Weak Essential Fuzzy Submodules Of Fuzzy Modules

Hassan K. Marhon
Ministry of Education, Rusafa1
hassanmath316@gmail.com

Hatam Y. Khalaf
Department of Mathematics, College of Education for pure Sciences, Ibn-AlHaitham, Baghdad University, E-mail: dr.hatamyahya@yahoo.com

Article history: Received 27 November 2019, Accepted 16 December 2020, Published in October 2020
Doi: 10.30526/33.4.2510

Abstract

Throughout this paper, we introduce the notion of weak essential F-submodules of Fmodules as a generalization of weak essential submodules. Also, we study the homomorphic image and inverse image of weak essential F-submodules.

Keywords: Semi-prime F-submodules, essential F-submodules.

1.Introduction

Let $S \neq \emptyset$. Zadeh [1] defined F-subset X of S as a mapping $X: S \rightarrow[0,1]$. Negoita and Ralescu [2] introduced the concept of F-modules. Mashinchi and Zahedi [3] introduced the notion of F -submodules.

Mona [4] introduced and studied the concept of weak essential submodules, where a submodule H of \mathcal{M} is called a weak essential, if $\mathrm{H} \cap \mathrm{L} \neq(0)$, for each non-zero semiprime submodule L of \mathcal{M}. In this paper, we introduce the notion weak essential $\quad \mathrm{F}$ - submodule of F-module. We investigate some basic results about weak essential submodules.

Next, throughout this paper \mathcal{R} is a commutative ring with identity, \mathcal{M} is an \mathcal{R}-module and X is a F -module of an \mathcal{R}-module \mathcal{M}.

Finally, (shortly fuzzy set, fuzzy submodule and fuzzy module is F-set, F-submodule and F- module).

S. 1 Preliminaries

In this section, we shall give the concepts of F-sets and operations on F-sets, with some important properties of them, which are used in this paper.

Definition 1.1 [1]:

Let S be a non-empty set and let I be a closed interval $[0,1]$ of the real line (real number). \boldsymbol{A}
\boldsymbol{F}-set \boldsymbol{X} in S (a fuzzy subset X of S) is characterized by a membership function $\mathrm{X}: S \rightarrow \mathrm{I}$,
Definition 1.2 [2]
Let $\mathrm{x}_{t}: S \rightarrow \mathrm{I}$, be a F-set in S , where $\mathrm{x} \in \mathrm{S}, \mathrm{t} \in \mathrm{I}$, defined by:
$\mathrm{x}_{t}=\left\{\begin{array}{lll}1 & \text { if } & x=y \\ 0 & \text { if } & x \neq y\end{array}\right.$
Then x_{t} a said F - singleton.
If $\mathrm{x}=0$ and $\mathrm{t}=1$ then :
$0_{1}(y)=\left\{\begin{array}{lll}1 & \text { if } & y=0 \\ 0 & \text { if } & y \neq 0\end{array}\right.$
We shall call such F-singleton the \boldsymbol{F}-zero singleton.

Proposition 1.3 [3]:

Let a_{t}, b_{k} be two F-singletons of a set S. If $a_{t}=b_{k}$, then $\mathrm{a}=\mathrm{b}$ and $\mathrm{t}=\mathrm{k}$, where $\mathrm{t}, \mathrm{k} \in \mathrm{I}$.

Definition 1.4 [5]:

Let A_{1}, A_{2} are F -sets in S, then :

1. $A_{1}=A_{2}$ if and only if $A_{1}(\mathrm{x})=A_{2}(\mathrm{x}), \forall \mathrm{x} \in S$.
2. $A_{1} \subseteq A_{2}$ if and only if $A_{1}(\mathrm{x}) \leq A_{2}(\mathrm{x}), \forall \mathrm{x} \in S$.

