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Abstract  

       In this work, we prove that the triple linear partial differential equations (PDEs) of the 

elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) 

has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we 

prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) 

ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) 

related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective 

function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for 

optimality for the problem. 

  

Keywords: boundary optimal control, triple linear partial differential equations of elliptic type, 

Fréchet derivative, necessary conditions.  

 

1. Introduction  

     In many scopes, the optimal control problem (OCPr) has a significant base of life problems, 

different examples for applications of such problems are studied in medicine [1], in aircraft [2], 

in electric power [3], in economic growth [4], and many other fields.  

This role push many investigators to study the OCPr for nonlinear ordinary differential 

equations (NONODEs) as [5], or for different types of linear PDEs (LPDEs) hyperbolic, 

parabolic and elliptic as in [6,7] and [8] respectively. However, many others interested to study 

the OCPr for couple nonlinear PDEs (CNONLPDEs) of these three types [9,10] and [10], 

whilst   [11,12] and [13]  studied these three types of the CNONLPDEs but involved a 

Neumann boundary control (NBC). On the other hand, [14,15], and [16] in 2019 studied OCPr 

for triple PDEs (TPDEs) of the three types, while [17] studied OCPr involving NBC 
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"OCPrNBC" for TPDEs of parabolic type (TPDEsP). All these investigations push us to seek 

the OCPrNBC governed by the TLEPDEs.  

      In this paper and at first, we prove that the TLEPDEs with a given CCBCVr has a unique  

SSV utilizing the GME. Second we prove the existence theorem of CCBOCVr ruled by the 

TLEPDEs. We study the existence for the solution of the TAJE related with the TSEs. The FDe 

of the objective function is derived. At the end, the  NCTh of optimality of is demonstrated. 

   

2. Problem Description 

Let Ω be a bounded and open connected subset in R2 with "Lipshitz boundary" ∂Ω , the OCPr 

is considered by the "state vector equation" which consists of the TLEPDEs  with the NBC. 

A1y1 + y1 − y2 − y3 = f1(x), in Ω                                                                                       (1)  

A2y2 + y1 + y2 + y3 = f2(x), in Ω                                                                                       (2)  

A3y3 + y1 − y2 + y3 = f3(x), in Ω                                                                                       (3) 

∑ a1ij
 
∂y1

∂n1
= u1 ,

2
i,j=1 on ∂Ω                                                                                                   (4)  

∑ a2ij
 
∂y2

∂n2
= u2 ,

2
i,j=1 on∂Ω                                                                                                   (5)  

∑ a3ij
 
∂y3

∂n3
= u3 ,

2
i,j=1 on∂Ω                                                                                                   (6) 

where 

Aryr = −∑
∂

∂xi
(arij

(x)
∂yr

∂xj
) , r = 1,2,3,   arij

= arij
(xij)  ∈ L∞(Ω) , and2

i,j=1  (u1, u2, u3) = 

(u1(x), u2(x), u3(x)) ∈  (L2(∂Ω))
3
is the NBC vector (NBCV), (y1, y2, y3) =  

(y1(x), y2(x), y3(x))  ∈ (H1(Ω))
3
is the SSV corresponding to NBCV, (f1,  f2, f3) =

 (f1(x), f2 (x), f3(x)) ∈ (L2(Ω))
3
is given functions, for all X ∈  Ω , and  𝑛𝑙 , ∀ 𝑙 = 1,2,3 , is a 

unit vector normal on Σ. 

The controls are defined in the set  W⃗⃗⃗ ⊂ (L2(∂Ω))
3
 , with 

W⃗⃗⃗ = {(u1, u2 , u3) ∈ (L2(∂Ω))
3
 |(u1, u2 , u3) ∈  U⃗⃗ ⊂ R3 a. e in ∂Ω} Where U⃗⃗  is a convex set. 

