

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

The second secon

New Games via soft-J-Semi-g-Separation axioms

R.J. Mohammad

R.B. Esmaeel

Department of Mathematics, College of Education for Pure Sciences, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

raf44456@gmail.com

ranamumosa@yahoo.com

Article history: Received 9 February 2020, Accepted 20 July 2020, Published in October 2020

Doi: 10.30526/33.4.2517

Abstract

In this article, the notions of soft closed sets are introduced by using soft ideal and soft semi-open sets, which are soft- \mathcal{I} -semi-g-closed sets "s \mathcal{I} sg-closed" where many of the properties of these sets are clarified. Some games by using soft- \mathcal{I} -semi, soft separation axioms: like $S\mathcal{G}(\mathcal{T}_0, \chi)$, $S\mathcal{G}(\mathcal{T}_0, \mathcal{I})$. Using many figures and proposition to study the relationships among these kinds of games with some examples are explained.

Keywords: Soft ideal, Soft- \mathcal{T}_i -space, Soft- \mathcal{I} -semi-g- \mathcal{T}_i -space, S $\mathcal{G}(\mathcal{T}_i, \chi)$ S $\mathcal{G}(\mathcal{T}_i, \mathcal{I})$. Where $i = \{0, 1, 2\}$.

1.Introduction

In 2011, Shaber [1] introduced soft topological spaces. Shaber have been introduced to study many topological properties by using soft set like derived sets, compactness, separation axioms and other properties. [2-4]. Also, Kandil used the soft ideal which is a family of soft sets that meet hereditary and finite additively property of χ to study the notion of soft logical function [5], which was the starting point for studying the properties of soft ideal topological spaces (χ , \mathcal{T} , \mathcal{H} , \mathcal{I}) and defined new types of near open soft sets and studied their properties as [6-8].

2.Preliminaries.

Definition 2.1. [9] Let $\chi \neq \emptyset$ and \mathcal{H} be a set of parameters. Such that is $\mathcal{P}(\chi)$ the power set of χ and $\mathcal{P} \subsetneq \mathcal{H}$. A pair (Γ, \mathcal{H}) (briefly $\Gamma_{\mathcal{H}}$) is a soft set over χ where, Γ is a

function given by $\Gamma : \mathcal{H} \to \mathcal{P}(\chi)$. So, $\Gamma_{\mathcal{H}} = \{ \Gamma(\hbar) : \hbar \in \mathcal{P} \subseteq \mathcal{H}, \Gamma : \mathcal{H} \to \mathcal{P}(\chi) \}$. The family of all soft sets (Is denoted by $S(\chi)_{\mathcal{H}}$).

Definition 2.2. [9] Let $(\Gamma, \mathcal{H}), (\mathcal{G}, \mathcal{H}) \in \S(\chi)_{\mathcal{H}}$. Then (Γ, \mathcal{H}) is a soft subset of $, (\mathcal{G}, \mathcal{H}),$ (briefly $(\Gamma, \mathcal{H}) \cong , (\mathcal{G}, \mathcal{H})$), if $\Gamma(\mathcal{A}) \cong \mathcal{G}(\mathcal{A})$, for all $\mathcal{A} \in \mathcal{H}$. Now (Γ, \mathcal{H}) is a soft subset of $, (\mathcal{G}, \mathcal{H})$ and $, (\mathcal{G}, \mathcal{H})$ is a soft super set of $(\Gamma, \mathcal{H}), (\Gamma, \mathcal{H}) \cong (\mathcal{G}, \mathcal{H})$.

Definition 2.3. [10] The complement of a soft set (Γ, \mathcal{H}) (Is denoted by $(\Gamma, \mathcal{H})'$) and $(\Gamma, \mathcal{H})' = (\Gamma', \mathcal{H})$ where $\Gamma': \mathcal{H} \to p(\chi)$ is a function such that $\Gamma'(\mathcal{H}) = \chi - \Gamma(\mathcal{H})$, for each $\mathcal{H} \in \mathcal{H}$ and Γ' is a soft complement of Γ .

Definition 2.4. [1] Let (Γ, \mathcal{H}) be a soft over χ and $x \in \chi$. Then $x \in (\Gamma, \mathcal{H})$ whenever, $x \in \Gamma(h)$ for each $h \in \mathcal{H}$.

Definition 2.5. [1] $(\Gamma, \mathcal{H}) \chi$ is a NULL soft set (briefly $\tilde{\emptyset}$ or $\emptyset_{\mathcal{H}}$) if for each $h \in \mathcal{H}$, $\Gamma(h) = \emptyset$ (null set).

Definition 2.6. [1] A soft set (Γ, \mathcal{H}) over χ is an absolute soft set (briefly $\tilde{\chi}$ or $\chi_{\mathcal{H}}$) If for each $h \in \mathcal{H}$, $\Gamma(h) = \chi$.

Definition 2. **7**. [1] Let \mathcal{T} be a collection of soft sets over χ with same \mathcal{H} , then $\mathcal{T} \in \S\S(\chi)_{\mathcal{H}}$ is a soft topology on χ if;

i. $\tilde{\chi}, \tilde{\emptyset} \in \mathcal{T}$ where, $\tilde{\emptyset}(\hbar) = \emptyset$ and $\tilde{\chi}(\hbar) = \chi$, for each $\hbar \in \mathcal{H}$,

ii. $\widetilde{\bigcup_{\alpha \in \Lambda}}$ $(\mathcal{O}_{\alpha}, \mathcal{H}) \in \mathcal{T}$ whenever, $(\mathcal{O}_{\alpha}, \mathcal{H}) \in \mathcal{T} \quad \forall \alpha \in \Lambda$,

iii. $((\Gamma, \mathcal{H}) \cap (\mathcal{G}, \mathcal{H})) \in \mathcal{T}$ for each $(\Gamma, \mathcal{H}), (\mathcal{G}, \mathcal{H}) \in \mathcal{T}$.

 $(\chi, \mathcal{T}, \mathcal{H})$ is a soft topological space if $(\mathcal{O}, \mathcal{H}) \in \mathcal{T}$ then $(\mathcal{O}, \mathcal{H})$ is an open soft set.

Definition 2.8. [11] Let $(\chi, \mathcal{T}, \mathcal{H})$ be a soft topological space. A soft set (Γ, \mathcal{H}) over χ is a soft closed set in χ , if its complement $(\Gamma, \mathcal{H})' \in \mathcal{T}$, the family of all soft closed sets (Is denoted by $\mathcal{F}C(\chi)_{\mathcal{H}}$).

Definition 2.9. [11] For any $(\chi, \mathcal{T}, \mathcal{H})$. Let $(\Gamma, \mathcal{H})' \in \tilde{\chi}$, then the soft closure of $(\Gamma, \mathcal{H})'$, (briefly cl (Γ, \mathcal{H})), (Is defined as cl $((\Gamma, \mathcal{H}))$) = $\cap \{ (\mathcal{G}, \mathcal{H}) : (\mathcal{G}, \mathcal{H}) \in \mathcal{SC}(\chi)_{\mathcal{H}}, (\Gamma, \mathcal{H}) \subseteq (\mathcal{G}, \mathcal{H}) \}$.

Definition 2.10. [11] For any $(\chi, \mathcal{T}, \mathcal{H})$. Let $(\Gamma, \mathcal{H}) \in SS(\chi) \mathcal{H}$, then the soft interior of (Γ, \mathcal{H}) , (briefly int (Γ, \mathcal{H})), (Is defined as int $((\Gamma, \mathcal{H}))) = \widetilde{U} \{ (\mathcal{G}, \mathcal{H}) : (\mathcal{G}, \mathcal{H}) \in \mathcal{T}, (\mathcal{G}, \mathcal{H}) \cong (\Gamma, \mathcal{H}) \}$.

Definition 2.11. [2] Two soft sets $(\mathcal{Z}, \mathcal{H})$, $(\mathcal{N}, \mathcal{H})$ in $\S\S(\chi)_{\mathcal{H}}$. Are said to be soft disjoint, if $(\mathcal{Z}, \mathcal{H}) \cap (\mathcal{N}, \mathcal{H}) = \widetilde{\emptyset}$ written $\mathcal{Z}(\hbar) \cap \mathcal{N}(\hbar) = \{\emptyset\}$, for each $\hbar \in \mathcal{H}$.

Definition 2.12. [2] Two soft point $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ are distinct, written $h_{\mathcal{M}} \neq h_{\mathcal{N}}$, if $\exists (\mathcal{M}, \mathcal{H})$ and $(\mathcal{N}, \mathcal{H})$ are two soft disjoint sets, such that $h_{\mathcal{M}} \in (\mathcal{M}, \mathcal{H})$ and $h \in (\mathcal{N}, \mathcal{H})$.

Definition 2.13. [5] Let \mathcal{I} be a non-null family of soft sets over χ with parameter \mathcal{H} , then $\mathcal{I} \subseteq SS(\chi) \mathcal{H}$ is a soft ideal whenever,

(1) If $(\Gamma, \mathcal{H}) \in \mathcal{I}$ and $(\mathcal{G}, \mathcal{H}) \in \mathcal{I}$ implies, $(\Gamma, \mathcal{H}) \in \mathcal{G}$. $(\mathcal{G}, \mathcal{H}) \in \mathcal{I}$.

(2) If $(\Gamma, \mathcal{H}) \in \mathcal{I}$ and $(\mathcal{G}, \mathcal{H}) \subseteq (\Gamma, \mathcal{H})$ implies $(\mathcal{G}, \mathcal{H}) \in \mathcal{I}$.

Any $(\chi, \mathcal{T}, \mathcal{H})$ with a soft ideal \mathcal{I} is a soft ideal topological space (briefly $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$).

Definition 2.14. [5] Any $(\chi, \mathcal{T}, \mathcal{H})$ with a soft ideal \mathcal{I} is namelya soft ideal topological space (briefly $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$).

Definition 2.15. [12] For any $(\chi, \mathcal{T}, \mathcal{H})$, then (Γ, \mathcal{H}) is a soft semi-open set (briefly \$\$, open set) if $(\Gamma, \mathcal{H}) \subseteq \operatorname{cl}(\operatorname{int}(\Gamma, \mathcal{H}))$. A complement of a soft semi-open set is a soft semiclosed (briefly *ss*-closed *et*). The collection of each soft semi -open sets in $(\chi, \mathcal{T}, \mathcal{H})$ (briefly \$\$, $\mathcal{O}(\chi)$). The collection of each soft semi-closed sets (briefly \$\$, $\mathcal{O}(\chi) \mathcal{H}$).

Definition 2.16. [2] A soft topological space $(\chi, \mathcal{T}, \mathcal{H})$ over χ is a soft- \mathcal{T}_0 -space if for each $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} \neq h_{\mathcal{N}}$, there exists a soft open set (ω, \mathcal{H}) such that $h_{\mathcal{M}} \in (\omega, \mathcal{H})$ and $h_{\mathcal{N}} \notin (\omega, \mathcal{H})$ or $h_{\mathcal{M}} \notin (\omega, \mathcal{H})$ and $h_{\mathcal{N}} \in (\omega, \mathcal{H})$.