If $A_{1} \subset A_{2}$ and there exists $\mathrm{x} \in \mathrm{S}$ such that $A_{1}(\mathrm{x})<A_{2}(\mathrm{x})$, then A_{1} is called a proper F subset of A_{2}.
3. $\mathrm{x}_{t} \subseteq \mathrm{~A}$ if and only $\mathrm{x}_{t}(y) \leq \mathrm{A}(y), \forall \mathrm{y} \in S$ and if $\mathrm{t}>0$ then $\mathrm{A}(\mathrm{x}) \geq \mathrm{t}$. Thus $\mathrm{x}_{t} \subseteq \mathrm{~A}$ (x $\left.\in A_{t}\right),\left(\right.$ that is $\mathrm{x} \in A_{t}$ if and only if $\left.\mathrm{x}_{t} \subseteq \mathrm{~A}\right)$
Definition 1.5 [5]:
Let A_{1}, A_{2} are F -sets in S , then:

1. $\left(A_{1} \cup A_{2}\right)(\mathrm{x})=\max \left\{A_{1}(\mathrm{x}), A_{2}(\mathrm{x})\right\}, \forall \mathrm{x} \in S$.
2. $\left(A_{1} \cap A_{2}\right)(\mathrm{x})=\min \left\{A_{1}(\mathrm{x}), A_{2}(\mathrm{x})\right\}, \forall \mathrm{x} \in S$.
$A_{1} \cup A_{2}$ and $A_{1} \cap A_{2}$ are F-sets in S .
In general if $\left\{A_{\alpha}, \alpha \in \Lambda\right\}$, is a family of F -sets in S , then:
$\left(\bigcap_{\alpha \in \Lambda} A_{\alpha}\right)(\mathrm{x})=\inf \left\{A_{\alpha}(\mathrm{x}), \alpha \in \Lambda\right\}$, for all $x \in S$.
$\left(\bigcup_{\alpha \in \Lambda} A_{\alpha}\right)(\mathrm{x})=\sup \left\{A_{\alpha}(\mathrm{x}), \alpha \in \Lambda\right\}$, for all $x \in S$.
Now, we give the definition of level subset, which is a set between F-set and ordinary set.

Definition 1.6 [6]:

Let A be a F -set in S . For $\mathrm{t} \in \mathrm{I}$, the set $A_{t}=\{x \in S, \mathrm{~A}(x) \geq t\}$ is called level subset of X ."

The following are some properties of the level subset:

Remark 1.7 [1]:

Let A, B are F-subsets of $S, t \in I$, then:

1. $(A \cap B)_{t}=A_{t} \cap B_{t}$.
2. $(A \cup B)_{t}=A_{t} \cup B_{t}$.
3. $\mathrm{A}=\mathrm{B}$ if and only if $A_{t}=B_{t}$, for all $\mathrm{t}[0,1]$.

Definition 1.8 [7]:

Let f be a mapping from a set \mathcal{M}_{1} into a set \mathcal{M}_{2}, let A be a F-set in \mathcal{M}_{1} and B be a F-set in \mathcal{M}_{2}. The image of A denoted by $f(\mathrm{~A})$ is the F-set in \mathcal{M}_{2} defined by:
$f(\mathrm{~A})(\mathrm{y})=\left\{\begin{array}{cc}\sup \left\{A(z) \mid z \in f^{-1}(\mathrm{y})\right\} \text { if } \\ 0 & \text { o.w }\end{array} f^{-1}(y) \neq \emptyset\right.$, for each $\mathrm{y} \in \mathcal{M}_{2}$
where $f^{-1}(\mathrm{y})=\{\mathrm{x}: f(\mathrm{x})=\mathrm{y}\}$
And the inverse of $\mathrm{B}(\mathrm{x})$, denoted by $f^{-1}(\mathrm{~B})$ is the F -set in \mathcal{M}_{1} defined by: $f^{-1}(\mathrm{~B})=$ $\mathrm{B}(f(\mathrm{x}))$, for all $\mathrm{x} \in \mathcal{M}_{1}$.

Definition 1.9 [8]:

Let f be a function from a set \mathcal{M}_{1} into a set \mathcal{M}_{2}. A F-subset A of \mathcal{M}_{1} is a said f invariant if $\mathrm{A}(\mathrm{x})=\mathrm{A}(\mathrm{y})$, whenever $f(\mathrm{x})=f(\mathrm{y})$, where $\mathrm{x}, \mathrm{y} \in \mathcal{M}_{1}$.