 The objective functional is defined  

Minu⃗⃗ ∈W⃗⃗⃗⃗  Go(u⃗ ) =  
1

2
‖y1 − y1d‖L2(Ω)

2 + 
1

2
 ‖y2 − y2d‖L2(Ω)

2 + 
1

2
 ‖y3 − y3d‖L2(Ω)

2  

                                    + 
α

2
 ‖u1‖L2(∂Ω)

2 + 
α

2
 ‖u2‖L2(∂Ω)

2 + 
α

2
 ‖u3‖L2(∂Ω)

2                               (7) 

Let   V⃗⃗ = (V)3 = (H1(Ω))
3
. The symbols (v , v)L2(Ω) , and  ‖ V ‖L2(Ω) (‖ V ‖L2(∂Ω))  are the 

inner product (IP) and the norm  in L2(Ω) (L2(∂Ω)),  by (v , v) H1(Ω) , ‖V‖H1(Ω)  the  IN  and the 

norm in H1(Ω) , By (v⃗  , v⃗ )L2(Ω) = ∑ (vi , vi)
2
i=1    and ‖ v⃗  ‖

(L2(Ω))
3
 
=  ∑ ‖ vi‖L2(Ω)

3
i=1    the  IP  

and the norm in  (L2(Ω))
3
, by (v⃗  , v⃗ )L2(Ω) = ∑ (vi , vi)

3
i=1     and  

‖ v⃗  ‖
(H1(Ω))

3
 
=  ∑ ‖ vi‖H1(Ω)

3
i=1    the  IP  and the norm in  V⃗⃗   and V⃗⃗ ∗  is the dual of    V⃗⃗  . 

 

3. Weak Formulation: 

    The weak form (WFO) for (1-3) is obtained by multiplying their both sides by v1 ∈ V , v2 ∈

V and  v3 ∈ V  respectively, then integrating them and then using the generalized Green's 

theorem is applied for the terms that contain the derivatives of order two, to get:  

a1(y1, v1 ) − (y2 + y3 , v1 )L2(Ω) = (f1 , v1)L2(Ω) + (u1 , v1)L2(∂Ω) , ∀ v1 ∈ V                     (8)  
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a2(y2, v2 ) + (y1 + y3 , v2 )L2(Ω) = (f2 , v2)L2(Ω) + (u2 , v2)L2(∂Ω) , ∀ v2 ∈ V                    (9)  

a3(y3 , v3) + (y1 − y2 , v3 )L2(Ω) = (f3 , v3)L2(Ω) + (u3 , v3)L2(∂Ω) , ∀ v3 ∈ V                   (10) 

Adding (8) , (9) and (10) , to get :  

a(y⃗  , v⃗  ) = F ( v⃗  ), ∀ v⃗  ∈ V                                                                                                  (11) 

where 

a(y⃗  , v⃗  ) =  a1 (y1 , v1 ) − (y2 + y3 , v1 )L2(Ω) + a2 (y2 , v2 )  

                   (y1 + y3 , v2 )L2(Ω) + a3 (y3 , v3 ) +  (y1 − y2 , v3 )L2(Ω)                             (12a)                                             

ar(yr , vr ) = ∫ (∑ arij
 
∂yr

∂xi
 
∂vr

∂xj
 + yrvr

2
i,j=1 )

 

Ω
dx  , with 

ar(yr , vr )  ≥  C1r ‖yr‖H1(Ω)  
2 ,  where  C1r   ≥ 0   ,   r = 1 , 2 , 3 

|ar(yr , vr )| ≤ C2r ‖yr‖H1(Ω) 
2 ‖Vr‖H1(Ω)  ,

2 ,   where  C2r   ≥ 0   ,   r = 1 , 2 , 3 

a(y⃗  , y⃗  ) ≥ ∝1  ‖ y⃗  ‖
(H1(Ω))

3
  

2  

|a(y⃗  , v⃗  )| ≤ ∝2  ‖ y⃗  ‖
(H1(Ω))

3
  

 ‖ v⃗  ‖
(H1(Ω))

3
  

   

Where   ‖ y⃗  ‖
(H1(Ω))

3
  

 2 =  ‖ y⃗  ‖
(L2(Ω))

3
 

2 + ‖∇ y⃗  ‖
(L2(Ω))

3
 

2  , and  

F( v⃗  ) =  (f1 , v1)L2(Ω) + (u1 , v1)L2(∂Ω) + (f2 , v2)L2(Ω) + (u2 , v2)L2(∂Ω) + (f3 , v3)L2(Ω) +

                 (u3 , v3)L2(∂Ω)                                                                                                     (12b)  

 

Assumptions (A): 

a) a( y⃗  , v⃗  ) is coercive , i. e , a ( y⃗  , y⃗  )  ≥   C‖ y⃗  ‖
(H1(Ω))

3
2

 

  .  

b) |a( y⃗  , y⃗  )| ≤  C1‖ y⃗  ‖
(H1(Ω))

3
2 ‖ v⃗  ‖

(H1(Ω))
3

    where  c1 > 0 .  

c) |F( v⃗  )| ≤   C2‖ v⃗  ‖(L2(Ω))
3

    , ∀    v⃗  ∈ V  ,    c2 > 0  .   

