence $A \cap B$ is WAPP-quasi prime submodule of T

Proposition(26)

Let $f:T \rightarrow T'$ be an R-epimorphism , and C be an WAPP-quasi prime submodule of T with kerf $\subseteq C$. Then f(C) is WAPP-quasi prime submodule of T'.

Proof:

Let $f:T \to T'$ be an R-epimorphism , and C be an WAPP-quasi prime submodule of T with kerf \subseteq C ,let $0 \neq rst' \in f(C)$, for $r,s \in R$, $t' \in T'$. Since f is onto , then f(t) = t', for some $t \in T$, it follows that $0 \neq rsf(t) \in f(C)$, $0 \neq f(rst) \in f(C)$, so there exists a nonzero $x \in C$ such that, $0 \neq f(rst) = f(x)$. That is f(rst-x) = 0, implies that $rst-x \in kerf \subseteq C$, implies that $0 \neq rst \in C$. But C is a WAPP-quasi prime submodule of T , then either $rt \in C+Soc(T)$ or $s t \in C+Soc(T)$. That is either $r f(t) \in f(C)+f(Soc(T)) \subseteq f(C)+Soc(T')$ or $sf(t) \in f(C)+f(Soc(T')) = f(C)+Soc(T')$. Thus either $rt' \in f(C)+Soc(T')$ or $st' \in f(C)+Soc(T')$. Hence f(C) is an WAPP-quasi prime submodule of T'.

Proposition(27)

Let $f:T \to T'$ be an R-epimorphism , and C be WAPP-quasi prime submodule of T'. Then $f^{-1}(C)$ is an WAPP-quasi prime submodule of T.

Prove:

It is clearly that $f^{-1}(C)$ is proper submodule of T. Let $0 \neq rst \in f^{-1}(C)$, for $r, s \in R$, $t \in T$, it follows that then $0 \neq rsf(t) \in C$, but C is a WAPP-quasi prime submodule of T', then either $r f(t) \in C + Soc(T)$ or $sf(t) \in C + Soc(T')$. Thus either $r t \in f^{-1}(C) + f^{-1}(Soc(T')) \subseteq f^{-1}(C) + Soc(T)$ or $s t \in f^{-1}(C) + f^{-1}(Soc(T')) \subseteq f^{-1}(C) + Soc(T)$. Hence $f^{-1}(C)$ is WAPP-quasi prime submodule of T.

Proposition(28)

Let T be a Z-regular finitely generated multiplication R – module , and C be a proper submodule of T . Then the following statements are equivalent :

- 1. C is WAPP-quasi prime submodule of T.
- 2. [C:RT] is WAPP-quasi prime ideal of R.
- 3. C=IT for some WAPP-quasi prime ideal I of R with $ann_R(T) \le I$.

Poof:

 $(1) \Rightarrow (2)$ Follows by proposition [15]

(2) \Rightarrow (3) Follows directly.

 $(3) \Rightarrow (2)$ Suppose that C=IT for some a some WAPP-quasi prime ideal of R. Since T is multiplication, then C=[C:_RT]T=IT and since M is finitely generated multiplication, then .[C:_RT]= I+ann_R(T). But ann_R(T) \subseteq I it follows that I+ann_R(T)=I. Thus [C:_RT]=I is a WAPP-quasi prime ideal of R. Hence [C:_RT] is WAPP-quasi prime ideal of R.

The following corollary is a direct consequence of proposition (28)

Corollary(29)

Let T be a cyclic Z-regular R-module , and C be proper submodule of T . Then the following statements are equipollent :

- 1. C is WAPP-quasi prime submodule of T.
- 2. $[C:_RT]$ is WAPP-quasi prime ideal of R.
- 3. C=IT for some WAPP-quasi prime ideal I of R with $ann_R(T) \subseteq I$.

Proposition(30)

Let T be a finitely generated multiplication projective R-module , and C be a proper submodule of T . Then the following statements are equipollent :

- 1. C is a WAPP-quasi prime submodule of T.
- 2. $[C:_RT]$ is WAPP-quasi prime ideal of R.
- 3. C=IT for some WAPP-quasi prime ideal I of R with $ann_R(T) \subseteq I$.

Proof:

 $(1) \Rightarrow (2)$ Follows by proposition (16)

(2) \Rightarrow (3) Follows directly.

 $(3) \Rightarrow (2)$ Follows as in proposition(28).

As a direct consequence of proposition (30), we get the following corollary :

Corollary(31)

Let T be cyclic projective R – module, and C be proper submodule of T, and C be a proper submodule of T. Then the following statements are equipollent :

- 1. C is WAPP-quasi prime submodule of T.
- 2. $[C:_RT]$ is WAPP-quasi prime ideal of R.
- 3. C=IT for some WAPP-quasi prime ideal I of R with $ann_R(T) \subseteq I$.

It is well-known that if T is faithful multiplication R – module, then Soc(T)=Soc(R)T [7,CORO.(2.14)(1)].

Proposition(32)

Let T be a faithful multiplication R – module and C be a proper submodule of T. Then C is a WAPP-quasi prime submodule of T iff $[C:_R T]$ is a WAPP- quasi prime ideal of R.