Proposition 1.10 [8]:

If f is a function defined on a set \mathcal{M}, A_{1} and A_{2} are F -subsets of \mathcal{M}, B_{1} and B_{2} are F subset of $f(\mathcal{M})$. The followings are true:

1. $A_{1} \subseteq f^{-1}\left(f\left(A_{1}\right)\right)$.
2. $A_{1}=f^{-1}\left(f\left(A_{1}\right)\right)$, whenever A_{1} is f-invariant.
3. $f\left(f^{-1}\left(B_{1}\right)\right)=B_{1}$.
4. If $A_{1} \subseteq A_{2}$, then $f\left(A_{1}\right) \subseteq f\left(A_{2}\right.$.
5. If $B_{1} \subseteq B_{2}$, then $f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$.
6. Let f be a function from a set \mathcal{M} into N . If B_{1} and B_{2} are F -subsets of N , then $f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$ [9].

Definition 1.11 [2]:

A said F -set X is F -module of an \mathcal{R}-module \mathcal{M} if:

1. $\mathrm{X}(v-\mu) \geq \min \{\mathrm{X}(v), \mathrm{X}(\mu)\}, \forall v, \mu \in \mathcal{M}$.
2. $\mathrm{X}(\mathrm{r} v) \geq \mathrm{X}(v), \forall v \in \mathcal{M}$ and $\mathrm{r} \in \mathcal{R}$.
3. $\mathrm{X}(0)=1(0$ is the zero element of $\mathcal{M})$.

Definition 1.12 [3]:
Let $\mathrm{X}_{1}, \mathrm{X}_{2}$ are F-modules of an \mathcal{R}-module $\mathcal{M} . \mathrm{X}_{2}$ is a said F-submodule of X_{1} if $\mathrm{X}_{2} \subseteq$ X ${ }^{\text {." }}$

Proposition 1.13 [10]:

Let $\mathrm{X}_{1}, \mathrm{X}_{2}$ be two F -modules of an \mathcal{R}-module \mathcal{M}_{1} and \mathcal{M}_{2} resp. Let $f: X_{1} \rightarrow X_{2}$ be F homomorphism.
If A_{1} and A_{2} are two F-submodules of X_{1} and X_{2} resp., then:

1. $f\left(A_{1}\right)$ is a F-submodule of X_{2}.
2. $f^{-1}\left(A_{2}\right)$ is a F-submodule of X_{1}.

Proposition 1.14 [11]:

Let A be a F-set of an \mathcal{R}-module \mathcal{M}. Then, the level subset $A_{t}, \mathrm{t} \in \mathrm{I}$, is a submodule of \mathcal{M} iff A is F-submodule of X.

Definition 1.15 [3]:

Let A be a F -module in \mathcal{M}, then we define:

1. $A^{*}=\{\mathrm{x} \in \mathcal{M}: A(\mathrm{x})>0\}$ is called support of A , also
$A^{*}=\cup A_{t}, \mathrm{t} \in(0,1]$.
2. $A_{*}=\left\{\mathrm{x} \in \mathcal{M}: A(\mathrm{x})=1=A\left(0_{\mathcal{M}}\right)\right\}$.

Definition 1.16 [12]:

A F -submodule A of a F -module X is called an essential (briefly $\mathrm{A} \leq_{e} \mathrm{X}$), if $\mathrm{A} \cap B \neq 0_{1}$, for any non-trivial F -submodule B of X .

2. Weak Essential Fuzzy Submodules

Mona in [4] introduced the concept of weak essential submodule, where a submodule H of \mathcal{M} is a said weak essential, if $\mathrm{H} \cap \mathrm{L} \neq(0)$, for each non-zero semiprime submodule L of \mathcal{M}, where a submodule N of an \mathcal{R}-module \mathcal{M} is called semiprime if for each $\mathrm{r} \in \mathcal{R}$ and $\mathrm{m} \in$ \mathcal{M}, if $\mathrm{r}^{2} \mathrm{x} \in \mathrm{N}$, then $\mathrm{rx} \in \mathrm{N}$ [13]. We shall fuzzify this concept.

