Ibn Al Haitham Journal for Pure and Applied Science
Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

The Continuous Classical Boundary Optimal Control Vector Governing by Triple Linear Partial Differential Equations of Parabolic Type

Jamil A. Al-Hawasy
Department of Mathematics, College of Science, University of Mustansiriyah, Baghdad, Iraq. Jhawassy17@uomustansiriyah.edu.iq hawasy20@ yahoo.com

Article history: Received 24 September 2019, Accepted 4 November 2019, Published in July 2020.
Doi: 10.30526/33.3.2478

Abstract

In this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs \& BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and proved.

Keywords: Continuous Classical Boundary Optimal Control, Triple Linear Partial Differential Equations, Galerkin Method, Necessary Conditions for Optimality.

1. Introduction

Different applications for real life problems take a main place in the optimal control problems, for example in medicine [1]. Robots [2]. Engineering [3]. Economic [4]. And many others fields.

In the field of mathematics, optimal control problem (OCP) usually governing either by ordinary differential equations (ODEs) or partial differential equations (PDEs), examples of OCP which are governined by parabolic, hyperbolic or elliptic PDEs are studied by [5,-7]. Respectively, while OCP which are governing by couple of PDEs (CPDEs) of Parabolic, hyperbolic or elliptic type are studied by [8-10]. On the other hand, [11-13]. Are studied boundary OCP associated with CPDEs of these three types; while [14, 15]. Are studied the OCP for triple PDEs (TPDEs) of parabolic and elliptic type respectively.

All these works push us to seek about the CCBOCV for the TLPDEPAR. This work starts with the state and prove the existence theorem of a unique solution (SVS) for the triple state equations (TSEs) of PDEs of parabolic type (TLPDEPAR) by using the GM when the

CCBCV is fixed, then we deals with the proof of the existence theorem of a CCBOCV, the solution vector of the triple adjoint equations (TAPEs) associated the TLPDEPAR is studied. The derivation of the FrD for the CoF is obtained. At the end, the NCsThOP of this OCP is sated and proved..

2. Description of the problem:

Let $\Omega \subset \mathbb{R}^{2}, x=\left(x_{1}, x_{2}\right), Q=[0, \mathrm{~T}] \times \Omega, \tilde{I}=[0, \mathrm{~T}], \Gamma=\partial \Omega, \Sigma=\Gamma \times \tilde{I}$. The CCBOCP consists of the TSEs which are given by the following TLPDEPAR
$y_{1 t}-\Delta y_{1}+y_{1}-y_{2}-y_{3}=f_{1}(x, t)$, in Q
$y_{2 t}-\Delta y_{2}+y_{2}+y_{3}+y_{1}=f_{2}(x, t)$, in Q
$y_{3 t}-\Delta y_{3}+y_{3}+y_{1}-y_{2}=f_{3}(x, t)$, in Q
with the BCs and ICs.
$\frac{\partial y_{1}}{\partial n_{a}}=\sum_{l=1}^{2} \frac{\partial y_{1}}{\partial x_{j}} \cos \left(n_{1}, x_{j}\right)=u_{1}(x, t)$, on Σ
$\frac{\partial y_{2}}{\partial n_{b}}=\sum_{l=1}^{2} \frac{\partial y_{2}}{\partial x_{j}} \cos \left(n_{2}, x_{j}\right)=u_{2}(x, t)$, on Σ
$\frac{\partial y_{3}}{\partial n_{c}}=\sum_{l=1}^{2} \frac{\partial y_{3}}{\partial x_{j}} \cos \left(n_{3}, x_{j}\right)=u_{3}(x, t)$, on Σ
$y_{1}(x, 0)=y_{1}^{0}(x)$, on Ω
$y_{3}(x, 0)=y_{3}^{0}(x)$, on Ω
Where $n_{g}, \forall g=1,2,3$, is an outer normal vector on the boundary Σ, and $\left(n_{g}, x_{j}\right)$ is the angle between n_{g} and the x_{j}-axis, $\left(f_{1}, f_{2}, f_{3}\right)$ is a vector of a given function on $\Omega, \vec{u}=$ $\left(u_{1}, u_{2}, u_{3}\right) \in\left(L^{2}(\Sigma)\right)^{3}$ is the CCBCV and $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right) \in\left(H^{1}(Q)\right)^{3}$ is their corresponding SVS. The set of admissible CCBCV is defined by

$$
\vec{W}_{A}=\left\{\vec{u}=\left(u_{1}, u_{2}, u_{3}\right) \in\left(L^{2}(\Sigma)\right)^{3} \mid\left(u_{1}, u_{2}, u_{3}\right) \in \vec{U}=U_{1} \times U_{2} \times U_{3} \subset R^{3} \text { a.e. in } \Sigma\right\},
$$

