

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Weak Essential Fuzzy Submodules Of Fuzzy Modules

Hassan K. Marhon Ministry of Education, Rusafa1 Hatam Y. Khalaf Department of Mathematics, College of Education for pure Sciences, Ibn-Al-Haitham , Baghdad University, E-mail: <u>dr.hatamyahya@yahoo.com</u>

hassanmath316@gmail.com

Article history: Received 27 November 2019, Accepted 16 December 2020, Published in October 2020

Doi: 10.30526/33.4.2510

Abstract

Throughout this paper, we introduce the notion of weak essential F-submodules of Fmodules as a generalization of weak essential submodules. Also, we study the homomorphic image and inverse image of weak essential F-submodules.

Keywords: Semi-prime F-submodules, essential F-submodules.

1.Introduction

Let $S \neq \emptyset$. Zadeh [1] defined F-subset X of S as a mapping X: $S \rightarrow [0,1]$. Negoita and Ralescu [2] introduced the concept of F-modules. Mashinchi and Zahedi [3] introduced the notion of F-submodules.

Mona [4] introduced and studied the concept of weak essential submodules, where a submodule H of \mathcal{M} is called a weak essential, if $H \cap L \neq (0)$, for each non-zero semiprime submodule L of \mathcal{M} . In this paper, we introduce the notion weak essential F- submodule of F-module. We investigate some basic results about weak essential submodules.

Next, throughout this paper \mathcal{R} is a commutative ring with identity, \mathcal{M} is an \mathcal{R} -module and X is a F-module of an \mathcal{R} -module \mathcal{M} .

Finally, (shortly fuzzy set, fuzzy submodule and fuzzy module is F-set, F-submodule and F- module).

S.1 Preliminaries

In this section, we shall give the concepts of F-sets and operations on F-sets, with some important properties of them, which are used in this paper.

Definition 1.1 [1]:

Let S be a non-empty set and let I be a closed interval [0,1] of the real line (real number). A *F-set X* in S (a fuzzy subset X of S) is characterized by a membership function $X : S \rightarrow I$, **Definition 1.2 [2]**

Let $x_t : S \rightarrow I$, be a F-set in S, where $x \in S$, $t \in I$, defined by:

$$\mathbf{x}_t = \begin{cases} 1 & if \quad x = y \\ 0 & if \quad x \neq y \end{cases}$$

Then x_t a said *F*-singleton.

If x = 0 and t = 1 then :

$$0_1(y) = \begin{cases} 1 & if \quad y = 0\\ 0 & if \quad y \neq 0 \end{cases}$$

We shall call such F-singleton the *F-zero singleton*.

Proposition 1.3 [3]:

Let a_t , b_k be two F-singletons of a set S. If $a_t = b_k$, then a = b and t = k, where $t, k \in I$. Definition 1.4 [5]:

Let A_1, A_2 are F-sets in S, then :

1. $A_1 = A_2$ if and only if $A_1(x) = A_2(x)$, $\forall x \in S$.

2. $A_1 \subseteq A_2$ if and only if $A_1(x) \le A_2(x)$, $\forall x \in S$.

If $A_1 \subset A_2$ and there exists $x \in S$ such that $A_1(x) < A_2(x)$, then A_1 is called a proper F-subset of A_2 .

3. $x_t \subseteq A$ if and only $x_t(y) \leq A(y)$, $\forall y \in S$ and if t > 0 then $A(x) \geq t$. Thus $x_t \subseteq A$ ($x \in A_t$), (that is $x \in A_t$ if and only if $x_t \subseteq A$)

Definition 1.5 [5]:

Let A_1 , A_2 are F-sets in S, then:

1.($A_1 \cup A_2$)(x) = max{ A_1 (x), A_2 (x)}, ∀ x ∈ S.

 $2.(A_1 \cap A_2)(x) = \min\{A_1(x), A_2(x)\}, \forall x \in S.$

 $A_1 \cup A_2$ and $A_1 \cap A_2$ are F-sets in S.

In general if $\{A_{\alpha}, \alpha \in \Lambda\}$, is a family of F-sets in S, then:

$$\left(\bigcap_{\alpha \in \Lambda} A_{\alpha}\right)(\mathbf{x}) = \inf\{A_{\alpha}(\mathbf{x}), \alpha \in \Lambda\}, \text{ for all } \mathbf{x} \in S.$$
$$\left(\bigcup_{\alpha \in \Lambda} A_{\alpha}\right)(\mathbf{x}) = \sup\{A_{\alpha}(\mathbf{x}), \alpha \in \Lambda\}, \text{ for all } \mathbf{x} \in S.$$

Now, we give the definition of level subset, which is a set between F-set and ordinary

set.