Theorem 2.17. [2] A soft topological space $(\chi, \mathcal{T}, \mathcal{H})$ over χ is a soft- \mathcal{T}_0 -space if and only if for each $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} \neq h_{\mathcal{N}}$, there exists a soft closed set $(\mathcal{V}, \mathcal{H})$ such that $h_{\mathcal{M}} \in (\mathcal{V}, \mathcal{H})$, $h_{\mathcal{N}} \in (\mathcal{V}, \mathcal{H})$, $h_{\mathcal{N}} \in (\mathcal{V}, \mathcal{H})$.

Definition 2.18. [2] A soft topological space $(\chi, \mathcal{T}, \mathcal{H})$ over χ is a soft- \mathcal{T}_1 -space if for each $h, h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} \neq h_{\mathcal{N}} \exists (\mathcal{P}, \mathcal{H}), (\omega, \mathcal{H}) \in \mathcal{T}$ whenever, $h_{\mathcal{M}} \in (\mathcal{P}, \mathcal{H}), h_{\mathcal{N}} \notin (\mathcal{P}, \mathcal{H})$ and $h_{\mathcal{M}} \notin (\omega, \mathcal{H}), h_{\mathcal{N}} \in (\omega, \mathcal{H})$.

Theorem 2.19. [2] A space $(\chi, \mathcal{T}, \mathcal{H})$ is a soft- \mathcal{T}_1 -space if and only if for all $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} \neq h_{\mathcal{N}}$. $\exists (\mathcal{P}, \mathcal{H}), (\mathcal{V}, \mathcal{H})$ are two soft closed sets whenever, $h_{\mathcal{M}} \in (\mathcal{P}, \mathcal{H})$, $h_{\mathcal{N}} \notin (\mathcal{P}, \mathcal{H})$ and $h_{\mathcal{M}} \notin (\mathcal{V}, \mathcal{H}), h_{\mathcal{N}} \in (\mathcal{V}, \mathcal{H})$.

Definition 2.20. [2] Let $(\chi, \mathcal{T}, \mathcal{H})$ be a soft topological space over χ is said to be soft- \mathcal{T}_2 space if, for each \hbar , $\hbar_N \in \tilde{\chi}$ such that $\hbar_M \neq \hbar_N$. $\exists (\mathcal{P}, \mathcal{H}), (\omega, \mathcal{H}) \in \mathcal{T}$ whenever, $\hbar_M \in (\mathcal{P}, \mathcal{H}) \hbar_M, \hbar_N \in (\omega, \mathcal{H})$ and $(\mathcal{P}, \mathcal{H}) \cap (\omega, \mathcal{H}) = \{\tilde{\emptyset}\}$.

Proposition 2.21. [2] For all soft- \mathcal{T}_{i+1} -space is a soft- \mathcal{T}_i -space and $i \in \{0,1,2\}$ **Proof**. Obvious.

Note that for all soft- \mathcal{T}_1 -space is a soft- \mathcal{T}_0 -space and for all a soft- \mathcal{T}_2 -space is a soft- \mathcal{T}_1 -space. The converse is not true hold in general.

3. On soft ideal semi-g-closed set.

Definition 3.1: In soft ideal topological space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$, let $(\Gamma, \mathcal{H}) \in \S (\chi)$, then (Γ, \mathcal{H}) is a soft- \mathcal{I} -semi-g-closed set (briefly s \mathcal{I} sg-closed). If $cl(\Gamma, \mathcal{H}) - (\mathcal{O}, \mathcal{H}) \in \mathcal{I}$ whenever, $(\Gamma, \mathcal{H}) - (\mathcal{O}, \mathcal{H}) \in \mathcal{I}$ and $(\mathcal{O}, \mathcal{H}) \in \S (\chi)$. $\tilde{\chi} - (\Gamma, \mathcal{H})$ is a soft- \mathcal{I} -semi-g-open set (briefly s \mathcal{I} sg-open set). The family of each s \mathcal{I} sg- closed sets (briefly s \mathcal{I} sg- (χ)). The family of each s \mathcal{I} sg-open set (briefly s \mathcal{I} sg-open soft sets (briefly s \mathcal{I} sg- (χ)).

Example 3.2: For any space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$, where $\chi = \{1, 2\}$, $\mathcal{H} = \{h_1, h_2\}$, $\mathcal{T} = \{\tilde{\emptyset}, \tilde{X}, \Gamma\}$, $\mathcal{I} = \{\tilde{\emptyset}, \mathcal{K}\}$ such that $(\Gamma, \mathcal{H}) = \{(h_1, \{2\}), (h_2, \chi)\}$ and $(\mathcal{K}, \mathcal{H}) = \{(h_1, \{\emptyset\}), (h_2, \{1\})\}$ then \S ($\chi) = \mathcal{T}$, \$ \$ \$ \$, $(\mathcal{P}, \mathcal{H}), (\mathfrak{G}, \mathcal{H}), (\mathfrak{G}, \mathcal{H}), (\mathfrak{G}, \mathcal{H})\}$ such that $(\mathcal{P}, \mathcal{H}) = \{(h_1, \{1\}), (h_2, \{1\})\}, (\mathfrak{G}, \mathcal{H}), (\mathfrak{G}, \mathcal{H})\}$ such that $(\mathcal{P}, \mathcal{H}) = \{(h_1, \{1\}), (h_2, \{1\})\}, (\mathfrak{G}, \mathcal{H}) = \{(h_1, \chi), (h_2, \{2\})\}, (\mathcal{E}, \mathcal{H}) = \{(h_1, \{1\}), (h_2, \{\emptyset\})\}, (\mathcal{N}, \mathcal{H}) = \{(h_1, \{1\}), (h_2, \{2\})\}, (\mathcal{E}, \mathcal{H}) = \{(h_1, \{1\}), (h_2, \{\emptyset\})\}, (\mathcal{N}, \mathcal{H}) = \{(h_1, \{1\}), (h_2, \{2\})\}$ and $(\mathcal{G}, \mathcal{H}) = \{(h_1, \{1\}), (h_2, \chi)\}.$

Remark 3.3: For any $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ then

- i. Each closed soft set is a sJsg-closed.
- **ii.** Each open soft set is a sJsg-open.

Proof (i) Let $(\mathcal{P}, \mathcal{H})$ be any closed soft set in $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ and $(\mathcal{O}, \mathcal{H})$ be a soft semi-open set such that $(\mathcal{P}, \mathcal{H}) - (\mathcal{O}, \mathcal{H}) \in \mathcal{I}$, but $cl(\mathcal{P}, \mathcal{H}) = (\mathcal{P}, \mathcal{H})$, since $(\mathcal{P}, \mathcal{H})$ is a closed soft set so, $cl(\mathcal{P}, \mathcal{H})$ - $(\mathcal{O}, \mathcal{H}) = (\mathcal{P}, \mathcal{H}) - (\mathcal{O}, \mathcal{H}) \in \mathcal{I}$. This implies $(\mathcal{P}, \mathcal{H})$ is a soft- \mathcal{I} -semi-g-closed soft set.

(ii)Let $(\mathcal{O}, \mathcal{H})$ be any open soft set in $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ then $\tilde{\chi} - (\mathcal{O}, \mathcal{H})$ is a closed soft set. By (i) $(\tilde{\chi} - (\mathcal{O}, \mathcal{H}))$ is a sJsg-closed set thus $(\mathcal{O}, \mathcal{H})$ is a sJsg-open soft set.

The converse of Remark 3.3 is not hold. See Example 3.2

i. Let $(\mathcal{P}, \mathcal{H}) = \{(\mathcal{A}_1, \{1\}), (\mathcal{A}_2, \{1\})\}$ is a sJsg-closed set, but $(\mathcal{P}, \mathcal{H})$ is not closed soft set. ii. Let $(\mathcal{P}, \mathcal{H}) = \{(\mathcal{A}_1, \{2\}), (\mathcal{A}_2, \{2\})\}$ is a sJsg-open set, but $(\mathcal{P}, \mathcal{H}) \notin \mathcal{T}$.

4. Separation Axioms with soft-J- Semi-g-open Sets

Definition 4.1. A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a soft- \mathcal{I} -semi-g- \mathcal{T}_0 -space (briefly $s\mathcal{I}sg$ - \mathcal{T}_0 -space), if for each $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ and $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$, $\exists (\mathfrak{O}, \mathcal{H}) \in s\mathcal{I}sg$ - $o(\chi)_{\mathcal{H}}$ whenever, $h_{\mathcal{M}} \in (\mathfrak{O}, \mathcal{H})$, $h_{\mathcal{N}} \notin (\mathfrak{O}, \mathcal{H})$ or $h_{\mathcal{M}} \notin (\mathfrak{O}, \mathcal{H})$, $h_{\mathcal{N}} \in (\mathfrak{O}, \mathcal{H})$.

Example 4.2. In $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ Let $\chi = \{1, 2, 3\}, \mathcal{H} = \{h_1, h_2\}, \mathcal{T} = \{\tilde{\emptyset}, \tilde{\chi}, (\mathcal{P}, \mathcal{H}), (\omega, \mathcal{H})\}$ where, $(\mathcal{P}, \mathcal{H}) = \{(h_1, \{1\}), (h_2, \{1\})\}, ((\omega, \mathcal{H})) = \{(h_1, \{1, 2\}), (h_2, \{1, 2\}) \text{ and } \mathcal{I} = \{\tilde{\emptyset}\}.$ Then $\S O(\chi) \mathcal{H} = \{ (\Gamma, \mathcal{H}); 1 \in (\Gamma, \mathcal{H}) \}$. So, $s \mathcal{I} s g - c(\chi) \mathcal{H} = \{ \tilde{\emptyset}, \tilde{\chi}, (\mathcal{P}', \mathcal{H}), ((\omega', \mathcal{H})) \}$ and $s \mathcal{I} s g - o(\chi) \mathcal{H} = \mathcal{T}$, hence $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $s \mathcal{I} s g - \mathcal{I}_0$ -space. Since $\forall h_{\mathcal{M}} \neq h, \exists (\mathfrak{O}, \mathcal{H}) \in s \mathcal{I} s g - o(\chi) \mathcal{H}$ whenever, $h_{\mathcal{M}} \in (\mathfrak{O}, \mathcal{H}), h_{\mathcal{N}} \notin (\mathfrak{O}, \mathcal{H})$ or $h_{\mathcal{M}} \notin (\mathfrak{O}, \mathcal{H}), h_{\mathcal{N}} \in (\mathfrak{O}, \mathcal{H}).$

Proposition 4.3. If $(\chi, \mathcal{T}, \mathcal{H})$ is a soft- \mathcal{T}_0 -space then $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $s\mathcal{I}sg-\mathcal{T}_0$ -space. **Proof :** Let $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ since $(\chi, \mathcal{T}, \mathcal{H})$ is a soft- \mathcal{T}_0 -space, then $\exists (\mathfrak{O}, \mathcal{H}) \in \mathcal{T}$ whenever, $h_{\mathcal{M}} \in (\mathfrak{O}, \mathcal{H})$, $h_{\mathcal{N}} \notin (\mathfrak{O}, \mathcal{H})$ or $h_{\mathcal{M}} \notin (\mathfrak{O}, \mathcal{H})$, $h_{\mathcal{N}} \in (\mathfrak{O}, \mathcal{H})$. By Remark 2.3, $(\mathfrak{O}, \mathcal{H})$ is a $s\mathcal{I}sg$ -open set such that $h_{\mathcal{M}} \in (\mathfrak{O}, \mathcal{H})$ and $h_{\mathcal{N}} \notin (\mathfrak{O}, \mathcal{H})$ or

 $h_{\mathcal{M}} \notin (\mathfrak{O}, \mathcal{H})$ and $h_{\mathcal{N}} \in (\mathfrak{O}, \mathcal{H})$.