To find the solution of (11), the GME is applied, and an approximation (APP) subspace  V⃗⃗ n ⊂

V⃗⃗   ( V⃗⃗ n is the set of continuous function in Ω ) is chose, thus (11) will be in the following APP 

form:   

a( y⃗ n , v⃗  ) = F( v⃗  ), ∀ y⃗ n  , v⃗ ∈ V⃗⃗ n                                                                                       (13) 

 

Theorem 3.1: If u⃗ ∈  (L2(∂Ω))
3
 , is a given NBCV, then problem (13) has a unique APP 

solution(APPS)  y⃗ n ∈ V⃗⃗ n    

Proof:  let  {φ⃗⃗ 1 , φ⃗⃗ 2 , ……… , φ⃗⃗ n}   span  V⃗⃗ n , then the APPS of (13) is written by:  

y⃗ n = ∑ dj φ⃗⃗ j (x1 , x2)
n
j=1                                                                                                       (14) 

where  ∅⃗⃗ j = ((4 ℓ mod (4 − ℓ))
φk

, (4  mod (ℓ + 1))
φk

, ((4 + ℓ2)mod (ℓ))
φk

) , ℓ = 1, 2,3  

j = k + n(ℓ − 1) and  dj = dℓk is unknown constant , ∀ j = 1 , 2 , …… , n , with   n = 3N 

By substituting (14) in (13) , with v⃗ = φ⃗⃗ i , we get: 

∑ dj a(φ⃗⃗ j , φ⃗⃗ i) =  F(φ⃗⃗ i ) , ∀ i = 1 , 2 , … , nn
j=1                                                                    (15) 

It is clear that (15) is equivalent to the algebraic system.  

An×n Dn ×1  = bn ×1                                                                                                            (16) 

where 

An×n = (aij )n×n
  , aij = a (φ⃗⃗ j , φ⃗⃗ i) , bn ×1 = (b1, b2, … . bn)

T , bi = F (φ⃗⃗ i ) 
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 and Dn ×1 = (d1, d2, … . dn)
T, i, j = 1 , 2 , … , n. 

Since   An×n Dn ×1  = 0 ⟹ 𝑎(∑ 𝑑𝑗
𝑛
𝑗=1 �⃗� 𝑗 , �⃗� 𝑖) = 0, then from using( A –  a )                         

        𝑐‖∑ 𝑑�⃗� 𝑗
𝑛
𝑗=1 ‖

(𝐻¹(Ω))
2

2
 ≤  ∑ 𝑑𝑖𝑎

𝑛
𝑖=1 (∑ 𝑑𝑗�⃗� 𝑗

𝑛
𝑗=1 , �⃗� 𝑖) = 0 

The uniqueness (16) is obtained from its corresponding homogeneous system. 

Proposition 3.1 [6]:    For any  v⃗  in V⃗⃗  , V⃗⃗ n has a sequence {φ⃗⃗ n} with  φ⃗⃗ n ∈ V⃗⃗ n  , ∀ n for which  

φ⃗⃗ n  →  V⃗⃗   strongly in V⃗⃗  . 

 

Now, by Theorem 3.1, the following sequence of the WFO has a sequence for the solutions 

{ y⃗ n }n=1
∞  

a( y⃗ n , φ⃗⃗ n ) = F( φ⃗⃗ n ), ∀ y⃗ n  , φ⃗⃗ n ∈ V⃗⃗ n , ∀ n                                                                       (17) 

 

Theorem 3.2: The sequence { y⃗ n }n=1
∞  converges to y⃗  strongly in (H1(Ω))

3
. 

Proof: we have  y⃗ n is a solution of (17), then by ( A –  a & c ) :  

‖ y⃗ n ‖
(H1(Ω))

3
  ≤  C̅1,  where C̅1 > 0, ∀n    

From the Alaoglu's theorem (Agth)[8], {y⃗ n}  has a subsequence. It is not loss of generality to 

say again {y⃗ n} for which  y⃗ n  →  y⃗  ,  weakly in V⃗⃗ .  