Definition 2.1 [14]:

Let A be F-submodule of F-module X is a said a semiprime F -submodule if $r_{t}{ }^{k} a_{s} \subseteq A$, for F-singleton r_{t} of $\mathcal{R}, a_{s} \subseteq \mathrm{X}, \mathrm{k} \in Z_{+}$, then $r_{t} a_{s} \subseteq A$. Equivalently, A is semiprime F submodule if $r_{t}^{2} a_{s} \subseteq A$ for $a_{s} \subseteq \mathrm{X}$ and r_{t} a F-singleton of \mathcal{R}, then $r_{t} a_{s} \subseteq A$. "
Definition 2.2:
Let A_{1} be F-submodule of F-module X. A_{1} is a said weak essential F-submodule if $A_{1} \cap S \neq 0_{1}$, for each non-trivial semiprime F -submodules of X. Equivalently Fsubmodule A of a F -module X is called weak essential F -submodule if $\mathrm{A} \cap S=0_{1}$, then $\mathrm{S}=$ 0_{1}, for every semiprime F-submodule of X.

Next, proposition is a characterization of a weak essential F-submodule.

Proposition 2.3:

Let X be a F -module and A a non-trivial F -submodule of X is a weak essential F submodule if and only if for each non-trivial semiprime F-submodule S of X , there exists $\mathrm{x}_{s} \subseteq S$ and r_{t} of \mathcal{R}, such that $\mathrm{x}_{s} \mathrm{r}_{t} \subseteq A, \forall t \in(0,1]$.
Proof:
Suppose that non-trivial semiprime F -submodule S of X , there exists $\mathrm{x}_{s} \subseteq S$ and r_{t} of \mathcal{R} such that $0_{1} \neq \mathrm{x}_{s} \mathrm{r}_{t} \subseteq A$. Note that $\mathrm{x}_{s} \mathrm{r}_{t} \subseteq S$.
$0_{1} \neq \mathrm{x}_{s} \mathrm{r}_{t} \subseteq A \cap B$. Thus $\mathrm{A} \cap B \neq 0_{1}$, that is A is weak essential F-submodule.
Conversely, A is weak essential F-submodule, then $\mathrm{A} \cap=0_{1}$, for each non-trivial semiprime F -submodule S of X . Thus, there exists $0_{1} \neq \mathrm{x}_{t} \subseteq A \cap S$, implying that $\mathrm{x}_{t} \subseteq A$ and hence $0_{1} \neq x_{s} r_{t} \subseteq A, \forall t \in(0,1]$.

Now, we give the following Lemma, which we will need in proving the next result.

Lemma 2.4:

Let A be a F-submodule of a F-module X if A_{t} weak essential submodule of $\mathrm{X}_{t}, \forall t \in \mathrm{I}$. Then A is weak essential F -submodule in X .
Proof:
Assume B a semiprime F-submodule of X such that $B \neq 0_{1}$, since B semiprime F-submodule of X , hence B_{t} semiprime submodule of $\mathrm{X}_{t}, \forall t \in(0,1]$, see Theorem(2.4)], which implies $A_{t} \cap B_{t} \neq(0)$, since A_{t} is weak essential submodule and $A_{t} \cap$ $B_{t}=(A \cap B)_{t} \neq(0)$, hence $\mathrm{A} \cap B \neq 0_{1}$ by Remark (1.7)(3). Thus, A is a weak essential F submodule of X .