Theorem 4.4 $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $s\mathcal{I}sg\mathcal{T}_0$ -space if and only if for each $\hbar \mathfrak{M} \neq \hbar \mathfrak{N}$ there is a $s\mathcal{I}sg$ -closed set $(\mathcal{V}, \mathcal{H})$ such that $\hbar \mathfrak{M} \in (\mathcal{V}, \mathcal{H}), \ \hbar \mathfrak{N} \notin (\mathcal{V}, \mathcal{H})$ or $\hbar \mathfrak{M} \notin (\mathcal{V}, \mathcal{H}), \ \hbar \mathfrak{K} \in (\mathcal{V}, \mathcal{H})$.

Proof :(\Rightarrow) Let $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ since χ is a $sJsg-T_0$ -space, then $\exists (\mathfrak{O}, \mathcal{H}) \in sJsg-\mathfrak{O}(\chi)_{\mathcal{H}}$ whenever, $h_{\mathcal{M}} \in (\mathfrak{O}, \mathcal{H})$ and $h_{\mathcal{N}} \notin ((\mathfrak{O}, \mathcal{H}) \text{ or } h_{\mathcal{M}} \notin \mathfrak{K})$

 $(\mathfrak{O},\mathcal{H})$ and $h_{\mathcal{N}} \in (\mathfrak{O},\mathcal{H})$, then $\exists (V,\mathcal{H}) \in sJsg\text{-}c(\chi)_{\mathcal{H}}$ whenever, $h_{\mathcal{M}} \in (V,\mathcal{H})$ and $h_{\mathcal{N}} \notin (V,\mathcal{H})$ or $h_{\mathcal{M}} \notin (V,\mathcal{H}), h_{\mathcal{N}} \in (\mathcal{O},\mathcal{H})$ where, $(\tilde{\chi} - (\mathcal{O},\mathcal{H})) = (V,\mathcal{H})$.

(\leftarrow) Let h, $h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ and there is a sJsg-closed set (V, \mathcal{H}) such that $h_{\mathcal{M}} \in (V, \mathcal{H})$, $h_{\mathcal{N}} \notin (V, \mathcal{H})$ or $h_{\mathcal{M}} \notin (V, \mathcal{H})$, $h_{\mathcal{N}} \in (\mathfrak{O}, \mathcal{H})$. Then there is sJsg-open set $(\tilde{\chi} - (V, \mathcal{H})) = (\mathfrak{O}, \mathcal{H})$ such that $h_{\mathcal{M}} \in (\mathfrak{O}, \mathcal{H})$, $h_{\mathcal{N}} \notin (\mathfrak{O}, \mathcal{H})$ or $h_{\mathcal{M}} \notin (\mathfrak{O}, \mathcal{H})$, $h_{\mathcal{N}} \notin (\mathfrak{O}, \mathcal{H})$.

Definition 4.5. $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a soft- \mathcal{I} -semi-g- \mathcal{T}_1 -space (briefly $s\mathcal{I}sg$ - \mathcal{T}_1 -space), If for each $\hbar \mathfrak{M}$, $\hbar \mathfrak{N} \in \tilde{\chi}$ and $\hbar \mathfrak{M} \neq \hbar \mathfrak{N}$. Then there are $s\mathcal{I}sg$ -open sets $(\mathcal{O}_1, \mathcal{H}), (\mathcal{O}_2, \mathcal{H})$ whenever, $\hbar \mathfrak{M} \in ((\mathcal{O}_1, \mathcal{H}) - (\mathcal{O}_2, \mathcal{H}))$ and $\hbar \mathfrak{N} \in ((\mathcal{O}_2, \mathcal{H}) - (\mathcal{O}_1, \mathcal{H}))$.

Example 4.6. A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ when $\chi = \mathcal{H} = \mathbb{N}$ the set of all natural number $\mathcal{T} = \mathcal{T}_{Scof} = \{ \Gamma_{\mathcal{A}} : \Gamma'(\boldsymbol{h}) \text{ is finite set } \forall \boldsymbol{h} \} \widetilde{U} \{ \widetilde{\boldsymbol{\phi}} \}$ and $\mathcal{I} = \{ \widetilde{\boldsymbol{\phi}} \}$. So, $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $s\mathcal{I}sg\mathcal{T}_{1}$ -space. If for each $h, h_{\mathcal{N}} \in \widetilde{\chi}$ and $h_{\mathcal{M}} \neq h_{\mathcal{N}}$. Then there are $s\mathcal{I}sg$ -open sets $(\widetilde{\chi} - \mathcal{U}), (\widetilde{\chi} - \mathcal{V})$ such that $\mathcal{U} \subseteq h_{\mathcal{M}}, \mathcal{V} \subseteq h_{\mathcal{N}}$ and \mathcal{U}, \mathcal{V} are two finite sets whenever, $h_{\mathcal{M}} \in (\widetilde{\chi} - \mathcal{V}), h_{\mathcal{N}} \notin (\widetilde{\chi} - \mathcal{V})$ and $h_{\mathcal{M}} \notin (\widetilde{\chi} - \mathcal{U}), h_{\mathcal{N}} \in (\widetilde{\chi} - \mathcal{U})$ and $(\widetilde{\chi} - \mathcal{V}) \cap (\widetilde{\chi} - \mathcal{U}) \neq \{ \phi \}$.

Proposition 4.7. If $(\chi, \mathcal{T}, \mathcal{H})$ is a soft- \mathcal{T}_1 -space then $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a soft- \mathcal{I} -semi-g- \mathcal{T}_1 -space.

Proof: Let $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ since $(\chi, \mathcal{T}, \mathcal{H})$ is a soft- \mathcal{T}_1 -space, then \exists $(\mathcal{O}_1, \mathcal{H}), (\mathcal{O}_2, \mathcal{H}) \in \mathcal{T}$ such that $h_{\mathcal{M}} \in ((\mathcal{O}_1, \mathcal{H}) - (\mathcal{O}_2, \mathcal{H}))$ and $h_{\mathcal{N}} \in ((\mathcal{O}_2, \mathcal{H}) - (\mathcal{O}_1, \mathcal{H}))$. By Remark 3.3, $(\mathcal{O}_1, \mathcal{H})$ and $(\mathcal{O}_2, \mathcal{H})$ are $s\mathcal{I}sg$ -open sets, and the proof is over.

Proposition 4.8. If $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a *sJsg-T*₁-space then it is a *sJsg-T*₀-space.

Proof: Let $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ since $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $sJsg-\mathcal{T}_1$ -space, then $\exists (\mathcal{O}_1, \mathcal{H}), (\mathcal{O}_2, \mathcal{H}) \in sJsg-o(\chi)_{\mathcal{H}}$ such that, $h_{\mathcal{M}} \in ((\mathcal{O}_1, \mathcal{H}) - (\mathcal{O}_2, \mathcal{H}))$ and $h_{\mathcal{N}} \in ((\mathcal{O}_2, \mathcal{H}) - (\mathcal{O}_1, \mathcal{H}))$. Then $\exists (\mathcal{O}, \mathcal{H}) \in sJsg-o(\chi)_{\mathcal{H}}$ -open set whenever, $h_{\mathcal{M}} \in (\mathcal{O}, \mathcal{H})$, $h_{\mathcal{N}} \notin (\mathcal{O}, \mathcal{H})$ or $h_{\mathcal{M}} \notin (\mathcal{O}, \mathcal{H}), h_{\mathcal{N}} \in (\mathcal{O}, \mathcal{H})$.

The conclusions in proposition 4.8, is not reversible by example 4.2. $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $sJsg-\mathcal{T}_0$ -space, but is not $sJsg-\mathcal{T}_1$ -space. Since $\exists h_{\mathcal{M}} \neq h_{\mathcal{N}}$; $h_{\mathcal{M}} = \{1,2\}$ and $h_{\mathcal{N}} = \{3\}$ there is no $(\mathcal{U},\mathcal{H})$ and $(\mathcal{V},\mathcal{H})$ such that $h_{\mathcal{M}} \in (\mathcal{U},\mathcal{H})$, $h_{\mathcal{N}} \notin (\mathcal{U},\mathcal{H})$ and $h_{\mathcal{N}} \in (\mathcal{V},\mathcal{H})$, $h_{\mathcal{M}} \notin (\mathcal{V},\mathcal{H})$.

Theorem 4.9. A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $s\mathcal{I}sg\mathcal{T}_1$ -space if and only if for each $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ and $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ there are two $s\mathcal{I}sg$ -closed sets $(\mathcal{V}_1, \mathcal{H})$, $(\mathcal{V}_2, \mathcal{H})$ such that $h_{\mathcal{M}} \in ((\mathcal{V}_1, \mathcal{H}) \cap (\mathcal{V}_2', \mathcal{H}))$ and $h_{\mathcal{N}} \in ((\mathcal{V}_2, \mathcal{H}) \cap (\mathcal{V}_1', \mathcal{H}))$.

Proof:

(⇒) Let \hbar , $\hbar N \in \tilde{\chi}$ such that $\hbar M \neq \hbar N$ since $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a soft- \mathcal{T}_1 -space, then \exists ($\mathcal{O}_1, \mathcal{H}$), ($\mathcal{O}_2, \mathcal{H}$) $\in s\mathcal{I}sg$ - $o(\chi)\mathcal{H}$ whenever, $\hbar M \in ((\mathcal{O}_1, \mathcal{H}) - (\mathcal{O}_2, \mathcal{H}))$ and $\hbar N \in ((\mathcal{O}_2, \mathcal{H}) - (\mathcal{O}_1, \mathcal{H}))$. Then there is a $s\mathcal{I}sg$ -closed sets ($\mathcal{V}_1, \mathcal{H}$), ($\mathcal{V}_2, \mathcal{H}$) whenever, $\hbar M \in ((\mathcal{V}_1, \mathcal{H}) - (\mathcal{V}_2, \mathcal{H}))$ and $\hbar N \in ((\mathcal{V}_2, \mathcal{H}) - (\mathcal{V}_1, \mathcal{H}))$ where, ($\tilde{\chi} - (\mathcal{O}_2, \mathcal{H})$) = ($\mathcal{V}_2, \mathcal{H}$) and ($\tilde{\chi} - (\mathcal{O}_1, \mathcal{H})$) = $(\mathcal{V}_1, \mathcal{H})$. Then there are two $s\mathcal{I}sg$ -closed sets $(\mathcal{V}_1, \mathcal{H})$, $(\mathcal{V}_2, \mathcal{H})$ such that $\hbar \mathfrak{M} \in ((\mathcal{V}_1, \mathcal{H}) \cap (\mathcal{V}_2', \mathcal{H}))$ and $\hbar \mathfrak{N} \in ((\mathcal{V}_2, \mathcal{H}) \cap (\mathcal{V}_1', \mathcal{H}))$.