Definition 1.6 [6]:

Let A be a F-set in S. For $t \in I$, the set $A_t = \{x \in S, A(x) \ge t\}$ is called *level* subset of X."

The following are some properties of the level subset:

Remark 1.7 [1]:

Let A, B are F-subsets of S, $t \in I$, then:

- 1. $(A \cap B)_t = A_t \cap B_t$.
- $2. (A \cup B)_t = A_t \cup B_t.$
- 3. A = B if and only if $A_t = B_t$, for all t [0,1].

Definition1.8 [7]:

Let f be a mapping from a set \mathcal{M}_1 into a set \mathcal{M}_2 , let A be a F-set in \mathcal{M}_1 and B be a F-set in \mathcal{M}_2 . The image of A denoted by f(A) is the F-set in \mathcal{M}_2 defined by:

$$f(A)(y) = \begin{cases} \sup\{A(z) \mid z \in f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \emptyset, \text{ for each } y \in \mathcal{M}_2 \\ 0 & o.w \end{cases}$$

where $f^{-1}(y) = \{x : f(x) = y\}$

And the inverse of B(x), denoted by $f^{-1}(B)$ is the F-set in \mathcal{M}_1 defined by: $f^{-1}(B) = B(f(x))$, for all $x \in \mathcal{M}_1$.

Definition 1.9 [8]:

Let f be a function from a set \mathcal{M}_1 into a set \mathcal{M}_2 . A F-subset A of \mathcal{M}_1 is a said *finvariant* if A(x) = A(y), whenever f(x) = f(y), where $x, y \in \mathcal{M}_1$.

Proposition 1.10 [8]:

If f is a function defined on a set \mathcal{M} , A_1 and A_2 are F-subsets of \mathcal{M} , B_1 and B_2 are F-subset of $f(\mathcal{M})$. The followings are true:

- 1. $A_1 \subseteq f^{-1}(f(A_1)).$
- 2. $A_1 = f^{-1}(f(A_1))$, whenever A_1 is *f*-invariant.
- 3. $f(f^{-1}(B_1)) = B_1$.
- 4. If $A_1 \subseteq A_2$, then $f(A_1) \subseteq f(A_2)$.
- 5. If $B_1 \subseteq B_2$, then $f^{-1}(B_1) \subseteq f^{-1}(B_2)$.
- 6. Let f be a function from a set \mathcal{M} into N. If B_1 and B_2 are F-subsets of N, then $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$ [9].

Definition 1.11 [2]:

A said F-set X is F-module of an \mathcal{R} -module \mathcal{M} if:

1. $X(\nu - \mu) \ge \min \{X(\nu), X(\mu)\}, \forall \nu, \mu \in \mathcal{M}.$

- 2. $X(r\nu) \ge X(\nu), \forall \nu \in \mathcal{M} \text{ and } r \in \mathcal{R}.$
- 3. X(0) = 1 (0 is the zero element of \mathcal{M}).

Definition 1.12 [3]:

Let X_1, X_2 are F-modules of an \mathcal{R} -module \mathcal{M} . X_2 is a said F-submodule of X_1 if $X_2 \subseteq X_1$."

Proposition 1.13 [10]:

Let X_1, X_2 be two F-modules of an \mathcal{R} -module \mathcal{M}_1 and \mathcal{M}_2 resp. Let $f: X_1 \to X_2$ be F-homomorphism.

If A_1 and A_2 are two F-submodules of X_1 and X_2 resp., then:

1. $f(A_1)$ is a F-submodule of X_2 .

2. $f^{-1}(A_2)$ is a F-submodule of X₁.

Proposition 1.14 [11]:

Let A be a F-set of an \mathcal{R} -module \mathcal{M} . Then, the level subset A_t , $t \in I$, is a submodule of \mathcal{M} iff A is F-submodule of X.

Definition 1.15 [3]:

Let A be a F-module in \mathcal{M} , then we define:

- 1. $A^* = \{x \in \mathcal{M}: A(x) > 0\}$ is called support of A, also $A^* = \cup A_t$, t ∈ (0,1].
- $2.A_* = \{ \mathbf{x} \in \mathcal{M} : A(\mathbf{x}) = 1 = A(0_{\mathcal{M}}) \}.$

Definition1.16 [12]:

A F-submodule A of a F-module X is called an essential (briefly $A \leq_e X$), if $A \cap B \neq 0_1$, for any non-trivial F-submodule B of X.