Now, let  v⃗   ∈  V⃗⃗  be fixed, then LV⃗⃗  (w⃗⃗⃗ ) = a(w⃗⃗⃗  , v⃗ ) is a bounded linear functional i.e, LV⃗⃗   ∈ V⃗⃗ .                                            

To prove the sequence of the solutions {y⃗ n }n=1
∞   of the WFO (17) converges to the solution of  

the WFO(11).  

Step 1: since   y⃗ n → y⃗   weakly in V⃗⃗  and by Proposition3.1, φ⃗⃗ n → V⃗⃗   strongly in V⃗⃗  , then 

|a( y⃗ n , φ⃗⃗ n ) −  a ( y⃗  , v⃗  )|   ≤  |a( y⃗ n , φ⃗⃗ n − v⃗ ) +  a( y⃗ n − y⃗  , v⃗   )| ≤ 

C1‖ y⃗ n ‖
(H1(Ω))

3
 ‖ φ⃗⃗ n − v⃗ ‖

(H1(Ω))
3

 + C2‖ y⃗ n − y⃗  ‖
(H1(Ω))

3
 ‖  v⃗ ‖

(H1(Ω))
3

 

  

→ 0               (18) 

Hence 

 a( y⃗ n , φ⃗⃗ n )   → a( y⃗  , v⃗  )                                                                                                    (19) 

Step 2: since φ⃗⃗ n  →  v⃗   strongly in V⃗⃗ ⟹ φ⃗⃗ n  ⟶  v⃗  weakly in V⃗⃗  , then  F( φ⃗⃗ n )  ⟶  F( v⃗ )  

The above two steps give the  following 

a( y⃗  , v⃗  ) = F( v⃗  ) , ∀ v⃗  ∈  V⃗⃗  

which means  y⃗  is a solution in (11).  

Now, to prove y⃗ n  →  y⃗   strongly in   V⃗⃗  , by using  ( A − a), it follows that : 

 C ‖ y⃗  − y⃗ n‖
(H1(Ω))

3
  ≤ a( y⃗  − y⃗ n , y⃗  ) − a( y⃗  , y⃗ n ) + a(  y⃗ n , y⃗ n)                                      

                                    = a( y⃗  − y⃗ n , y⃗  ) = Ly⃗⃗ ( y⃗  − y⃗ n ) → 0 

Thus  {y⃗ n} converges to y⃗    strongly in (H1(Ω))
3
 . 

 

4. Existence of a CCBOCVr:    

Lemma 4.1: The operator  u⃗  − y⃗ u⃗⃗     is Lipschitz continuous from (L2(∂Ω))
3
 into (L2(Ω))

3
 

and is satisfied 

‖ ∆y⃗⃗⃗⃗  ‖
(L2(Ω))

3

 
 ≤ C3 ‖∆u⃗⃗ ⃗⃗  ‖

(L2(∂Ω))
3

 
 , with   C3 > 0 .  
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Proof: Let u1́ , u2́ , u3́  be controls of the WFO (11) y1́, y2́ and  y3́ be their corresponding SSV, 

subtracting the obtaining WFO from (11), by letting  ∆y1 = y1́ − y1   and  ∆u = u1́  −  u   with  

  v⃗ =   ∆y⃗⃗⃗⃗    , to get  

a( ∆y⃗⃗⃗⃗  , ∆y⃗⃗⃗⃗  ) =  (  ∆u1  , ∆y1 )(L2(∂Ω))
 + (  ∆u2  , ∆y2 )(L2(∂Ω))

 
 + (  ∆u3  , ∆y3 )(L2(∂Ω))

 
   (20)  

which gives after using(A-a), the Cauchy inequality(CSIn) and then the trace operator to obtain   

C‖ ∆y⃗⃗⃗⃗  ‖
(H1(Ω))

3

 2
 ≤ |a ( ∆y⃗⃗ ⃗⃗  , ∆y⃗⃗⃗⃗  )

 

 
|  ≤  C1‖ ∆u⃗⃗ ⃗⃗   ‖

(L2(∂Ω))
3

  
 ‖ ∆y⃗⃗⃗⃗  ‖

(H1(Ω))
3

  
 

Then,  

‖ ∆y⃗⃗⃗⃗  ‖
(H1(Ω))

3

  
 ≤  C2‖ ∆u⃗⃗ ⃗⃗   ‖

(L2(∂Ω))
3

  
  where   C2 =

C1

C
 

Since   ‖ ∆y⃗⃗⃗⃗  ‖
(L2(Ω))

3

  
 ≤  C ‖ ∆y⃗⃗⃗⃗  ‖

(H1(Ω))
3

  
   , then the above inequality becomes 

 ‖ ∆y⃗⃗⃗⃗  ‖
(L2(Ω))

3

  
 ≤  C3‖ ∆u⃗⃗ ⃗⃗   ‖

(L2(∂Ω))
3

  
   , where C3 = C ∙  C2                                               (21) 

 

Lemma 4.2 [3]:The norm    ‖   ‖L2(Ω) 
  (or the norm ‖   ‖L2(∂Ω) 

  )   is weakly lower semi 

continuous (WELSC) 

Lemma 4.3:  The objective function (7) is WELSC.  