 $(\Leftarrow) \text{ Let } \hbar \mathfrak{M} , \hbar \mathfrak{N} \widetilde{\in} \widetilde{\chi} \text{ such that } \hbar \mathfrak{M} \neq \hbar \mathfrak{N} \text{ and there are two } s \mathcal{I} s g \text{-closed sets } (\mathcal{V}_1, \mathcal{H}) , \\ (\mathcal{V}_2, \mathcal{H}) \text{ such that } \hbar \mathfrak{M} \widetilde{\in} ((\mathcal{V}_1, \mathcal{H}) \cap (\mathcal{V}_2', \mathcal{H})) \text{ and } \hbar \mathfrak{N} \widetilde{\in} ((\mathcal{V}_2, \mathcal{H}) \cap (\mathcal{V}_1', \mathcal{H})) \text{ .Then there are } s \mathcal{I} s g \text{-open sets } (\mathcal{O}_1, \mathcal{H}) , (\mathcal{O}_2, \mathcal{H}) \text{ whenever, } \hbar \mathfrak{M} \widetilde{\in} ((\mathcal{O}_1, \mathcal{H}) - (\mathcal{O}_2, \mathcal{H})) \text{ and } \hbar \mathfrak{N} \\ \widetilde{\in} ((\mathcal{O}_2, \mathcal{H}) - (\mathcal{O}_1, \mathcal{H})) \text{ where, } (\widetilde{\chi} - (\mathcal{V}_2, \mathcal{H})) = (\mathcal{O}_2, \mathcal{H}) \text{ and } (\widetilde{\chi} - (\mathcal{V}_1, \mathcal{H})) = (\mathcal{O}_1, \mathcal{H}).$

Definition 4.10. $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a soft- \mathcal{I} -semi-g- \mathcal{T}_2 -space (briefly $s\mathcal{I}sg$ - \mathcal{T}_2 -space). If for any $\hbar \mathfrak{M} \neq \hbar \mathfrak{N}$ there are $s\mathcal{I}sg$ -open sets $(\mathfrak{D}_1, \mathcal{H})$, $(\mathfrak{D}_2, \mathcal{H})$ such that $\hbar \mathfrak{M} \in (\mathfrak{D}_1, \mathcal{H})$, $\hbar \mathfrak{N} \in (\mathfrak{D}_2, \mathcal{H})$ and $(\mathfrak{D}_1, \mathcal{H}) \cap (\mathfrak{D}_2, \mathcal{H}) = \{\widetilde{\emptyset}\}.$

Example 4.11. A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$; $\chi = \{1, 2, 3\}$, $\mathcal{T} = \{\tilde{\emptyset}, \tilde{\chi}\}$ and $\mathcal{I} = \S\S(\chi)\mathcal{H}$. Then $\$SO(\chi)\mathcal{H} = \mathcal{T}$. So, $\$Jsg-c(\chi)\mathcal{H} = \$Jsg-o(\chi)\mathcal{H} = \$S(\chi)\mathcal{H}$. Then $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $\$Jsg-\mathcal{T}_2$ -space.

Remark 4.12. If $(\chi, \mathcal{T}, \mathcal{H})$ is a soft- \mathcal{T}_2 -space, then $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $s\mathcal{I}sg-\mathcal{T}_2$ -space. **Proof :** Let $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ whenever, $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ since $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a soft- \mathcal{T}_2 -space, then $\exists (\mathfrak{O}_1, \mathcal{H}), (\mathfrak{O}_2, \mathcal{H}) \in \mathcal{T}$ such that $h_{\mathcal{M}} \in (\mathfrak{O}_1, \mathcal{H}), h_{\mathcal{N}} \in (\mathfrak{O}_2, \mathcal{H})$ and $(\mathfrak{O}_1, \mathcal{H}) \cap (\mathfrak{O}_2, \mathcal{H}) = \{\tilde{\emptyset}\}$, by remark 3.3, there are $s\mathcal{I}sg$ -open sets $(\mathfrak{O}_1, \mathcal{H}), (\mathcal{O}_2, \mathcal{H})$, such that $h_{\mathcal{M}} \in (\mathfrak{O}_1, \mathcal{H}), h_{\mathcal{N}}$ $\in (\mathfrak{O}_2, \mathcal{H})$ and $(\mathfrak{O}_1, \mathcal{H}) \cap (\mathfrak{O}_2, \mathcal{H}) = \{\tilde{\emptyset}\}$.

Remark 4.13. If $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $s\mathcal{I}sg\mathcal{T}_2$ -space then it is a $s\mathcal{I}sg\mathcal{T}_1$ -space. **Proof :** Let $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ whenever, $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ since $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $s\mathcal{I}sg\mathcal{T}_2$ -space ,then there are $s\mathcal{I}sg$ -open sets $(\mathcal{O}_1, \mathcal{H})$, $(\mathcal{O}_2, \mathcal{H})$ such that $h_{\mathcal{M}} \in (\mathcal{O}_1, \mathcal{H})$, $h_{\mathcal{N}} \in (\mathcal{O}_2, \mathcal{H})$ and $(\mathcal{O}_1, \mathcal{H}) \cap (\mathcal{O}_2, \mathcal{H}) = \{ \widetilde{\emptyset} \}$. Implies, $h_{\mathcal{M}} \in ((\mathcal{O}_1, \mathcal{H}) - (\mathcal{O}_2, \mathcal{H}))$ and $h_{\mathcal{N}} \in ((\mathcal{O}_2, \mathcal{H}) - (\mathcal{O}_1, \mathcal{H}))$. The conclusions in Remark 4.13, is not reversible by example 3.6.

A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $s\mathcal{I}sg\mathcal{T}_1$ -space. If for each \hbar , $\hbar N \in \tilde{\chi}$ and $\hbar M \neq \hbar N$. Then there are $s\mathcal{I}sg$ -open sets $(\tilde{\chi} - \mathcal{U})$, $(\tilde{\chi} - \mathcal{V})$ whenever, $\hbar M \in (\tilde{\chi} - \mathcal{V})$, $\hbar N \notin (\tilde{\chi} - \mathcal{V})$ and $\hbar M \notin (\tilde{\chi} - \mathcal{U})$, $\hbar N \in (\tilde{\chi} - \mathcal{U})$ and $\hbar M \notin (\tilde{\chi} - \mathcal{U})$, $\hbar N \in (\tilde{\chi} - \mathcal{U})$ and $(\tilde{\chi} - \mathcal{V}) \cap (\tilde{\chi} - \mathcal{U}) \neq \{\emptyset\}$. Which is not $s\mathcal{I}sg\mathcal{T}_2$ -space. Since for any two $s\mathcal{I}sg$ -open sets $(\mathcal{O}_1,\mathcal{H})$, $(\mathcal{O}_2,\mathcal{H})$ such that $\hbar M \in (\mathcal{O}_1,\mathcal{H})$, $\hbar N \in (\mathcal{O}_2,\mathcal{H})$ then $(\mathcal{O}_1,\mathcal{H}) \cap (\mathcal{O}_2,\mathcal{H}) \neq \tilde{\emptyset}$. We have previously noted that χ is a $s\mathcal{I}sg\mathcal{T}_1$ -space whenever it is a \mathcal{T}_{i+1} -space ($\forall i = 0, 1 \text{ and } 2$).

The opposite is not generally achieved by example below.

Example 4.14. $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $s\mathcal{I}sg\mathcal{T}_i$ -space $(i \in \{0, 1, 2\})$, where, $\chi = \{1, 2, 3\}, \mathcal{T} = \{\widetilde{\emptyset}, \widetilde{\chi}\}$ and $\mathcal{I} = \S\S(\chi)\mathcal{H}$. since, $s\mathcal{I}sg\mathcal{C}(\chi)\mathcal{H} = s\mathcal{I}sg\mathcal{O}(\chi)\mathcal{H} = \$S(\chi)\mathcal{H}$. But the space $(\chi, \mathcal{T}, \mathcal{H})$ is not soft- \mathcal{T}_i -space $(i \in \{0, 1, 2\})$.

The following chart shows the relationships among the various types of notions of our previously mentioned.

5. Games in soft ideal topological spaces

In this section, a new game by linking them with soft separation axioms via open (respectively, sJsg-open) sets was inserted.

Definition 5.1. For a soft ideal space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$, determane a game $SG(\mathcal{T}_0, \chi)$ (respectively $SG(\mathcal{T}_0, \mathcal{I})$) as follows:

Player I and Player II are play an inning for each positive integer numbers in the r-th inning:

The first step, Player I Choose $(\hbar_{\mathcal{M}})_r \neq (\hbar_{\mathcal{N}})_r$ where, $(\hbar_{\mathcal{M}})_r$, $(\hbar_{\mathcal{N}})_r \in \tilde{\chi}$.

In the second step, Player II Chooses \mathcal{B}_r a soft open (respectively sJsg-open set) containing only one of the two elements $(\mathcal{h}_{\mathcal{M}})_r$, $(\mathcal{h}_{\mathcal{N}})_r$.

Then Player II wins in the soft game $SG(\mathcal{T}_0, \chi)$ (respectively $SG(\mathcal{T}_0, J)$ if $\mathcal{B} = \{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3, \dots, \mathcal{B}_r, \dots\}$ be a collection of a soft open set (respectively, sJsg-open) set in χ such that \forall , $(\mathcal{M}_M)_r$, $(\mathcal{M}_N)_r \in \chi$, $\exists \mathcal{B}_r \in \mathcal{B}$ containing only one of two element $(\mathcal{M}_M)_r$, $(\mathcal{M}_N)_r$. Otherwise, Player I wins.

Example 5.2. Let $\S G(\mathcal{T}_0, \chi)$ (respectively $\S G(\mathcal{T}_0, \mathcal{I})$) be a soft game where, $\chi = \{1, 2, 3\}$, $\mathcal{H} = \{ \hbar_1, \hbar_2 \}, \mathcal{T} = \{ \widetilde{\emptyset}, \widetilde{\chi}, (\mathcal{P}, \mathcal{H}), (\mathfrak{G}, \mathcal{H}), (\mathcal{Z}, \mathcal{H}) \}$ where, $(\mathcal{P}, \mathcal{H}) = \{ (\hbar_1, \{1\}), (\hbar_2, \{1\}) \}$, $(\mathfrak{G}, \mathcal{H}) = \{ (\hbar_1, \{3\}), (\hbar_2, \{3\}) \}, (\mathcal{Z}, \mathcal{H}) = \{ (\hbar_1, \{1, 3\}), (\hbar_2, \{1, 3\}) \}$ and $\mathcal{I} = \{ \widetilde{\emptyset} \}$. Then $\$ S = \{ \{1\} \in (\Gamma, \mathcal{H}) \text{ and } \{3\} \notin \Gamma (\hbar) \forall \hbar, \{3\} \in (\Gamma, \mathcal{H}) \text{ and } \{1\} \notin \Gamma (\hbar) \forall \hbar, \{1, 3\} \in (\Gamma, \mathcal{H}) \} \cup \{ \widetilde{\emptyset} \}$, then $\$ \mathcal{I} \operatorname{sgc}(\chi) \mathcal{H} = \operatorname{SC}(\chi) \mathcal{H}$ and $\$ \mathcal{I} \operatorname{sgo}(\chi) \mathcal{H} = \mathcal{T}$.