2. Weak Essential Fuzzy Submodules

Mona in [4] introduced the concept of weak essential submodule, where a submodule H of \mathcal{M} is a said weak essential, if $H \cap L \neq (0)$, for each non-zero semiprime submodule L of \mathcal{M} , where a submodule N of an \mathcal{R} -module \mathcal{M} is called semiprime if for each $r \in \mathcal{R}$ and $m \in$ \mathcal{M} , if $r^2 x \in N$, then $rx \in N$ [13]. We shall fuzzify this concept.

Definition 2.1 [14]:

Let A be F-submodule of F-module X is a said a semiprime F-submodule if $r_t^k a_s \subseteq A$, for F-singleton r_t of \mathcal{R} , $a_s \subseteq X$, $k \in Z_+$, then $r_t a_s \subseteq A$. Equivalently, A is semiprime Fsubmodule if $r_t^2 a_s \subseteq A$ for $a_s \subseteq X$ and r_t a F-singleton of \mathcal{R} , then $r_t a_s \subseteq A$."

Definition 2.2:

Let A_1 be F-submodule of F-module X. A_1 is a said weak essential F-submodule if $A_1 \cap S \neq 0_1$, for each non-trivial semiprime F-submodules of X. Equivalently Fsubmodule A of a F-module X is called weak essential F-submodule if $A \cap S = 0_1$, then S = 0_1 , for every semiprime F-submodule of X.

Next, proposition is a characterization of a weak essential F-submodule.

Proposition 2.3:

Let X be a F-module and A a non-trivial F-submodule of X is a weak essential Fsubmodule if and only if for each non-trivial semiprime F-submodule S of X, there exists $x_s \subseteq S$ and r_t of \mathcal{R} , such that $x_s r_t \subseteq A$, $\forall t \in (0,1]$. Proof:

Suppose that non-trivial semiprime F-submodule S of X, there exists $x_s \subseteq S$ and r_t of \mathcal{R} such that $0_1 \neq x_s r_t \subseteq A$. Note that $x_s r_t \subseteq S$.

 $0_1 \neq x_s r_t \subseteq A \cap B$. Thus $A \cap B \neq 0_1$, that is A is weak essential F-submodule.

Conversely, A is weak essential F-submodule, then $A \cap S \neq 0_1$, for each non-trivial semiprime F-submodule S of X. Thus, there exists $0_1 \neq x_t \subseteq A \cap S$, implying that $x_t \subseteq A$ and hence $0_1 \neq x_s r_t \subseteq A$, $\forall t \in (0,1]$.

Now, we give the following Lemma, which we will need in proving the next result.

Lemma 2.4:

Let A be a F-submodule of a F-module X if A_t weak essential submodule of X_t , $\forall t \in I$. Then A is weak essential F-submodule in X. Proof:

Assume B a semiprime F-submodule of X such that $B \neq 0_1$, since B semiprime F-submodule of X, hence B_t semiprime submodule of X_t , $\forall t \in (0,1]$, see [14, Theorem(2.4)], which implies $A_t \cap B_t \neq (0)$, since A_t is weak essential submodule and $A_t \cap$ $B_t = (A \cap B)_t \neq (0)$, hence $A \cap B \neq 0_1$ by Remark (1.7)(3). Thus, A is a weak essential Fsubmodule of X.

Remark 2.5:

Every essential F-submodule is weak essential F-submodule. But the converse is not true in general, for example:

Example:

Let $\mathcal{M} = Z_{36}$ as Z-module. Define X : $\mathcal{M} \rightarrow I$, by:

X(a) = 1, for all $a \in Z_{36}$

Let A :
$$\mathcal{M} \to I$$
, define by: A(x) =
$$\begin{cases} 1 & \text{if } x = 0\\ 1/2 & \text{if } x \in (\overline{9}) - (0)\\ 0 & \text{otherwise} \end{cases}$$

It is clear that A F-submodule of X, $A_{\frac{1}{2}} = (\overline{9})$ is weak essential by [4, Remarks(1.5)], then A is weak essential F-submodule by Lemma(2.4). Let

B:
$$\mathcal{M} \to I$$
, as defined by: B(x) =
$$\begin{cases} 1 & \text{if } x = 0\\ \frac{1}{2} & \text{if } x \in (\overline{4}) - (0)\\ 0 & \text{otherwise} \end{cases}$$

It is clear that B F-submodule of X. A is not essential, since

$$A \cap B(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{otherwise} \end{cases}$$

 $A \cap B = 0_1$ and $B \neq 0_1$; therefore A is not essential F-submodule . Remark 2.6:

The converse of Lemma (2.4) is not true in general.