Proof: The norm   ‖   ‖L2(∂Ω)
    is WELSC (by lemma 4.2 ), but when  u⃗ n → u⃗    weakly in 

 (L2(Ω))
3
, then by using lemma 4.1 gives  y⃗ n → y⃗ = y⃗ u⃗⃗    weakly in (L2(Ω))

3
, then by using  

lemma 4.2 ,  ‖y⃗ − y⃗ n‖L2(Ω)
2   is WELSC, i.e  , G0( u⃗  )  is WELSC. 

Lemma 4.4 [3]:The norm    ‖   ‖L2(Ω) 
   (‖   ‖L2(∂Ω) 

  )  is strictly convex (SC) . 

Remark 4.1: by applying lemma 4.4, G0( u⃗  )  is (SC). 

Theorem 4.1: If Ui , ∀ i = 1 , 2 , 3   is bounded, then there is a CCBOCVr for the problem (8). 

Proof: Since  Ui , ∀ i = 1 , 2 , 3  is bounded , then  Wi  ( ∀ i = 1 , 2 , 3)  is a bounded and then 

 W⃗⃗⃗   is bounded Since G0( u⃗  ) ≥ 0  , then there is a minimum sequence 

{ u⃗ n } =  {(u1n , u2n , u3n)}  ∈  W⃗⃗⃗   , for each n , such that: 

lim
n→∞

G0( u⃗ n ) = infw⃗⃗⃗ ∈W⃗⃗⃗⃗  G0( w⃗⃗⃗  ) 

From the coercive property of  G0( u⃗  )  , and its infimum, there exists a constant  C > 0  such 

that   ‖  u⃗ n‖(L2(∂Ω))
3

   ≤ C , ∀ n                                                                                            (22)   

Then by Agth, the sequence  { u⃗ n } has a subsequence. It is not loss of generality to say again 

 { u⃗ n }  for which   u⃗ n → u⃗    weakly in  (L2(∂Ω))
3
.    

From theorem3.1, for each control  u⃗ n = (u1n , u2n , u3n)  the TEPDEsE has a unique 

APPS y⃗ n = y⃗ un
 .  

To prove (for each n) { y⃗ n } ,  is bounded in  V⃗⃗  , using (A –  a & c) , CSIn and the trace operator 

, to get  

C‖ y⃗ n ‖
(H1(Ω))

3
 2 ≤  a ( y⃗ n , y⃗ n ) 

 = F( y⃗ n) 

                         ≤ ℓ1‖ y1n‖L2(Ω) 
  + c1‖ y1n‖H1(Ω) 

  + ℓ2‖ y2n‖L2(Ω) 
  + c2‖ y2n‖H1(Ω) 

   

                               + ℓ3‖ y3n‖L2(Ω) 
  + c3‖ y3n‖H1(Ω) 

   ≤ s‖ y⃗ n‖H1(Ω) 
   

then  ‖  y⃗ n‖
(H1(Ω))

3
  ≤ a , for each n with a =

s

C
> 0 . 

where  r1 = max(ℓ1 , c1) , r2 = max(ℓ2 , c2) , r3 = (ℓ3 , c3)   and  s = max(r1 , r2 , r3). 