Remark 2.5:

Every essential F-submodule is weak essential F-submodule. But the converse is not true in general, for example:

Example:

Let $\mathcal{M}=Z_{36}$ as Z-module. Define $\mathrm{X}: \mathcal{M} \longrightarrow \mathrm{I}$, by:
$\mathrm{X}(\mathrm{a})=1$, for all $a \in Z_{36}$
Let $\mathrm{A}: \mathcal{M} \rightarrow \mathrm{I}$, define by: $\mathrm{A}(\mathrm{x})=\left\{\begin{array}{lll}1 & \text { if } \quad \mathrm{x}=0 \\ 1 / 2 & \text { if } & \mathrm{x} \in(\overline{9})-(0) \\ 0 & & \text { otherwise }\end{array}\right.$
It is clear that A F-submodule of X, $A_{\overline{1}}=(\overline{9})$ is weak essential by [4, Remarks(1.5)], then A is weak essential F-submodule by Lemma(2.4). Let
$\mathrm{B}: \mathcal{M} \rightarrow \mathrm{I}$, as defined by: $\mathrm{B}(\mathrm{x})=\left\{\begin{array}{lr}1 & \text { if } \mathrm{x}=0 \\ 1 / 2 & \text { if } \mathrm{x} \in(\overline{4})-(0) \\ 0 & \text { otherwise }\end{array}\right.$
It is clear that B F-submodule of X . A is not essential, since

$$
A \cap B(x)=\left\{\begin{array}{lr}
1 & \text { if } \mathrm{x}=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

$\mathrm{A} \cap B=0_{1}$ and $\mathrm{B} \neq 0_{1}$; therefore A is not essential F -submodule .

Remark 2.6:

The converse of Lemma (2.4) is not true in general.

Example 2.7:

Let $\mathcal{M}=Z_{6}$ as Z-module. Define $\mathrm{X}: \mathcal{M} \rightarrow \mathrm{I}, \mathrm{A}: \mathcal{M} \rightarrow \mathrm{I}$ by: $\quad \mathrm{X}(\mathrm{a})= \begin{cases}1 & \text { if } a=0 \\ 1 / 2 & \text { if } a=2,4 \\ 0 & \text { otherwise }\end{cases}$
, $\mathrm{A}(\mathrm{a})= \begin{cases}1 & \text { if } a=0 \\ 1 / 3 & \text { if } a=2,4 \\ 0 & \text { otherwise }\end{cases}$
A is an essential F-submodule, then A is weak essential by Remark (2.5), but $A_{\frac{1}{2}}=(0)$ is not essential see [15, Remark (2.1)]. Also $A_{\frac{1}{2}}$ is not weak essential, since $A_{\frac{1}{2}} \cap S=(0)$, where S any semiprime submodule. Therefore A_{t} is not weak essential of X_{t}.

Proposition 2.8:

Let A be a F -submodule of a F -module X , then A is weak essential in X iff A_{*} is weak essential submodule in X_{*}.
Proof:
Let A_{*} is a weak essential submodule in X_{*}. To show A is weak essential F -submodule in X .
Assume that S is semiprime F -submodule of X and $\mathrm{A} \cap S=0_{1}$, then $(A \cap S)_{*}=(0)$, implies that $A_{*} \cap S_{*}=(0)$. But S is semiprime F -submodule, then S_{t} is semiprime see [14, Theorem (2.4)], so S_{*} is semiprime, hence $S_{*}=(0)$, so $\mathrm{S}=0_{1}$. Thus, A is weak essential F-submodule in X .

Conversely, let A is a weak essential F -submodule in X , we have to show that A_{*} is weak essential submodule in X_{*}.
Let N is semiprime submodule of X_{*} and $A_{*} \cap N=(0)$, we must prove $\mathrm{N}=(0)$.
Define $\mathrm{B}: \mathcal{M} \rightarrow \mathrm{I}$ by: $\mathrm{B}(\mathrm{x})=\left\{\begin{array}{lr}1 & \text { if } \mathrm{x} \in N \\ 0 & \text { otherwise }\end{array}\right.$
It is clear that B F-submodule of $\mathrm{X}, B_{*}=N$, so $A_{*} \cap B_{*}=(0)$, then $(A \cap B)_{*}=(0)$, hence by $\operatorname{Remark}(1.7)(3), \mathrm{A} \cap B=0_{1}$ and $\mathrm{B}=0_{1}$, since A is weak essential F -submodule in X , so $B_{*}=(0)$; therefore
$\mathrm{N}=(0)$. Thus A_{*} is weak essential submodule in X_{*}.