Example 2.7:

Let
$$\mathcal{M} = Z_6$$
 as Z-module. Define $X : \mathcal{M} \to I$, $A : \mathcal{M} \to I$ by: $X(a) = \begin{cases} 1 & \text{if } a = 0 \\ 1/2 & \text{if } a = 2, 4 \\ 0 & \text{otherwise} \end{cases}$
 $\begin{pmatrix} 1 & \text{if } a = 0 \end{cases}$

$$, A(a) = \begin{cases} 1 & \text{if } a = 0 \\ \frac{1}{3} & \text{if } a = 2,4 \\ 0 & \text{otherwise} \end{cases}$$

A is an essential F-submodule, then A is weak essential by Remark (2.5), but $A_{\frac{1}{2}} = (0)$ is not essential see [15, Remark (2.1)]. Also $A_{\frac{1}{2}}$ is not weak essential, since $A_{\frac{1}{2}} \cap S = (0)$, where S any semiprime submodule. Therefore A_t is not weak essential of X_t .

Proposition 2.8:

Let A be a F-submodule of a F-module X, then A is weak essential in X iff A_* is weak essential submodule in X_* .

Proof:

Let A_* is a weak essential submodule in X_* . To show A is weak essential F-submodule in X.

Assume that S is semiprime F-submodule of X and $A \cap S = 0_1$, then $(A \cap S)_* = (0)$, implies that $A_* \cap S_* = (0)$. But S is semiprime F-submodule, then S_t is semiprime see [14, Theorem (2.4)], so S_* is semiprime, hence $S_* = (0)$, so $S = 0_1$. Thus, A is weak essential F-submodule in X.

Conversely, let A is a weak essential F-submodule in X, we have to show that A_* is weak essential submodule in X_* .

Let N is semiprime submodule of X_{*} and $A_* \cap N = (0)$, we must prove N = (0). Define P : $M \to L$ by: $P(x) = \begin{cases} 1 & \text{if } x \in N \end{cases}$

Define B : $\mathcal{M} \to I$ by: B(x) = $\begin{cases} 1 & if x \in N \\ 0 & otherwise \end{cases}$

It is clear that B F-submodule of X, $B_* = N$, so $A_* \cap B_* = (0)$, then $(A \cap B)_* = (0)$, hence by Remark(1.7)(3), $A \cap B = 0_1$ and $B = 0_1$, since A is weak essential F-submodule in X, so $B_* = (0)$; therefore

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (4) 2020

N = (0). Thus A_* is weak essential submodule in X_* .

Remarks 2.9:

1. Let A, B are F-submodules of X such that $A \subseteq B$ and B is weak essential F-submodule of X, then A need not be weak essential F-submodule for example:

Let \mathcal{M} be as Z-module Z_{36} . Let $X : \mathcal{M} \to I$, define by :

 $X(a) = 1, \text{ for all } a \in Z_{36}.$

Define A: $\mathcal{M} \to I$, B: $\mathcal{M} \to I$ by:

$$A(x) = \begin{cases} 1 & if \ x \in (\overline{18}) \\ 0 & otherwise \end{cases} , \qquad B(x) = \begin{cases} 1 & if \ x \in (\overline{2}) \\ 0 & otherwise \end{cases}$$

It is clear that $X_t = Z_{36}$ and A, B are F-submodules of X.

 B_t a weak essential submodule in X_t see [4, Remarks(1.5)]. Thus B is weak essential F-submodule of X by Lemma (2.4). Let $C : \mathcal{M} \to I$, as defined by:

$$C(x) = \begin{cases} 1 & if \ x \in (\overline{12}) \\ 0 & otherwise \end{cases}, \text{ where } C \text{ semiprime } F\text{-submodule} \end{cases}$$

 $C_t = (12)$, is semiprime submodule of X_t ($\forall t > 0$). But A $\cap C = 0_1$, therefore A is not weak essential F-submodule of X.

2. Let A, B are F-submodule such that $A \subseteq B$. If A is weak essential F-submodule in X implying B is a weak essential F-submodule of X.