  

65 

 

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 

 

 

Then by Agth { y⃗ n }  has a subsequence. It is not loss of generality to say again  { y⃗ n }  for 

which  y⃗ n → y⃗   weakly in  V⃗⃗   , since ∀n y⃗ n satisfies the WFO (11) for each, or 

a( y⃗ n, v⃗  ) 
 = Fn(v⃗ ) = ( f1 , v1)L2(Ω) + ( u1n , v1)L2(∂Ω ) + ( f2 , v2)L2(Ω) + ( u2n , v2)L2(∂Ω)  

                                      +( f3 , v3)L2(Ω) + ( u3n , v3)L2(∂Ω)                                                   (23) 

To show (23) converges to 

   a( y⃗ , v⃗  ) 
 = F(v⃗ )                                                                                                                  (24) 

First, since yin → yi 
weakly in L2(Ω) ∀ i (for yin → yi 

 weakly in Vi 
), then by CSIn, one has:  

│a1(y1n , v1  ) − (y2n + y3n , v1 )L2(Ω) + a2(y2n , v2  ) + (y1n + y3n , v2 )L2(Ω) 

 + a3(y3n , v3  ) + (y1n − y2n , v3 )L2(Ω) − a1(y1 , v1  ) + (y2 + y3 , v1 )L2(Ω)   

− a2(y2 , v2  ) − (y1 + y3 , v2 )L2(Ω) − a3(y3 , v3  ) −  (y1 − y2 , v3 )L2(Ω) 

≤ (C1‖ y1n − y1‖H1(Ω) 
  + ‖ y2n − y2‖L2(Ω) 

  + ‖ y3n − y3‖L2(Ω)
  )‖ v1‖L2(Ω) 

     

+(C2‖ y2n − y2‖H1(Ω) 
  + ‖ y1n − y1‖L2(Ω) 

  + ‖ y3n − y3‖L2(Ω) 
  )‖ v2‖L2(Ω)

    

+(C3‖ y3n − y3‖H1(Ω) 
  + ‖ y1n − y1‖L2(Ω) 

  + ‖ y2n − y2‖L2(Ω) 
  )‖ v3‖L2(Ω) 

  → 0   

 

Second,  we have  u⃗ n → u⃗   weakly in (L2(∂Ω))
3
, then the terms in the right hand side of (23) 

converges to the those in the right hand side of (24) .  

Thus (23) converges to (24) .  

But, we have u⃗ n → u⃗    weakly in (L2(∂Ω))
3
 and  G0( u⃗  )  is WELSC, then 

 G0( u⃗  )  ≤ lim 
n→∞

infu⃗⃗ n∈W⃗⃗⃗⃗ 
G0( u⃗ n ) = lim 

n→∞
 G0( u⃗ n )  =  infw⃗⃗⃗ ∈W⃗⃗⃗⃗  G0( w⃗⃗⃗  )       

Then  

G0( u⃗  ) = infw⃗⃗⃗ ∈W⃗⃗⃗⃗  G0( w⃗⃗⃗  )   , i.e, u⃗   a CCBOCVr.  

Applying Remark 4.1, gives us   u⃗    which is unique. 

5. The NCTh for Optimality: 

  

Theorem 5.1:  The TAJEs(z1 , z2 , z3) = (z1u1
 , z2u2

 , z3u3
)  of the WFO of the TSEs (1-6) are 

given by: 

A1 z1 + z1 + z2 + z3 = ( y1 − y1d) , in Ω                                                                        (25)  

A2 z1 − z1 + z2 − z3 = ( y2 − y2d) , in Ω                                                                        (26) 

A3 z1 − z1 + z2 + z3 = ( y3 − y3d) , in Ω                                                                        (27)  
∂z1

∂n1
= 0 , in ∂Ω                                                                                                                   (28)  

∂z2

∂n2
= 0 , in ∂Ω                                                                                                                   (29) 

∂z3

∂n3
= 0 , in ∂Ω                                                                                                                   (30) 

Then the FDe of G0 is given by : 

( G0
′  ( u⃗  ) , ∆u⃗⃗ ⃗⃗   )

L2(∂Ω) 
= (z  +∝ u⃗ , ∆u⃗⃗ ⃗⃗  )

L2(∂Ω)
  

Proof:  Rewriting the TAJEs (25-30) by its WFO, adding them, then substituting v⃗ = ∆y⃗⃗⃗⃗ , once 

get the following WFO which has a unique solution z = z u⃗⃗ : 

a1(z1 , ∆y1 ) +  (z2 + z3 , ∆y1 )L2(Ω) + a2(z2 , ∆y2 ) − (z1 + z3 , ∆y1 )L2(Ω) + a3(z3 , ∆y3 ) − 

(z1 − z2 , ∆y3 )L2(Ω) = (y1 − y1d , ∆y1 )L2(Ω) + (y2 − y2d , ∆y2 )L2(Ω) + 
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                                      (y3 − y3d , ∆y3 )L2(Ω)                                                                    (31)                                                                                                             