Remarks 2.9:

1. Let A, B are F -submodules of X such that $\mathrm{A} \subseteq B$ and B is weak essential F -submodule of X , then A need not be weak essential F -submodule for example:

Let \mathcal{M} be as Z -module Z_{36}. Let $\mathrm{X}: \mathcal{M} \rightarrow \mathrm{I}$, define by :
$\mathrm{X}(\mathrm{a})=1$, for all $a \in Z_{36}$.
Define A: $\mathcal{M} \rightarrow \mathrm{I}, \quad \mathrm{B}: \mathcal{M} \rightarrow \mathrm{I}$ by:
$\mathrm{A}(\mathrm{x})=\left\{\begin{array}{lc}1 & \text { if } \mathrm{x} \in(\overline{18}) \\ 0 & \text { otherwise }\end{array} \quad, \quad \mathrm{B}(\mathrm{x})= \begin{cases}1 & \text { if } \mathrm{x} \in(\overline{2}) \\ 0 & \text { otherwise }\end{cases}\right.$
It is clear that $X_{t}=Z_{36}$ and A, B are F -submodules of X .
B_{t} a weak essential submodule in X_{t} see [4, Remarks(1.5)]. Thus B is weak essential F submodule of X by Lemma (2.4). Let $\mathrm{C}: \mathcal{M} \rightarrow \mathrm{I}$, as defined by:
$\mathrm{C}(\mathrm{x})=\left\{\begin{array}{lc}1 & \text { if } \mathrm{x} \in(\overline{12}) \\ 0 & \text { otherwise }\end{array}\right.$, where C semiprime F-submodule
$\mathrm{C}_{t}=(\overline{12})$, is semiprime submodule of $\mathrm{X}_{t}(\forall t>0)$. But $\mathrm{A} \cap C=0_{1}$, therefore A is not weak essential F -submodule of X.
2. Let A, B are F -submodule such that $\mathrm{A} \subseteq B$. If A is weak essential F -submodule in X implying B is a weak essential F-submodule of X .
Proof:
Assume that $\mathrm{B} \cap S=0_{1}$, for some semi-prime F-submodule S of X , then $\mathrm{A} \cap S=0_{1}$. But A is weak essential F-submodule, hence $S=0_{1}$. That is B is weak essential F-submodule of X .
3. Let A, B be are F -submodules of F -module X if $\mathrm{A} \cap B$ a weak essential F -submodule of X , then both of A and B are weak essential F -submodules of X .
Proof:
It is clear by (2).
Note that, the converse is not true in general, for example:

Example:

Let \mathcal{M} be Z_{36} as Z -module. Define $\mathrm{X}: \mathcal{M} \rightarrow \mathrm{I}$ by:
$\mathrm{X}(\mathrm{a})=1$, for all $a \in Z_{36}$.
Let $\mathrm{A}: \mathcal{M} \rightarrow \mathrm{I}, \quad \mathrm{B}: \mathcal{M} \rightarrow \mathrm{I}$, define by:
$\mathrm{A}(\mathrm{x})=\left\{\begin{array}{ll}1 & \text { if } \mathrm{x} \in(\overline{12}) \\ 0 & \text { otherwise }\end{array} \quad, \quad \mathrm{B}(\mathrm{x})= \begin{cases}1 & \text { if } \mathrm{x} \in(\overline{18}) \\ 0 & \text { otherwise }\end{cases}\right.$
Clearly A, B are F-submodules of X, $A_{t}=(\overline{12})$,
$B_{t}=(\overline{18}), \forall t \in(0,1]$ are weak essential submodules of X_{t} by $[4, \operatorname{Remark}(1.5)]$. Hence A, B are weak essential F -submodules of X ; see Lemma(2.4). But $\mathrm{A} \cap B=0_{1}$; that is $\mathrm{A} \cap \mathrm{B}$ is not weak essential F-submodule of X .

Under some conditions the converse (3) will be true as in the following proposition.