Proof:

Assume that $B \cap S = 0_1$, for some semi-prime F-submodule S of X, then $A \cap S = 0_1$. But A is weak essential F-submodule, hence $S = 0_1$. That is B is weak essential F-submodule of X.

3. Let A, B be are F-submodules of F-module X if $A \cap B$ a weak essential F-submodule of X, then both of A and B are weak essential F-submodules of X.

Proof:

It is clear by (2).

Note that, the converse is not true in general, for example:

Example:

Let \mathcal{M} be Z_{36} as Z-module. Define $X : \mathcal{M} \to I$ by: X(a) = 1, for all $a \in Z_{36}$. Let $A : \mathcal{M} \to I$, $B : \mathcal{M} \to I$, define by:

 $A(x) = \begin{cases} 1 & if \ x \in (\overline{12}) \\ 0 & otherwise \end{cases} , \quad B(x) = \begin{cases} 1 & if \ x \in (\overline{18}) \\ 0 & otherwise \end{cases}$

Clearly A, B are F-submodules of X, $A_t = (12)$,

 $B_t = (\overline{18}), \forall t \in (0,1]$ are weak essential submodules of X_t by [4, Remark(1.5)]. Hence A, B are weak essential F-submodules of X; see Lemma(2.4). But $A \cap B = 0_1$; that is $A \cap B$ is not weak essential F-submodule of X.

Under some conditions the converse (3) will be true as in the following proposition.

Proposition 2.10:

Let A, B are F-submodules of F-module X such that A is an essential F-submodule, B weak essential F-submodule, then $A \cap B$ is a weak essential F-submodule of X. Proof:

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (4) 2020

Suppose S is a non-trivial semiprime F-submodule of X, but B is weak essential F-submodule of X, hence $B \cap S \neq 0_1$. So A is an essential F-submodule of X and we have $A \cap (B \cap S) = (A \cap B) \cap S \neq 0_1$,

Hence, $A \cap B$ is weak essential F-submodule of X.

Lemma 2.11:

If S is a semiprime F-submodule of F-module X, B be a F-submodule of X such that B \nsubseteq S, then S \cap B is semiprime F-submodule in B. Proof:

Let S be a semiprime F-submodule of X, then by [14,Theorem(2.4)], S_t semiprime submodule and B_t submodule of X_t ; see Proposition (1.14) such that $B_t \not\subseteq X_t$, then by [13, Proposition(1.11)], $S_t \cap B_t = (S \cap B)_t$; see Proposition (1.7)(1) is a semiprime submodule in B_t , therefore $S \cap B$ is a semiprime F-submodule in B; see [14, Theorem(2.4)].

In the following proposition, we prove the transitive property for non-trivial F-submodule.

Proposition 2.12:

Let A, B be a non-trivial F-submodules of F-module X such that $A \subseteq B$. If A is a weak essential F-submodule in B and B is a weak essential F-submodule in X implying A is a weak essential F-submodule in X.

Proof:

Assume that S is a semiprime F-submodule in X, such that $A \cap S = 0_1$. Note that $0_1 = A \cap S = (A \cap S) \cap B = A \cap (S \cap B)$. But S is a semi-prime F-submodule of X, so we have two cases. If $B \subseteq S$, then $0_1 = A \cap (S \cap B) = A \cap B$. Hence, $A \cap B = 0_1$, but $A \subseteq B$ so $A \cap B = A$ implies $A = 0_1$ which is a contradiction with our assumption. Thus $B \nsubseteq S$ and by Lemma (2.11), $S \cap B$ is a semiprime F-submodule in B. Since A is a weak essential F-submodule in B, therefore $S \cap B = 0_1$ and since B is a weak essential F-submodule in X, then $S = 0_1$, then A is a weak essential F-submodule in X.

Now, we study a homomorphic image of a weak essential F-submodule.