Utilizing (12a&b) in (11), then substituting v⃗ = z  once and once again v⃗ = z  and setting  

y⃗ + ∆y⃗⃗⃗⃗  instead of y⃗ , then subtracting the second obtained equation from the first one, to get 

 a1(∆y1, z1 ) − (∆y2, z1 )L2(Ω) − (∆y3, z1 )L2(Ω) + a2(∆y2, z2 ) + (∆y1, z2 )L2(Ω) + 

(∆y3, z2 )L2(Ω) + a3(∆y3, z3 ) + (∆y1, z3 ) − (∆y2, z3 ) = 

(∆u1 , z1 )L2(∂Ω) + (∆u2 , z2 )L2(∂Ω) + (∆u3 , z3 )L2(∂Ω)                                                     (32)                                                                                                               

Subtracting (32) from (31), to get 

(∆u⃗⃗ ⃗⃗   , z  )
L2(∂Ω)

= (y⃗ − y⃗ d , ∆y⃗⃗⃗⃗  )
L2(Ω)

                                                                                   (33) 

Now, for the cost function, we have 

G0(u⃗ + ∆u⃗⃗ ⃗⃗  ) − G0(u⃗ ) = (y1 − y1d , ∆y1 )L2(Ω) + (y2 − y2d , ∆y2 )L2(Ω) + 

                                       (y3 − y3d , ∆y3 )L2(Ω) +
1

2
‖∆y⃗⃗⃗⃗ ‖

(L2(Ω))
3

2
+

∝

2
‖∆u⃗⃗ ⃗⃗  ‖

(L2(∂Ω))
3

2
          (34) 

From (33) & (34), we get 

G0(u⃗ + ∆u⃗⃗ ⃗⃗  ) − G0(u⃗ ) = (z  +∝ u⃗  , ∆u⃗⃗ ⃗⃗  )
L2(∂Ω)

 +
1

2
‖∆y⃗⃗⃗⃗ ‖

(L2(Ω))
3

2
+

∝

2
‖∆u⃗⃗ ⃗⃗  ‖

(L2(∂Ω))
3

2
            (35) 

From lemma 4.1, it yield that 

1

2
‖∆y⃗⃗⃗⃗ ‖

(L2(Ω))
3

2
+

∝

2
‖∆u⃗⃗ ⃗⃗  ‖

(L2(∂Ω))
3

2
= є(∆u⃗⃗ ⃗⃗  )‖∆u⃗⃗ ⃗⃗  ‖

(L2(∂Ω))
3

2
                                                   (36)  

Where є(∆u⃗⃗ ⃗⃗  ) ⟶ 0 , as ‖∆u⃗⃗ ⃗⃗  ‖
(L2(∂Ω))

3

2
⟶ 0 with є(∆u⃗⃗ ⃗⃗  ) = є1(∆u⃗⃗ ⃗⃗  ) + є2(∆u⃗⃗ ⃗⃗  ) 

Then from the FDe of G0 , and (35-36), once get: 

(G0
′ (u⃗ ), ∆u⃗⃗ ⃗⃗  ) = (z  +∝ u⃗  , ∆u⃗⃗ ⃗⃗  )

L2(∂Ω)
 . 

 Theorem 5.2: The (CCBOC) of (1-6) is: 

G0
′ (u⃗ ) = z +∝ u⃗ = 0 with y⃗ = y⃗ u⃗⃗  and z = z u⃗⃗  . 

Proof:If u⃗  is an optimal control of the problem, then 

G0(u⃗ ) = minw⃗⃗⃗ ∈W⃗⃗⃗⃗  G0( w⃗⃗⃗  ) , ∀ w⃗⃗⃗  ∈  (L2(∂Ω))
3
  

i.e., G0
′ (u⃗ ) = 0 ⟹ z = −∝ u⃗  ,  ∆u⃗⃗ ⃗⃗  = w⃗⃗⃗ − u⃗   

The necessary condition for optimality is: 

 (z  +∝ u⃗  , u⃗ ) ≤ (z  +∝ u⃗  , w⃗⃗⃗ ) , ∀ w⃗⃗⃗  ∈  (L2(∂Ω))
3
. 

 

6. Conclusions 

     The existence and uniqueness theorem for the SSV of the TLEPDEs is proved successfully 

using the GME when the CCBCVr is given. The proof of the existence CCBOCVr ruled by the 

considered TLEPDEs is demonstrated. The studding of the existence solution of the TAJEs 

related with the TLEPDEs is demonstrated. The FDe is derived. Finally the NCTh of optimality 

for the considered problem is demonstrated. 