Then in the first inning:

The first step, Player *I* Choose $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ where, $h, h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} = \{1\}$ and $h_{\mathcal{N}} = \{2\}$.

In the second step, Player II Choose $(\mathcal{P}, \mathcal{H}) = \{(\hbar_1, \{1\}), (\hbar_2, \{1\})\}$ a soft open (respectively, sJsg-open set)).

In the second inning:

The first step, Player *I* Chooses $h \mathfrak{M} \neq h \mathfrak{o}$ where, $h \mathfrak{M}$, $h \mathfrak{o} \in \tilde{\chi}$ such that $h \mathfrak{M} = \{1\}$ and $h \mathfrak{o} = \{3\}$.

In the second step, Player II Choose ((a), H) = {(\hbar_1 ,{3}),(\hbar_2 ,{3})} which is a soft open (Respectively, sJsg-open set).

In the third inning: The first step, Player I choose $\hbar N \neq \hbar o$ where, \hbar , $\hbar o \in \tilde{\chi}$ such that $\hbar N = \{2\}$ and $\hbar o = \{3\}$. In the second step, Player II Choose $(G, \mathcal{H}) = \{(\hbar_1, \{3\}), (\hbar_2, \{3\})\}$ which is a soft open (respectively, s \mathcal{I} sg-open set)).

In the fourth inning: The first step, Player *I* Choose $h_{\mathcal{M}} \neq h_{\mathcal{R}}$ where, $h, h_{\mathcal{R}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} = \{1\}$ and $h_{\mathcal{R}} = \{2,3\}$.

In the second step, Player II Choose $(\mathcal{P}, \mathcal{H}) = \{(\hbar_1, \{1\}), (\hbar_2, \{1\})\}$ which is a soft open (respectively, s \mathcal{I} sg-open set)).

In the fifth inning: The first step, Player *I* Choose $h_N \neq h_s$ where, $h, h_s \in \tilde{\chi}$ such that $h_N = \{2\}$ and $h_s = \{1,3\}$.

In the second step, Player II Choose $(Z, \mathcal{H}) = \{(\mathcal{H}_1, \{1,3\}), (\mathcal{H}_2, \{1,3\})\}$ which is a soft open (respectively, sJsg-open set)).

In the sixth inning: The first step, Player *I* Choose $\hbar o \neq \hbar \epsilon$ where, \hbar , $\hbar \epsilon \in \tilde{\chi}$ such that $\hbar o = \{3\}$ and $\hbar \epsilon = \{1,2\}$.

In the second step, Player II Choose ((ω) , \mathcal{H}) = {(\hbar_1 ,{3}),(\hbar_2 ,{3})} which is a soft open (respectively, s \mathcal{I} sg-open set)).

Then $\mathcal{B} = \{ (\mathcal{P}, \mathcal{H}), (\mathfrak{G}), \mathcal{H}), (\mathcal{Z}, \mathcal{H}) \}$ is the winning strategy for Player II in $\mathcal{G}(\mathcal{T}_0, \chi)$ (respectively $\mathcal{G}(\mathcal{T}_0, \mathcal{I})$). Hence Player $II \uparrow \mathcal{G}(\mathcal{T}_0, \chi)$ (respectively $\mathcal{G}(\mathcal{T}_0, \mathcal{I})$).

Example 5.3. Let $\mathcal{G}(\mathcal{T}_0, \chi)$ (respectively $\mathcal{G}(\mathcal{T}_0, \mathcal{I})$) is a game where, $\chi = \{1, 2, 3\}$, $\mathcal{H} = \{\mathcal{M}_1, \mathcal{M}_2\}, \mathcal{T} = \{\widetilde{\emptyset}, \widetilde{\chi}, (\mathfrak{G}, \mathcal{H})\}$ where, $(\mathfrak{G}, \mathcal{H}) = \{(\mathcal{M}_1, \{3\}), (\mathcal{M}_2, \{3\})\}$ and $\mathcal{I} = \{\widetilde{\emptyset}\}$ then $s\mathcal{I}sgc(\chi)\mathcal{H} = SC(\chi)\mathcal{H}$ and $s\mathcal{I}sgo(\chi)\mathcal{H} = \mathcal{T}$.

In the first inning: The first step, Player *I* Choose $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ where, $h, h_{\mathcal{N}} \in \tilde{\chi}$ since $h_{\mathcal{M}} = \{1\}$ and $h_{\mathcal{N}} = \{2\}$.

In the second step, Player II cannot find (O', \mathcal{H}) which is a soft open (Respectively, sJsg-open set)) containing one of $h_{\mathcal{M}}$, $h_{\mathcal{N}}$. Hence Player $I \uparrow SG(\mathcal{T}_0, \chi)$ (respectively $SG(\mathcal{T}_0, \mathcal{J})$).

Remark 5.4. For a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$:

i. If Player $II \uparrow SG(\mathcal{T}_0, \chi)$ then Player $II \uparrow SG(\mathcal{T}_0, \mathcal{I})$.

ii. If Player $I \uparrow \S \mathcal{G}(\mathcal{T}_0, \chi)$ then Player $I \uparrow \S \mathcal{G}(\mathcal{T}_0, \mathcal{I})$.

Remark 5.5. For a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$, if Player $I \downarrow \S \mathcal{G}(\mathcal{T}_0, \chi)$ then Player $I \downarrow \S \mathcal{G}(\mathcal{T}_0, \mathcal{I})$. **Theorem 5.6.** A space $(\chi, \mathcal{T}, \mathcal{H})$ (respectively $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$) is \mathcal{T}_0 -space (respectively, \mathfrak{sIsg} - \mathcal{T}_0 -space) if and only if Player $I \uparrow \S \mathcal{G}(\mathcal{T}_0, \chi)$ (respectively, $\S \mathcal{G}(\mathcal{T}_0, \mathcal{I})$).

Proof: (\Rightarrow) in the *r*-th inning Player in $\S{G}(\mathcal{T}_0, \chi)$ (respectively, $\S{G}(\mathcal{T}_0, \mathcal{I})$) Choose $(\mathscr{M}_{\mathscr{M}})_r$ $\neq (\mathscr{M}_{\mathscr{N}})_r$ where, $(\mathscr{M}_{\mathscr{M}})_r$, $(\mathscr{M}_{\mathscr{N}})_r \in \tilde{\chi}$, Player in II in $\S{G}(\mathcal{T}_0, \chi)$ (respectively, $\S{G}(\mathcal{T}_0, \mathcal{I})$) choose $(\mathcal{O}_r, \mathcal{H})$ is a soft open (respectively, $\$\mathcal{I}$ sg-open set) containing only one of the two elements $(\mathscr{M}_{\mathscr{M}})_r$, $(\mathscr{M}_{\mathscr{N}})_r$. Since $(\chi, \mathcal{T}, \mathcal{H})$ is a soft \mathcal{T}_0 -space (respectively, $\$\mathcal{I}$ sg- \mathcal{T}_0 -space). Then if $\mathcal{B} = \{ (\mathcal{O}_1, \mathcal{H}), (\mathcal{O}_2, \mathcal{H}), (\mathcal{O}_3, \mathcal{H}), ..., (\mathcal{O}_r, \mathcal{H}), ...\}$ is the winning strategy for Player in II in $\S{G}(\mathcal{T}_0, \chi)$ (respectively, $\S{G}(\mathcal{T}_0, \mathcal{I})$). Hence Player $II \uparrow \S{G}(\mathcal{T}_0, \chi)$ (respectively, $\S{G}(\mathcal{T}_0, \mathcal{I})$). (\Leftarrow) Clear. **Corollary 5.7.** For a space $(\chi, \mathcal{T}, \mathcal{H})$:

- i- Player $II \uparrow \S{G}(\mathcal{T}_0, \chi)$ if and only if $\forall h m \neq h_N$ where, h m, $h_N \in \chi \exists (\mathcal{A}, \mathcal{H})$ is a *closed* set where $h_M \in (\mathcal{A}, \mathcal{H})$ and $h_N \notin (\mathcal{A}, \mathcal{H})$.
- ii- Player $II \uparrow \S{G}(\mathcal{T}_0, \mathcal{I})$ if and only if $\forall h_{\mathcal{M}} \neq h_{\mathcal{N}}$ where, $h_{\mathcal{M}}, h_{\mathcal{N}} \in \chi \exists (\mathcal{B}, \mathcal{H})$ is a sJsg-closed set where $h_{\mathcal{M}} \in (\mathcal{B}, \mathcal{H})$ and $h_{\mathcal{N}} \notin (\mathcal{B}, \mathcal{H})$.

Proof:

- i. (⇒) Let h_M ≠ h_N where, h_M, h_N ∈ χ. Since Player II ↑ \$G(𝒯₀, χ), then by Theorem 5.6, the space (χ, 𝒯, 𝒯) is a soft-𝒯₀-space. Then Theorem 1.17, is applicable.
 (⇐) By Theorem 2.17, the space (χ, 𝒯, 𝒯, 𝒴) is a soft-𝒯₀-space. Then Theorem 4.6, is applicable.
- ii. (⇒) Let h_M ≠ h_N where, h_M, h_N ∈ χ. Since Player II ↑ \$G(T₀, J), then by Theorem 4.1.6, the space (χ, T, H) is a sJsg-T₀-space. Then Theorem 4.4, is applicable.
 (⇐) By Theorem 4.4, the space (χ, T, H) is a sJsg-T₀-space. Then Theorem 4.6, is applicable.

Corollary 5.8.

- i- A space $(\chi, \mathcal{T}, \mathcal{H})$ is a soft- \mathcal{T}_0 -space if and only if Player $I \ddagger SG(\mathcal{T}_0, \chi)$.
- ii- A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a s \mathcal{I} sg- \mathcal{T}_0 -space if and only if Player $I \ddagger SG(\mathcal{T}_0, \mathcal{I})$.

Proof: By Theorem 5.6, the proof is over.