Proposition 2.10:

Let A, B are F-submodules of F-module X such that A is an essential F -submodule, B weak essential F-submodule, then $\mathrm{A} \cap B$ is a weak essential $\quad \mathrm{F}$-submodule of X .
Proof:

Suppose S is a non-trivial semiprime F -submodule of X , but B is weak essential F submodule of X , hence $\mathrm{B} \cap S \neq 0_{1}$. So A is an essential F -submodule of X and we have $\mathrm{A} \cap$ $(B \cap S)=(A \cap B) \cap S \neq 0_{1}$,
Hence, $\mathrm{A} \cap \mathrm{B}$ is weak essential F-submodule of X .

Lemma 2.11:

If S is a semiprime F -submodule of F -module X , B be a F -submodule of X such that B $\nsubseteq \mathrm{S}$, then $\mathrm{S} \cap \mathrm{B}$ is semiprime F -submodule in B .
Proof:
Let S be a semiprime F -submodule of X , then by [14,Theorem(2.4)], S_{t} semiprime submodule and B_{t} submodule of X_{t}; see Proposition (1.14) such that $B_{t} \nsubseteq X_{t}$, then by [13 ,Proposition(1.11)], $S_{t} \cap B_{t}=(S \cap B)_{t}$; see Proposition (1.7)(1) is a semiprime submodule in B_{t}, therefore $\mathrm{S} \cap \mathrm{B}$ is a semiprime F -submodule in B ; see [14, Theorem(2.4)].

In the following proposition, we prove the transitive property for non-trivial F submodule.

Proposition 2.12:

Let A, B be a non-trivial F -submodules of F -module X such that $\mathrm{A} \subseteq \mathrm{B}$. If A is a weak essential F-submodule in B and B is a weak essential F-submodule in X implying A is a weak essential F-submodule in X .
Proof:
Assume that S is a semiprime F -submodule in X , such that $\mathrm{A} \cap \mathrm{S}=0_{1}$. Note that $0_{1}=A \cap S=(A \cap S) \cap B=A \cap(S \cap B)$. But S is a semi-prime F-submodule of X, so we have two cases. If $B \subseteq S$, then $0_{1}=A \cap(S \cap B)=A \cap B$. Hence, $A \cap B=0_{1}$, but $A \subseteq B$ so $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$ implies $\mathrm{A}=0_{1}$ which is a contradiction with our assumption. Thus $\mathrm{B} \nsubseteq \mathrm{S}$ and by Lemma (2.11), $\mathrm{S} \cap \mathrm{B}$ is a semiprime F -submodule in B . Since A is a weak essential F submodule in B, therefore $\mathrm{S} \cap \mathrm{B}=0_{1}$ and since B is a weak essential F -submodule in X , then $\mathrm{S}=0_{1}$, then A is a weak essential F -submodule in X .
Now, we study a homomorphic image of a weak essential F-submodule.

Proposition 2.13:

Let $\mathrm{X}_{1}, \mathrm{X}_{2}$ be F -modules of an \mathcal{R}-module \mathcal{M}_{1} and \mathcal{M}_{2} resp. and $f: \mathrm{X}_{1} \rightarrow \mathrm{X}_{2}$ be F-epimorphism. If A_{1} is a weak essential F -submodule of X_{1} such that A_{1} is f-invariant, then $f\left(A_{1}\right)$ is a weak essential F -submodule of X_{2}.
Proof:
To show $f\left(A_{1}\right)$ is a weak essential F -submodule of X_{2}, since A_{1} is a F-submodule of X_{1}, then $f\left(A_{1}\right)$ is a F -submodule of X_{2} by Proposition (1.13)(1).Now suppose that S semiprime F submodule of X_{2} such that $f\left(A_{1}\right) \cap S=0_{1}$; therefore $f^{-1}\left(f\left(A_{1}\right) \cap S\right)=f^{-1}\left(0_{1}\right)$, then $f^{-1}(f$ $\left.\left(A_{1}\right)\right) \cap f^{-1}(S)=0_{1}$, see Proposition (1.10)(2). But A_{1} is f-invariant implying that $A_{1} \cap$ $f^{-1}(\mathrm{~S})=0_{1}$, and $f^{-1}(S)=0_{1}$, since A_{1} is weak essential F-submodule and $f^{-1}(S)$ Fsubmodule of X_{1} by Proposition (1.13)(2). $f\left(f^{-1}(S)\right)=f\left(0_{1}\right)$, then $\mathrm{S}=0_{1}$, by Proposition (1.10)(3). That is $f\left(A_{1}\right)$ is a weak essential F -submodule.