 

References 

1. Grigorenko, N.L.; Grigorieva, Ѐ.V.; Roi, P.K.; Khailov, E.N. Optimal control problems for a   

mathematical model of the treatment of psoriasis. Computational mathimatics and modeling. 

2019, 30, 352-363, doi: 10.1007/s10598-019-09461-y. 

2. Kahina, L.; Spiteri, P.; Demim, F.; Mohamed, A.; Nemra, A.; Messine, F. Application     

    optimal control for a problem aircraft flight. Journal of engineering science and technology    

    review. 2018, 11, 156-164, doi: 10.25103/jestr.111.19. 



  

67 

 

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 34 (1) 2021 

 

3. Aderinto, Y.O.; Afolabi, A.O.; Issa, I.T. On optimal planning of electric power generation     

    systems. Punjab University. Journal of mathematics. 2017, 50, 89-95,doi:        

10.25103/jestr.111.19. 

4.  Kryazhimskii, A.V.; Taras'ev, A.M. Optimal control for proportional economic growth.    

     Pleiades publishing. Ltd. 2016, 293, S101-S119, doi: 10.1134/S0081543816050102. 

5.  Afshar, M.; Merrikh-Bayat, F.; Razvan, M.R. Stepwise solution for optimal control     

     problems. Çankaya university. Jornal of science and engineering. 2016, 13, 024-037, doi:  

6.  Mabonzo,V.D.; Ampini, D. Existence of optimal control for a nonlinear partial differential   

      equation of hyperbolic-type. Ejpam. 2019, 12, 1595-1601, doi:         

      10.29020/nybg.ejpam.v12i4.3577. 

7.   Kadhem, G.M. The continuous classical optimal control problem of partial differential   

      equations. M.Sc. Thesis. University of Mustansiriyah. 2015. 

8.   Al-Rawdanee, E.H.M. The continuous classical optimal control problem of a non-linear    

      partial differential equations of elliptic type. M.Sc. Thesis. University of Mustansiriyah.     

      2015. 

9.   Al-Hawasy, J. The continuous classical optimal control of a couple nonlinear hyperbolic    

      partial differential equations with equality and inequality constraints. Iraqi journal of  

      science. 2016, 57, 1528-1538, ISSN: 0067-2904. 

10. Kadhem, G.M. The continuous classical optimal control problem of partial differential  

      equations. M.Sc. Thesis. University of Mustansiriyah. 2015. 

11. Al-Hawasy, J.A.A.; Al-Qaisi, S.J.M. The solvability of the continuous classical boundary  

     optimal control of couple nonlinear elliptic partial differential equations with state  

     constraints. Al-Mustansiriyah journal of science. 2019,30,143-151,doi:  

     10.23851/mjs.v30il.464. 

12. Al-Hawasy, J.A.A.; Naeif, A.A.H. The continuous classical boundary optimal control of a  

      couple nonlinear parabolic partial differential equations. 1
st 

Scientific international  

      conference. College of science. Al-Nahrain University. 2017, Special Issus, 123-136, doi:  

      10.22401/ANJS.00.1.17. 

13.  Al-Hawasy, J.A. The continuous classical boundary optimal control of couple  

       nonlinear hyperbolic boundary value problem with equality and inequality constraints.   

       Open1 access. Baghdad science journal. 2019,16,1064-1074,doi: 10.21123/bsj.2019.16.4.     

14.  Al-Hawasy, J.; Jaber, M.A. The continuous classical optimal control governing by triple  

       parabolic boundary value problem. Ibn Al-Haitham for Pure and Appl. Sci. 2020, 33, 

       129-142.  

15.  Al-Hawasy, J.; Jasim, D.K. The continuous classical optimal control problems of a triple    

       elliptic partial differential equations. Ibn Al-Haitham for Pure and Appl. Sci. 2020, 33, 

       143-151.  

16.  Al-Hawasy, J.A.A. Solvability for continuous classical optimal control associated with  

      triple hyperbolic boundary value problem. Accepted in Ijpam, 2019. 

17. Al-Hawasy, J.; Jaber, M.A. The continuous classical boundary optimal control vector   

      governing by triple linear partial differential equations of parabolic type. Accepted in Ibn  

      Al-Haitham for pure and applied science. 2019. 

 

  