Theorem 5.9. For a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$:

i- A space $(\chi, \mathcal{T}, \mathcal{H})$ is not soft- \mathcal{T}_0 -space if and only if Player $I \uparrow SG(\mathcal{T}_0, \chi)$.

ii- A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is not s \mathcal{I} sg- \mathcal{T}_0 -space if and only if Player $I \uparrow SG(\mathcal{T}_0, \mathcal{I})$. *Proof*:

- i- (\Rightarrow) in the *r*-th inning Player *I* in $\S \mathcal{G}(\mathcal{T}_0, \chi)$ choose $(\mathscr{M}_{\mathcal{M}})_r \neq (\mathscr{M}_{\mathcal{N}})_r$ where, $(\mathscr{M}_{\mathcal{M}})_r$, $(\mathscr{M}_{\mathcal{N}})_r \in \tilde{\chi}$, Player *II* in $\S \mathcal{G}(\mathcal{T}_0, \chi)$ cannot find $(\mathcal{O}_r, \mathcal{H})$ is a soft open set $(\mathscr{M}_{\mathcal{M}})_r \in (\mathcal{O}_r, \mathcal{H}), (\mathscr{M}_{\mathcal{N}})_r \notin (\mathcal{O}_r, \mathcal{H})$, $(\mathscr{M}_{\mathcal{N}})_r \notin (\mathcal{O}_r, \mathcal{H})$, $(\mathscr{M}_{\mathcal{N}})_r \notin (\mathcal{O}_r, \mathcal{H})$, $(\mathscr{M}_{\mathcal{N}})_r \in (\mathcal{O}_r, \mathcal{H})$. $(\mathscr{M}_{\mathcal{M}})_r, (\mathscr{M}_{\mathcal{N}})_r$, because $(\chi, \mathcal{T}, \mathcal{H})$ is not soft- \mathcal{T}_0 -space. Hence Player $I \uparrow \S \mathcal{G}(\mathcal{T}_0, \chi)$. (\Leftarrow) Clear.
- ii- (\Rightarrow) in the *r*-th inning Player *I* in $\S G(\mathcal{T}_0, \mathcal{I})$ choose $(\hbar_{\mathcal{M}})_r \neq (\hbar_{\mathcal{N}})_r$ where, $(\hbar_{\mathcal{M}})_r$, $(\hbar_{\mathcal{N}})_r \in \tilde{\chi}$, Player *II* in $\S G(\mathcal{T}_0, \mathcal{I})$ cannot find $(\mathcal{O}_r, \mathcal{H})$ is a sJsg open set $(\hbar_{\mathcal{M}})_r \in (\mathcal{O}_r, \mathcal{H})$, $(\hbar_{\mathcal{N}})_r \notin (\mathcal{O}_r, \mathcal{H})$, $(\hbar_{\mathcal{N}})_r \notin (\mathcal{O}_r, \mathcal{H})$, $(\hbar_{\mathcal{N}})_r \notin (\mathcal{O}_r, \mathcal{H})$, because $(\chi, \mathcal{T}, \mathcal{H})$ is not sJsg- \mathcal{T}_0 -space. Hence Player $I \uparrow \S G(\mathcal{T}_0, \mathcal{I})$. (\Leftarrow) Clear.

Corollary 5.10.

i- A space $(\chi, \mathcal{T}, \mathcal{H})$ is not soft- \mathcal{T}_0 -space if and only if Player $II \doteqdot \S{G}(\mathcal{T}_0, \chi)$. ii- A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is not $\${S}$ - \mathfrak{S}_0 -space if and only if Player $II \doteqdot \S{G}(\mathcal{T}_0, \mathcal{I})$. *Proof*: By Theorem 5.9, the proof is over.

Definition 5.11. For a soft ideal space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$, determine a game $\mathcal{G}(\mathcal{T}_1, \chi)$ (respectively, $\mathcal{G}(\mathcal{T}_1, \mathcal{I})$) as follows:

Player I and Player II are play an inning with each positive integer numbers in the *r* th inning: The first step, Player I Choose $(\mathcal{M}_{\mathcal{M}})_r \neq (\mathcal{M}_{\mathcal{N}})_r$ where, $(\mathcal{M}_{\mathcal{M}})_r$, $(\mathcal{M}_{\mathcal{N}})_r \in \tilde{\chi}$. In the second step, Player II Choose $(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})$ are two soft open (respectively, sJsg*open*) sets such that $(\mathcal{M}_{\mathcal{M}})_r \in ((\mathcal{A}_r, \mathcal{H}) - (\mathcal{B}_r, \mathcal{H}))$ and $(\mathcal{M}_{\mathcal{N}})_r \in ((\mathcal{B}_r, \mathcal{H}) - (\mathcal{A}_r, \mathcal{H}))$. Then Player II wins in the soft game $SG(\mathcal{T}_1, \chi)$ (respectively, $SG(\mathcal{T}_1, J)$)

if $\mathcal{B} = \{\{(\mathcal{A}_1, \mathcal{H}), (\mathcal{B}_1, \mathcal{H})\}, \{(\mathcal{A}_2, \mathcal{H}), (\mathcal{B}_2, \mathcal{H})\}, \dots, \{(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})\}, \dots\}$ be a collection of a soft open (respectively, sJsg-open) sets in χ such that $\forall (\mathcal{M}_{\mathcal{M}})_r \neq (\mathcal{M}_{\mathcal{N}})_r$ where, $(\mathcal{M}_{\mathcal{M}})_r$, $(\mathcal{M}_{\mathcal{N}})_r \in \tilde{\chi}, \exists \{(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})\} \in \mathcal{B}$ such that $(\mathcal{M}_{\mathcal{M}})_r \in ((\mathcal{A}_r, \mathcal{H}) - (\mathcal{B}_r, \mathcal{H}))$ and $(\mathcal{M}_{\mathcal{N}})_r \in ((\mathcal{B}_r, \mathcal{H}) - (\mathcal{A}_r, \mathcal{H}))$. Otherwise, Player *I* wins in the soft game $\mathcal{G}(\mathcal{T}_1, \chi)$ (respectively, $\mathcal{G}(\mathcal{T}_1, \mathcal{I})$).

In the first inning: The first step, Player *I* Chooses $h_{\mathcal{M}} \neq h_{\mathcal{N}}$ where, $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} = \{1\}$ and $h_{\mathcal{N}} = \{2\}$

In the second step, Player II Choose $(\mathcal{A},\mathcal{H}), (\mathcal{B},\mathcal{H})$ such that $\mathcal{A}(\mathcal{A}) = \{1\}, \mathcal{B}(\mathcal{A}) = \{2\}$ $\forall \mathcal{A}$ which are soft open (respectively, sJsg-open) sets.

In the second inning: The first step, Player *I* Choose $h_{\mathcal{M}} \neq h_{\mathcal{O}}$ where, h, $h_{\mathcal{O}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} = \{2\}$ and $h_{\mathcal{O}} = \{3\}$.

In the second step, Player II Choose $(\mathcal{B},\mathcal{H})$, $(\mathcal{C},\mathcal{H})$ such that $\mathcal{B}(h) = \{2\}$, $\mathcal{C}(h) = \{3\} \forall h$ which are soft open (respectively, sJsg-open) sets.

In the third inning: The first step, Player *I* Choose $h_N \neq h_0$ where, $h, h_0 \in \tilde{\chi}$ such that $h_N = \{1\}$ and $h_0 = \{3\}$.

In the second step, Player II Choose $(\mathcal{A},\mathcal{H}), (\mathcal{C},\mathcal{H})$ such that $\mathcal{A}(h) = \{1\}, \mathcal{C}(h) = \{3\} \forall h$ which are soft open (respectively, sJsg-open) sets.

In the fourth inning: The first step, Player *I* Choose $h_{\mathcal{M}} \neq h_{\mathcal{R}}$ where, $h, h_{\mathcal{R}} \in \tilde{\chi}$ such that $h_{\mathcal{M}} = \{1\}$ and $h_{\mathcal{R}} = \{2,3\}$.

In the second step, Player II Choose $(\mathcal{A},\mathcal{H}), (\mathcal{D},\mathcal{H})$ such that $\mathcal{A}(h) = \{1\}, \mathcal{D}(h) = \{2,3\}$ $\forall h$ which are soft open (respectively, sJsg-open) sets.

In the fifth inning: The first step, Player *I* Choose $h_N \neq h_s$ where, h, $h_s \in \tilde{\chi}$ such that $h_N = \{2\}$ and $h_s = \{1,3\}$.

In the second step, Player II Choose $(\mathcal{B},\mathcal{H})$, $(\mathcal{E},\mathcal{H})$ such that $\mathcal{B}(\mathcal{h}) = \{2\}$, $\mathcal{E}(\mathcal{h}) = \{1,3\} \forall \mathcal{h}$ which are soft open (respectively, sJsg-open) sets.

In the sixth inning: The first step, Player *I* Choose $\hbar o \neq \hbar \epsilon$ where, \hbar , $\hbar \epsilon \in \tilde{\chi}$ such that $\hbar o = \{3\}$ and $\hbar \epsilon = \{1,2\}$.

In the second step, Player II Choose $(\mathcal{C},\mathcal{H})$, $(\mathcal{F},\mathcal{H})$ such that $\mathcal{C}(h) = \{3\}$, $\mathcal{F}(h) = \{1,2\} \forall h$ which are soft open (respectively, sJsg-open) sets.

Then $\mathcal{B} = \{\{(\mathcal{A}, \mathcal{H}), (\mathcal{B}, \mathcal{H})\}, \{(\mathcal{B}, \mathcal{H}), (\mathcal{C}, \mathcal{H})\}, \{(\mathcal{A}, \mathcal{H}), (\mathcal{C}, \mathcal{H})\}, \{(\mathcal{A}, \mathcal{H}), (\mathcal{D}, \mathcal{H})\}, \{(\mathcal{B}, \mathcal{H}), (\mathcal{E}, \mathcal{H})\}, \{(\mathcal{C}, \mathcal{H}), (\mathcal{F}, \mathcal{H})\}\}$ is the winning strategy for Player II in $\mathcal{G}(\mathcal{T}_1, \chi)$ (respectively, $\mathcal{G}(\mathcal{T}_1, \mathcal{I})$). Hence Player $II \uparrow \mathcal{G}(\mathcal{T}_1, \chi)$ (respectively, $\mathcal{G}(\mathcal{T}_1, \mathcal{I})$). By the same way in Example 4.3, Player $I \uparrow \mathcal{G}(\mathcal{T}_1, \chi)$ and Player $I \uparrow \mathcal{G}(\mathcal{T}_1, \mathcal{I})$.

Remark 5.13. For a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$:

i- If Player $\Pi \uparrow \S{\mathcal{G}}(\mathcal{T}_1, \chi)$ then Player $\Pi \uparrow \S{\mathcal{G}}(\mathcal{T}_1, \mathcal{I})$.

ii- If Player $I \uparrow \S{G}(\mathcal{T}_1, \mathcal{I})$ then Player $I \uparrow \S{G}(\mathcal{T}_1, \chi)$.

Remark 5.14. For a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$, if Player $II \downarrow \S \mathcal{G}(\mathcal{T}_1, \chi)$ then Player $II \downarrow \S \mathcal{G}(\mathcal{T}_1, \mathcal{I})$.