Proposition 2.13:

Let X_1 , X_2 be F-modules of an \mathcal{R} -module \mathcal{M}_1 and \mathcal{M}_2 resp. and $f : X_1 \to X_2$ be F-epimorphism. If A_1 is a weak essential F-submodule of X_1 such that A_1 is *f*-invariant, then $f(A_1)$ is a weak essential F-submodule of X_2 . Proof:

To show $f(A_1)$ is a weak essential F-submodule of X_2 , since A_1 is a F-submodule of X_1 , then $f(A_1)$ is a F-submodule of X_2 by Proposition (1.13)(1).Now suppose that S semiprime Fsubmodule of X_2 such that $f(A_1) \cap S = 0_1$; therefore $f^{-1}(f(A_1) \cap S) = f^{-1}(0_1)$, then $f^{-1}(f(A_1)) \cap f^{-1}(S) = 0_1$, see Proposition (1.10)(2). But A_1 is f-invariant implying that $A_1 \cap f^{-1}(S) = 0_1$, and $f^{-1}(S) = 0_1$, since A_1 is weak essential F-submodule and $f^{-1}(S)$ Fsubmodule of X_1 by Proposition (1.13)(2). $f(f^{-1}(S)) = f(0_1)$, then $S = 0_1$, by Proposition (1.10)(3). That is $f(A_1)$ is a weak essential F-submodule.

Now, we consider the inverse image of a weak F-submodule.

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (4) 2020

Proposition 2.14:

Let X_1 , X_2 are F-modules of an \mathcal{R} -module \mathcal{M}_1 and \mathcal{M}_2 resp. and $f : X_1 \to X_2$ be F-epimorphism. If A_2 is weak essential F-submodule of X_2 , then $f^{-1}(A_2)$ is a weak essential F-submodule of X_1 .

Proof:

Since A_2 F-submodule of X_2 , then $f^{-1}(A_2)$ is F-submodule of X see Proposition(1.13)(2).Now suppose S is semiprime F-submodule of X_1 , such that $f^{-1}(A_2) \cap S = 0_1$, hence $f(f^{-1}(A_2) \cap S) = f(0_1)$, implies that $f(f^{-1}(A_2)) \cap f(S) =$ $f(0_1)$ see Proposition (1.10)(6). $A_2 \cap f(S) = 0_1$ (since A_2 is f-invariant and f is epimorphism), then $f^{-1}(f(S)) = f^{-1}(0_1)$, implies that $S = 0_1$, since every F-submodule of X_1 is f-invariant, implies $f^{-1}(A_2)$ is weak essential F-submodule of X_1 .

Reference

- 1. Zadeh, L.A. Fuzzy Sets. Information and Control. 1965, 8, 338-353.
- 2. Negoita, C. V.; Ralescu, D. A. Applications of fuzzy sets and System Analysis. (Birkhous Basel), **1975.**
- 3. Mashinchi, M.; Zahedi, M. M. On L-Fuzzy Primary Submodule. *Fuzzy Sets and Systems*. **1992**, *49*, 231-236.
- 4. Mona, A. A. weak Essential Submodules. Um-Salama, J. 2009, 6,1, 214-221.
- 5. Zahedi, M. M. On L-Fuzzy Residual Quotient Module and P. Primary Submodule. *Fuzzy* Sets and Systems. **1992**, *51*,333-344.
- Martinez, L. Fuzzy Module Over Fuzzy Rings in Connection with Fuzzy Ideals of Rings. J. Fuzzy Math. 1996, 4,843-857.
- 7. Yue Z. Prime L-Fuzzy Ideals and Primary L-Fuzzy Ideals. *Fuzzy Sets and Systems*. **1988**, 27, 345-350.
- 8. Kumar R. Fuzzy Semi-primary Ideals of Rings. *Fuzzy Sets and Systems*. **1991**, *42*, 263-272.
- 9. Maysoun, A. H. F-regular Fuzzy Modules. M.Sc. Thesis, University of Baghdad, 2002.
- 10. Kumar R., S. K.; Bhambir, Kumar P. Fuzzy Submodule of Some Analogous and Deviation. *Fuzzy Sets and Systems*. **1995**, 70,125-130.
- 11. Mukhejee, T. K.; Sen, M. K.; Roy D. On Submodule and their Radicals. J. Fuzzy Math. 1996, 4,549-558.
- 12. Rabi, H. J. Prime Fuzzy Submodules and Prime Fuzzy Modules. M. Sc. Thesis, University of Baghdad, **2001.**
- 13. Athab, E. A. Prime and Semi-prime submodules. M. SC. Thesis, University of Baghdad, 1996.
- 14. Hadi, I. M. A. Semi-Prime Fuzzy Submodules of Fuzzy Modules. *Ibn-Haitham J. for Pure and Appl. Sci.*, 2004, 17,3, 112-123.
- 15. Hassan, K. M. ; Hatam, Y. K. Essential fuzzy Submodules and Closed Fuzzy submodules. *Iraq*. *J. of Science*, **2020**, *61*, *4*, 890-897.