Now, we consider the inverse image of a weak F-submodule.

Proposition 2.14:

Let $\mathrm{X}_{1}, \mathrm{X}_{2}$ are F-modules of an \mathcal{R}-module \mathcal{M}_{1} and \mathcal{M}_{2} resp. and $f: \mathrm{X}_{1} \rightarrow \mathrm{X}_{2}$ be F-epimorphism. If A_{2} is weak essential F-submodule of X_{2}, then $f^{-1}\left(A_{2}\right)$ is a weak essential F-submodule of X_{1}.
Proof:
Since A_{2} F-submodule of X_{2}, then $f^{-1}\left(A_{2}\right)$ is F -submodule of X see Proposition(1.13)(2).Now suppose S is semiprime F -submodule of X_{1}, such that $f^{-1}\left(A_{2}\right) \cap S=0_{1}$, hence $f\left(f^{-1}\left(A_{2}\right) \cap S\right)=f\left(0_{1}\right)$, implies that $f\left(f^{-1}\left(A_{2}\right)\right) \cap f(S)=$ $f\left(0_{1}\right)$ see Proposition (1.10)(6). $A_{2} \cap f(S)=0_{1}$ (since A_{2} is f-invariant and f is epimorphism), then $f^{-1}(f(S))=f^{-1}\left(0_{1}\right)$, implies that $\mathrm{S}=0_{1}$, since every F -submodule of X_{1} is f-invariant, implies $f^{-1}\left(A_{2}\right)$ is weak essential F -submodule of X_{1}.

Reference

1. Zadeh, L.A. Fuzzy Sets. Information and Control. 1965, 8, 338-353.
2. Negoita, C. V.; Ralescu, D. A. Applications of fuzzy sets and System Analysis. (Birkhous Basel), 1975.
3. Mashinchi, M. ; Zahedi, M. M. On L-Fuzzy Primary Submodule. Fuzzy Sets and Systems. 1992, 49, 231-236.
4. Mona, A. A. weak Essential Submodules. Um-Salama, J. 2009, 6,1, 214-221.
5. Zahedi, M. M. On L-Fuzzy Residual Quotient Module and P. Primary Submodule. Fuzzy Sets and Systems. 1992, 51,333-344.
6. Martinez, L. Fuzzy Module Over Fuzzy Rings in Connection with Fuzzy Ideals of Rings. J. Fuzzy Math. 1996, 4,843-857.
7. Yue Z. Prime L-Fuzzy Ideals and Primary L-Fuzzy Ideals. Fuzzy Sets and Systems. 1988, 27, 345-350.
8. Kumar R. Fuzzy Semi-primary Ideals of Rings. Fuzzy Sets and Systems. 1991, 42, 263272.
9. Maysoun, A. H. F-regular Fuzzy Modules. M.Sc. Thesis, University of Baghdad, 2002.
10. Kumar R., S. K.; Bhambir, Kumar P. Fuzzy Submodule of Some Analogous and Deviation. Fuzzy Sets and Systems. 1995, 70,125-130.
11. Mukhejee, T. K.; Sen, M. K.; Roy D. On Submodule and their Radicals. J. Fuzzy Math. 1996, 4,549-558.
12. Rabi, H. J. Prime Fuzzy Submodules and Prime Fuzzy Modules. M. Sc. Thesis, University of Baghdad, 2001.
13. Athab, E. A. Prime and Semi-prime submodules. M. SC. Thesis, University of Baghdad, 1996.
14. Hadi, I. M .A. Semi-Prime Fuzzy Submodules of Fuzzy Modules. Ibn-Haitham J. for Pure and Appl. Sci., 2004, 17,3, 112-123.
15. Hassan, K. M. ; Hatam, Y. K. Essential fuzzy Submodules and Closed Fuzzy submodules. Iraq . J. of Science, 2020, 61, 4, 890-897.