Theorem 5.15. A space $(\chi, \mathcal{T}, \mathcal{H})$ (respectively, $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$) is a soft- \mathcal{T}_1 space (respectively, s \mathcal{I} sg- \mathcal{T}_1 -space) if and only if Player $II \uparrow SG(\mathcal{T}_1, \chi)$ (respectively, $SG(\mathcal{T}_1, \mathcal{I})$). **Proof**: (\Rightarrow) in the *r*-th inning Player *I* in $SG(\mathcal{T}_1, \chi)$ (respectively, $SG(\mathcal{T}_1, \mathcal{I})$) choose $\forall (\mathcal{M}_{\mathcal{M}})_r \neq (\mathcal{M}_{\mathcal{N}})_r$ where, $(\mathcal{M}_{\mathcal{M}})_r$, $(\mathcal{M}_{\mathcal{N}})_r \in \tilde{\chi}$, Player *II* in $SG(\mathcal{T}_1, \chi)$ (respectively, $SG(\mathcal{T}_1, \mathcal{I})$) choose $(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})$ are two soft open (respectively, s \mathcal{I} sg-*open*) sets such that $(\mathcal{M}_{\mathcal{M}})_r \in ((\mathcal{A}_r, \mathcal{H}) - (\mathcal{B}_r, \mathcal{H}))$ and $(\mathcal{M}_{\mathcal{N}})_r \in ((\mathcal{B}_r, \mathcal{H}) - (\mathcal{A}_r, \mathcal{H}))$. Since $(\chi, \mathcal{T}, \mathcal{H})$ a soft- \mathcal{T}_1 space (respectively, s \mathcal{I} sg- \mathcal{T}_1 -space).Then $\mathcal{B} =$ $\{\{(\mathcal{A}_1, \mathcal{H}), (\mathcal{B}_1, \mathcal{H})\}, \{(\mathcal{A}_2, \mathcal{H}), (\mathcal{B}_2, \mathcal{H})\}$

, ..., { $(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})$ }, ...} is the winning strategy for Player II in $SG(\mathcal{T}_1, \chi)$ (respectively, $SG(\mathcal{T}_1, \mathcal{I})$). Hence Player $II \uparrow SG(\mathcal{T}_1, \chi)$ (respectively, $SG(\mathcal{T}_1, \mathcal{I})$). (\Leftarrow) Clear.

Corollary 5.16. For a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$:

- i- Player $II \uparrow \S{G}(\mathcal{T}_1, \chi)$ if $\forall h_{\mathcal{M}} \neq h_{\mathcal{N}}$ where $h_{\mathcal{M}}, h_{\mathcal{N}} \in \tilde{\chi}, \exists (\mathcal{A}, \mathcal{H}), (\mathcal{B}, \mathcal{H})$ are two closed sets such that $h_{\mathcal{M}} \in ((\mathcal{A}, \mathcal{H}) (\mathcal{B}, \mathcal{H}))$ and $h_{\mathcal{N}} \in ((\mathcal{B}, \mathcal{H}) (\mathcal{A}, \mathcal{H}))$.
- ii- Player $II \uparrow \mathcal{G}(\mathcal{T}_1, \mathcal{I})$ if $\forall h_{\mathcal{M}} \neq h_{\mathcal{N}}$ where $h_{\mathcal{M}}, h_{\mathcal{N}} \in \tilde{\chi}, \exists (\mathcal{A}, \mathcal{H}), (\mathcal{B}, \mathcal{H}) \}$ are two sJsg-closed sets where, $h_{\mathcal{M}} \in ((\mathcal{A}, \mathcal{H}) (\mathcal{B}, \mathcal{H}))$ and $h_{\mathcal{N}} \in ((\mathcal{B}, \mathcal{H}) (\mathcal{A}, \mathcal{H})).$

Proof:

- i. (⇒) Let h_M ≠ h_N where h_M, h_N ∈ χ̃. Since Player II ↑ \$G(T₁, χ), then by Theorem 4.1.15, the space (χ, T, H) is a soft-T₁ space. Then Theorem 2.19, is applicable.
 (⇐) By Theorem 2.19, the space (χ, T, H) is a soft-T₁ space. Then Theorem 5.15, is applicable.
- ii. (⇒)Let h_M ≠ h_N where h_M, h_N ∈ χ̃. Since Player II ↑ \$G(T₁, J), then by Theorem 5.15, the space (χ, T, H) is a sJsg-T₁-space. Then Theorem 4.9, is applicable.
 (⇐) By Theorem 4.9, the space (χ, T, H) is a sJsg-T₁-space. Then Theorem 5.15, is applicable.

Corollary 5.17.

i- A space $(\chi, \mathcal{T}, \mathcal{H})$ is a soft- \mathcal{T}_1 -space if and only if Player $I \ddagger \S \mathcal{G}(\mathcal{T}_1, \chi)$. ii- A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a $\$ \mathcal{I} \$ \mathfrak{sg} \cdot \mathcal{T}_1$ -space if and only if Player $I \ddagger \$ \mathcal{G}(\mathcal{T}_1, \mathcal{I})$. **Proof**: By Theorem 5.15, the proof is over.

Theorem 5.18. For a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$:

i- A space $(\chi, \mathcal{T}, \mathcal{H})$ is not soft- \mathcal{T}_1 -space if and only if Player $I \uparrow \S \mathcal{G}(\mathcal{T}_1, \chi)$. ii- A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is not s \mathcal{I} sg- \mathcal{T}_1 -space if and only if Player $I \uparrow \S \mathcal{G}(\mathcal{T}_1, \mathcal{I})$. **Proof**:

- i. (⇒) in the *r*-th inning Player I in \$G(T₁, χ) choose (ħ_M)_r ≠ (ħ_N)_r where, (ħ_M)_r, (ħ_N)_r ∈ χ̃, Player II in \$G(T₁, χ) cannot find (A_r, H), (B_r, H) are two soft open sets such that (ħ_M)_r ∈ ((A_r, H) (B_r, H)) and (ħ_N)_r ∈ ((B_r, H) (A_r, H)), because (χ, T, H) is not soft-T₁-space. Hence Player I ↑ \$G(T₁, χ).
 (⇐) Clear.
- ii. (\Rightarrow) in the *r*-th inning Player *I* in $\S G(\mathcal{T}_1, \mathcal{I})$ choose $(\mathscr{M}_{\mathcal{M}})_r \neq (\mathscr{M}_{\mathcal{N}})_r$ where, $(\mathscr{M}_{\mathcal{M}})_r$, $(\mathscr{M}_{\mathcal{N}})_r \in \chi$, Player *II* in $\S G(\mathcal{T}_1, \mathcal{I})$ cannot find $(\mathscr{A}_r, \mathcal{H}), (\mathscr{B}_r, \mathcal{H})$ are two \mathfrak{sIsg} -open sets such that $(\mathscr{M}_{\mathcal{M}})_r \in ((\mathscr{A}_r, \mathcal{H}) (\mathscr{B}_r, \mathcal{H}))$ and $(\mathscr{M}_{\mathcal{N}})_r \in ((\mathscr{B}_r, \mathcal{H}) (\mathscr{A}_r, \mathcal{H}))$, because $(\chi, \mathcal{T}, \mathcal{H})$ is not soft- \mathcal{T}_1 -space. Hence Player $I \uparrow \S G(\mathcal{T}_1, \mathcal{I})$.

(⇐) Clear.

Corollary 5.19.

i- If a space $(\chi, \mathcal{T}, \mathcal{H})$ is not soft- \mathcal{T}_1 -space if and only if Player $II \ddagger SG(\mathcal{T}_1, \chi)$.

ii- If a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is not s \mathcal{I} sg- \mathcal{T}_1 -space if and only if Player $II \ddagger \S \mathcal{G}(\mathcal{T}_1, \mathcal{I})$.

Proof: Similar way of proof Theorem 5.18.

Definition 5.20. For a soft ideal space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$, determine a game $\Im \mathcal{G}(\mathcal{T}_2, \chi)$ (respectively, $\Im \mathcal{G}(\mathcal{T}_2, \mathcal{I})$) as follows:

Player I and Player I are play an inning with each positive integer numbers in the r th inning: The first step, Player I Choose $(\hbar_{\mathcal{M}})_r \neq (\hbar_{\mathcal{N}})_r$ where, $(\hbar_{\mathcal{M}})_r, (\hbar_{\mathcal{N}})_r \in \tilde{\chi}$.

In the second step, Player II Choose $(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})$ are two soft open (respectively, \mathfrak{sJsg} -open) sets such that $(\mathfrak{h}_{\mathcal{M}})_r \in (\mathcal{A}_r, \mathcal{H}), (\mathfrak{h}_{\mathcal{N}})_r \in (\mathcal{B}_r, \mathcal{H})$ and $(\mathcal{A}_r, \mathcal{H}) \cap (\mathcal{B}_r, \mathcal{H}) = \{\widetilde{\emptyset}\}$. Then Player II wins in the game $\mathfrak{G}(\mathcal{T}_2, \chi)$ (respectively, $\mathfrak{G}(\mathcal{T}_2, \mathcal{I})$) if

 $\mathcal{B} = \{\{(\mathcal{A}, \mathcal{H}), (\mathcal{B}, \mathcal{H})\}, \{(\mathcal{B}, \mathcal{H}), (\mathcal{C}, \mathcal{H})\}, \{(\mathcal{A}, \mathcal{H}), (\mathcal{C}, \mathcal{H})\}\} \text{ be a collection of a soft open (respectively, sJsg-open) sets in <math>\chi$ such that $\forall (\hbar_{\mathcal{M}})_r \neq (\hbar_{\mathcal{N}})_r$ where, $(\hbar_{\mathcal{M}})_r, (\hbar_{\mathcal{N}})_r \in \tilde{\chi}, \exists \{(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})\} \in \mathcal{B}$ such that $(\hbar_{\mathcal{M}})_r \in (\mathcal{A}_r, \mathcal{H})$ and $(\hbar_{\mathcal{N}})_r \in (\mathcal{B}_r, \mathcal{H})$ and $(\mathcal{A}_r, \mathcal{H}) \cap (\mathcal{B}_r, \mathcal{H}) = \{\tilde{\emptyset}\}$. Otherwise, Player I wins in the game $\Im (\mathcal{I}_2, \chi)$ (respectively, $\Im (\mathcal{I}_2, \mathcal{J})$).

By example 5.12. $\forall h_{\mathcal{M}} \neq h_{\mathcal{N}}$ where, $h_{\mathcal{M}}$, $h_{\mathcal{N}} \in \tilde{\chi}$ there exist $(\mathcal{M}, \mathcal{H}), (\mathcal{N}, \mathcal{H})$ are soft $h_{\mathcal{M}} \in (\mathcal{M}, \mathcal{H})$ and $h_{\mathcal{N}} \in (\mathcal{N}, \mathcal{H})$ such that $(\mathcal{M}, \mathcal{H}) \cap (\mathcal{N}, \mathcal{H}) = \{\tilde{\emptyset}\}$. So, then $\mathcal{B} = \{\{(\mathcal{A}, \mathcal{H}), (\mathcal{B}, \mathcal{H})\}, \{(\mathcal{B}, \mathcal{H}), (\mathcal{C}, \mathcal{H})\}, \{(\mathcal{A}, \mathcal{H}), (\mathcal{C}, \mathcal{H})\}, \{(\mathcal{A}, \mathcal{H}), (\mathcal{D}, \mathcal{H})\}, \{(\mathcal{B}, \mathcal{H}), (\mathcal{E}, \mathcal{H})\}, \{(\mathcal{C}, \mathcal{H}), (\mathcal{F}, \mathcal{H})\}\}.$

Is the winning strategy for Player II in $\S G(\mathcal{T}_2, \chi)$ (respectively, $\S G(\mathcal{T}_2, \mathcal{J})$). Hence Player $II \uparrow \S G(\mathcal{T}_2, \chi)$ (respectively, $\S G(\mathcal{T}_2, \mathcal{J})$).

By the same way in Example 5.3, Player $I \uparrow \S \mathcal{G}(\mathcal{T}_2, \chi)$ and Player $I \uparrow \S \mathcal{G}(\mathcal{T}_2, \mathcal{I})$.