Proof:

(⇒)Let 0≠IJk⊆[C:_R T] ,where I, J and k are ideals of R .then 0≠ IJ(kT)⊆C . Since C is WAPP- quasi prime submodule of T , then by proposition(4) either J(kT)⊆C+Soc(T) or J(kT)⊆C+Soc(T).But T is a faithful multiplication ,it follows that C=[C:_R T]T and Soc(T)=Soc(R)T . Thus either I(KT)⊆[C:_RT]T +Soc(R)T or J(KT)⊆[C:_RT]T +Soc(R)T. Hence either I K⊆[C:_RT]+Soc(R) or JK⊆[C:_RT]+Soc(R) . Thus by proposition(4) [C:_RT] is WAPP-quasi prime ideal of R.

(⇐)Let T 0≠abB⊆ C, for a,b ∈R, and B is submodule of T. Since T is multiplication, then B=JT, for some ideal J of R. Thus 0≠abJT⊆C, it follows that 0≠abJ⊆[C:_R T]. But [C:_RT] is WAPP-quasi prime ideal of R, then by proposition(3) either aJ⊆[C:_RT]+Soc(R) or bJ⊆[C:_RT]+Soc(R), it follows that either aJT⊆[C:_RT]T+Soc(R)T or bJT⊆[C:_RT]T+Soc(R)T. But T is a faithful multiplication R-module then either aB⊆C+Soc(T) or bB⊆ C+Soc(T).Thus by proposition (3) C is a WAPP-quasi prime submodule of T.

The following corollary is a direct consequence of proposition(32)

Corollary(33)

Let T be a faithful cyclic R – module and C be a proper submodule of T. Then C is WAPP-quasi prime submodule of T if and only if $[C:_R T]$ is a WAPP- quasi prime ideal of R.

3.Conclusion

In this proper, we introduced and studied the concept WAPP-quasi prime submodule, and we established several examples, characterizations and basic properties of this concept. WAPP-quasi prime submodule is generalization of a Weakly quasi prime submodule so we give example for converse.

Among C, the main results of this paper are the following:

1. Proper submoduel C of R-module T is WAPP-quasi prime submodule of T iff whenever $(0)\neq rsB\subseteq C$, for $r,s\in R$, B is a submodule of T ,implies that either $rB\subseteq C+Soc(T)$ or $sB\subseteq C+Soc(T)$

2. Proper submodule C of R-module T is WAPP-quasi prime submodule of T iff whenever $(0)\neq IJB\subseteq C$, for I,J are ideals of R, and B is submodule of T ,implies that either $IB\subseteq C + Soc(T)$. or $JB\subseteq C + Soc(T)$.

3. Proper submodule C of R-module T is WAPP-quasi prime submodule of T iff for all $r,s \in R$, $[c:_T rs] \subseteq [0:_T rs] \cup [C:_T r] \cup [C:_T s]$

4. Proper submoduel C of R-module T is WAPP-quasi prime submodule of T iff for all $r \in R$, $t \in T$ with $rt \notin C + Soc(T)$, $[c:_T rt] \subseteq [0:_T rt] \cup [C + Soc(T):_T t]$.

5. Proper submodule C of multiplication R-module T is WAPP-quasi prime submodule of T iff whenever $(0)\neq K_1K_2t\subseteq C$, for some submodules K_1,k_2 of T and $t\in T$, implies that either $K_1t\subseteq C+Soc(T)$ or $K_2t\subseteq C+Soc(T)$

6. Proper submodule C of Z-regular multiplication R-module T is a WAPP-quasi prime submodule of T iff $[C:_R T]$ is WAPP-quasi prime ideal of R.

7. Proper submodule C of projective multiplication R-module T is WAPP-quasi prim submodule of T iff $[C:_R T]$ is WAPP-quasi prime ideal of R.

8. If T is a cyclic a Z-regular R-module and I is WAPP-quasi prime ideal of R with $ann_R(T) \subseteq I$. Then IT is WAPP-quasi submodule of T.

References

1. Waad, K. H. ;Weakly Quasi prime Modules and Weakly Quasi prime submodules ; *M. Sc. Thesis*, *university of Tikrit* 2013.

2. Behboodi ,M.; Koohy H .; Weakly prime Modules; Vietnam J. Math. , 2004 ,32 ,2, 185-195.

3. Haibat, K. M.; Khalaf H.A.; Weakly Quasi -2-Absobing Submodules; *Tikrit J. of pure sci* .2018,23,7,101-104.

4. Haibat, K. M.; Saif, A.H.; WE-primary Submodule and WE-quasi prime Submodules; *Tikrit J. of pure swwci*, **2019**, *24*, *1*, *68-102*.

5. Haibat, K. M.; Omer, A.A.; Pseudo Quasi 2-Absorbing Submodules and Some Related Concepts; *Ibn AL-Hatham J. for pure and Applied sci*.,**2019**,*32*, *2*, *114-122*.

6. Gooderal, K.R. ;Ring Theory, Non Singular Ring and Modules; *Marcel .Dekker , New York* , **1976**.

7. El-Bast , Z. A. ;Smith P.F. ;Multiplication Modules; Comm . *In Algebra* , **1988**, *16*, *4*, 755-779.

8. Darani, A.Y. ;Sohelnai, F. ; 2-Absorbing and Weakly 2-Absorbing Submodules ; *Tahi Journal Math.***2011**, *9*, *577-584*.

9. Kasch, F. ; Modules and Rings ; London Math . Soc. Monographs , *New-York , Academic press* , **1982** .

10. Zelmanowitz, J. M .; Regular Modules ; Trans .Amer. Math .soc .(1973), 163 , 341-355.

11. Nuha ,H. H. ;The Radicals of Modules ;M .Sc. Thesis , university of Bagdad , 1996.

12. Smith, P.F. ;Some Remarks on Multiplication Modules; Arch. Math . 1988, 50 ,223-223.