Remark 5.21. For a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$:

i- If Player $\Pi \uparrow \S{\mathcal{G}}(\mathcal{T}_2, \chi)$ then Player $\Pi \uparrow \S{\mathcal{G}}(\mathcal{T}_2, \mathcal{I})$.

ii- If Player $I \uparrow SG(\mathcal{T}_2, \mathcal{I})$ then Player $I \uparrow SG(\mathcal{T}_2, \chi)$.

Remark 5.22. For a space $((\chi, \mathcal{T}, \mathcal{H}, \mathcal{I}), \text{ if Player } \Pi \downarrow \S \mathcal{G}(\mathcal{T}_2, \chi) \text{ then Player } \Pi \downarrow \S \mathcal{G}(\mathcal{T}_2, \mathcal{I}).$

Theorem 5.23. A space $(\chi, \mathcal{T}, \mathcal{H})$ (respectively, $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$) is a soft- \mathcal{T}_2 -space (respectively, $s\mathcal{I}sg$ - \mathcal{T}_2 -space) if and only if Player $I \uparrow \S \mathcal{G}(\mathcal{T}_2, \chi)$ (respectively, $\S \mathcal{G}(\mathcal{T}_2, \mathcal{I})$). **Proof**: (\Rightarrow) in the *r*-th inning Player *I* in $\S \mathcal{G}(\mathcal{T}_2, \chi)$ (respectively, $\S \mathcal{G}(\mathcal{T}_2, \mathcal{I})$) choose $(\mathcal{M}_{\mathcal{M}})_r$ $\neq (\mathcal{M}_{\mathcal{N}})_r$ where, $(\mathcal{M}_{\mathcal{M}})_r$, $(\mathcal{M}_{\mathcal{N}})_r \in \tilde{\chi}$, Player *II* in $\S \mathcal{G}(\mathcal{T}_2, \chi)$ (respectively, $\S \mathcal{G}(\mathcal{T}_2, \mathcal{I})$) choose $(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})$ are two soft open (respectively, $s\mathcal{I}sg$ -open) sets such that $(\mathcal{M}_{\mathcal{M}})_r \in ((\mathcal{A}_r, \mathcal{H}) \text{ and } (\mathcal{M}_{\mathcal{N}})_r \in ((\mathcal{B}_r, \mathcal{H}) \text{ and } (\mathcal{A}_r, \mathcal{H}) \cap (\mathcal{B}_r, \mathcal{H}) = \{\tilde{\emptyset}\}$. Since $(\chi, \mathcal{T}, \mathcal{H})$ a soft- \mathcal{T}_2 space (respectively, $s\mathcal{I}sg$ - \mathcal{T}_1 -space). Then $\mathcal{B} = \{\{(\mathcal{A}_1, \mathcal{H}), (\mathcal{B}_1, \mathcal{H})\}, \{(\mathcal{A}_2, \mathcal{H}), (\mathcal{B}_2, \mathcal{H})\}, ..., \{(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})\}, ...\}$ is the winning strategy for Player *II* in $\S \mathcal{G}(\mathcal{T}_2, \chi)$ (respectively, $\S \mathcal{G}(\mathcal{T}_2, \mathcal{I})$). Hence Player $II \uparrow \S \mathcal{G}(\mathcal{T}_2, \chi)$ (respectively, $\S \mathcal{G}(\mathcal{T}_2, \mathcal{I})$). (\Leftarrow) Clear.

Corollary 5.24.

i- A space $(\chi, \mathcal{T}, \mathcal{H})$ is a soft- \mathcal{T}_2 space if and only if Player $I \ddagger SG(\mathcal{T}_2, \chi)$.

ii- A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is a s \mathcal{I} sg- \mathcal{T}_2 -space if and only if Player $I \ddagger S\mathcal{G}(\mathcal{T}_2, \mathcal{I})$. **Proof**: By Theorem 4.23, the proof is over.

Theorem 5. 25. For a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$:

- i- A space $(\chi, \mathcal{T}, \mathcal{H})$ is not soft- \mathcal{T}_2 -space if and only if Player $I \uparrow SG(\mathcal{T}_2, \chi)$.
- ii- A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is not a $s\mathcal{I}sg-\mathcal{T}_2$ -space if and only if Player $I \uparrow S\mathcal{G}(\mathcal{T}_2, \mathcal{I})$.

Proof:

- i- (\Rightarrow) in the *r*-th inning Player *I* in $\S G(\mathcal{T}_2, \chi)$ choose $(\hbar_{\mathcal{M}})_r \neq (\hbar_{\mathcal{N}})_r$ where, $(\hbar_{\mathcal{M}})_r$, $(\hbar_{\mathcal{N}})_r \in \tilde{\chi}$, Player *II* in $\S G(\mathcal{T}_2, \chi)$ cannot find $(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})$ are two soft-open sets such that $(\hbar_{\mathcal{M}})_r \in (\mathcal{A}_r, \mathcal{H})$, $(\hbar_{\mathcal{N}})_r \in ((\mathcal{B}_r, \mathcal{H})$ and $(\mathcal{A}_r, \mathcal{H}) \cap (\mathcal{B}_r, \mathcal{H}) = \{\tilde{\emptyset}\}$, because $(\chi, \mathcal{T}, \mathcal{H})$ is not soft- \mathcal{T}_2 -space. Hence Player $I \uparrow \S G(\mathcal{T}_2, \chi)$. (\Leftarrow) Clear.
- ii- (\Rightarrow) in the *r*-th inning Player *I* in $\S G(\mathcal{T}_2, \mathcal{I})$ choose $(\hbar_{\mathcal{M}})_r \neq (\hbar_{\mathcal{N}})_r$, where, $(\hbar_{\mathcal{M}})_r$, $(\hbar_{\mathcal{N}})_r \in \tilde{\chi}$, Player *II* in $\S G(\mathcal{T}_2, \mathcal{I})$ cannot find $(\mathcal{A}_r, \mathcal{H}), (\mathcal{B}_r, \mathcal{H})$ are two s \mathcal{I} sg-open sets such that $(\hbar_{\mathcal{M}})_r \in (\mathcal{A}_r, \mathcal{H}), (\hbar_{\mathcal{N}})_r \in (\mathcal{B}_r, \mathcal{H})$ and $(\mathcal{A}_r, \mathcal{H}) \cap (\mathcal{B}_r, \mathcal{H}) = \{\tilde{\emptyset}\}$, because $(\chi, \mathcal{T}, \mathcal{H})$ is a not soft- \mathcal{T}_2 space. Hence Player $I \uparrow \S G(\mathcal{T}_2, \mathcal{I})$. (\Leftarrow) Clear.

Corollary 5.26.

- i- A space $(\chi, \mathcal{T}, \mathcal{H})$ is a not soft- \mathcal{T}_2 space if and only if Player $II \ddagger SG(\mathcal{T}_2, \chi)$.
- ii- A space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$ is not a s \mathcal{I} sg- \mathcal{T}_2 -space if and only if Player $II \ddagger \S \mathcal{G}(\mathcal{T}_2, \mathcal{I})$.

Proof: By Theorem 5.25, the proof is over.

Remark 5.27. For a space $(\chi, \mathcal{T}, \mathcal{H}, \mathcal{I})$:

- i. If Player $II \uparrow \S G(\mathcal{T}_{i+1}, \chi)$ (respectively, $\S G(\mathcal{T}_{i+1}, \mathcal{I})$) then Player $II \uparrow \S G(\mathcal{T}_i, \chi)$ (respectively, $\S G(\mathcal{T}_i, \mathcal{I})$), where $i = \{0, 1\}$.
- ii. If Player $II \uparrow \S G(\mathcal{T}_i, \chi)$; then Player $II \uparrow \S G(\mathcal{T}_i, \mathcal{I})$, where $i = \{0, 1, 2\}$. The following (figure) clarifies a relationships in Theorem 5.6, Theorem 5.15, Theorem 5.23 and Remark 5.27.

Figure 2: The winning strategy for Player II

Remark 5.28. For a space $(\chi, \mathcal{T}, \mathcal{I})$:

- i- If Player $I \uparrow \S \mathcal{G}(\mathcal{T}_i, \chi)$ (respectively, $\S \mathcal{G}(\mathcal{T}_i, \mathcal{I})$) then Player $I \uparrow \S \mathcal{G}(\mathcal{T}_{i+1}, \chi)$ (respectively, $\S \mathcal{G}(\mathcal{T}_{i+1}, \mathcal{I})$), where $i = \{0, 1\}$.
- ii- If Player $I \uparrow \S{\mathcal{G}}(\mathcal{T}_i, \mathcal{I})$ then Player $I \uparrow \S{\mathcal{G}}(\mathcal{T}_i, \chi)$, where $i = \{0, 1, 2\}$.

The following (figure) clarifies a relationships in Theorem 5.9, Theorem 5.18, Theorem 5.26 and Remark 5.28.

Figure 3: The winning strategy for Player I

References

- 1. Shabir, M.; Naz, M. On Soft to topological spaces. Com put Math. Appl. 2011, 61,1786-1799.
- 2. Hussain, S.; Ahmad, B. Soft separation axioms in soft topological spaces. *HJMS*. **2015**, *44*,*3*, 559-568.
- Kadil, A.; Tantawy, O. A.; El-Sheikn, S. A.; Abd El-latif, A. M. y- operation and decompositions of some forms of soft continuity in soft topological spaces. *AFMI*. 2014, 7,181-196.
- 4. Abd El-latif, A.M. Supra soft topological spaces. *Jo⁻kull journal.* **2014**, *8*, *4*, 1731-1740.
- 5. Kandil, A.; Tantawy, O. A. E.; El-Sheikh, S. A; Abd El-latif, A. M. Soft ideal theory, soft local function and generated soft topological spaces. *Appl. Math. Inf.Sci.* **2014**, *8*,*4*, 1595-1603.
- 6. Nasaf, A. A.; Radwan, A. E.; Ibrahem, F.; Esmaeel, R. B. Soft α-compactness via soft ideals. *Jou. of Advances in Math.* **2016**, *12*,*4*, 6178-6184.
- 7. Esmaeel, R. B.; Naser, A. I. some properties of-Ĩ-semi open soft sets with respect to soft Ideals. *IJpAM*. **2016**, *4*, 545-561.
- 8. Esmaeel, R. B.; Nasir, A. I; Bayda Atiya Kalaf. on α-gĨ-closed soft sets. *Sci. Inter.* (*Lahore*). **2018**, *30*,*5*, 703-705.
- 9. Maji, P. K.; Biswas, R; Roy, A.R. soft set theory. *Com put. Math. Appl.* **2003**, *45*, 555-562.
- 10. Ali, M. I.; Feng, F.; Liu, X.; Min, W. K; Shaber, M. On Some new operations in soft set theory .com put. Math. Apple. 2009, 57,9, 1547-1553.
- 11. Zorlutuna, I.; Akdag, M.; Min, W. K; Atmaca, S. Remark On soft topological spaces, *Ann. fuzzy Math. In form.* **2012**, *3*, *2*, 171-185.
- 12. Saziye Yuksel.; Naime Tozlu.; Zehra Guzel Ergul. Soft Regular Generalized Closed Sets in Soft Topological Spaces. *Int. Journal of Math. Analysis.* **2014**, *8*, 8, 355-367.