where a.e. denotes to almost everywhere.
The CoF is defined by
$G_{0}(\vec{u})=\frac{1}{2}\left\|y_{1}-y_{1 d}\right\|_{Q}^{2}+\frac{1}{2}\left\|y_{2}-y_{2 d}\right\|_{Q}^{2}+\frac{1}{2}\left\|y_{3}-y_{3 d}\right\|_{Q}^{2}+\frac{\beta}{2}\left\|u_{1}\right\|_{\Sigma}^{2}+\frac{\beta}{2}\left\|u_{2}\right\|_{\Sigma}^{2}+$
$\frac{\beta}{2}\left\|u_{3}\right\|_{\Sigma}^{2}, \quad \vec{u} \in \vec{W}_{A}, \beta>0$
Let $\vec{V}=V_{1} \times V_{2} \times V_{3}=H^{1}(\Omega), \vec{V}=\left\{\vec{v}: \vec{v}=\left(v_{1}(x), v_{2}(x), v_{3}(x)\right) \in\left(H^{1}(\Omega)\right)^{3}\right\}$.
The weak form (wf) of the boundary value problem (BVP) (1)-(9), when $\vec{y} \in\left(H^{1}(Q)\right)^{3}$ is given by
$\left\langle y_{1 t}, v_{1}\right\rangle+\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)-\left(y_{2}, v_{1}\right)-\left(y_{3}, v_{1}\right)=\left(f_{1}, v_{1}\right)+\left(u_{1}, v_{1}\right)_{\Gamma}, \forall v_{1} \in V_{1}$
$\left(y_{1}(0), v_{1}\right)=\left(y_{1}^{0}, v_{1}\right), \quad \forall v_{1} \in V_{1}$
$\left\langle y_{2}, v_{2}\right\rangle+\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)+\left(y_{3}, v_{2}\right)+\left(y_{1}, v_{2}\right)=\left(f_{2}, v_{2}\right)+\left(u_{2}, v_{2}\right)_{\Gamma}, \forall v_{2} \in V_{2}$
$\left(y_{2}(0), v_{2}\right)=\left(y_{2}^{0}, v_{2}\right), \quad \forall v_{2} \in V_{2}$
$\left\langle y_{3}, v_{3}\right\rangle+\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)+\left(y_{1}, v_{3}\right)-\left(y_{2}, v_{3}\right)=\left(f_{3}, v_{3}\right)+\left(u_{3}, v_{3}\right)_{\Gamma}, \forall v_{3} \in V_{3}$
$\left(y_{3}(0), v_{3}\right)=\left(y_{3}^{0}, v_{3}\right), \quad \forall v_{3} \in V_{3}$
The following assumption is important to study the existence theorem of the SVS for the wf (11)-(13).
2.1. Assumption (A): The function $f_{i}(\forall i=1,2,3)$ is satisfied the following condition with respect to (w.r.t.) $x \& t$, that is (i.e.) $\left|f_{i}\right| \leq \eta_{i}(x, t)$, where $(x, t) \in Q, \eta_{i} \in L^{2}(Q, \mathbb{R})$.

3. The Existence Solution for the wf:

Theorem 3.1: Existence of a Unique Solution for the wf of the SEs: With assumption (A), for each given CCBCV $\vec{u} \in\left(L^{2}(\Sigma)\right)^{3}$, the wf (11)-(13) of the TSEs has a unique SVS \vec{y} with $\vec{y} \in\left(L^{2}(\tilde{\mathrm{I}}, V)\right)^{3}, \vec{y}_{t}=\left(y_{1 t}, y_{2 t}, y_{3 t}\right) \in\left(L^{2}\left(\tilde{\mathrm{I}}, V^{*}\right)\right)^{3}$.
Proof: Let for each $n, \vec{V}_{n}=V_{n} \times V_{n} \times V_{n} \subset \vec{V}$ be the set of continuous and piecewise affine functions in Ω, let $v_{i j} \in V_{i n}=V_{n}, i=1,2,3$, and $j=1,2, \ldots, n$, be a basis of V_{n}, let $\vec{y}_{n}=\left(y_{1 n}, y_{2 n}, y_{3 n}\right)$ be an approximate solution for the solution \vec{y}, then by GM:
$y_{1 n}=\sum_{j=1}^{n} c_{1 j}(t) v_{1 j}(x)$,
$y_{2 n}=\sum_{j=1}^{n} c_{2 j}(t) v_{2 j}(x)$,
$y_{3 n}=\sum_{j=1}^{n} c_{3 j}(t) v_{3 j}(x)$,
where $c_{i j}(t)$ are unknown functions of $t, \forall i=1,2,3, j=1,2, \ldots, n$.
The wf (11) - (13) is approximated by using (14)-(16) as follows:
$\left\langle y_{1 n t}, v_{1}\right\rangle+\left(\nabla y_{1 n}, \nabla v_{1}\right)+\left(y_{1 n}, v_{1}\right)-\left(y_{2 n}, v_{1}\right)-\left(y_{3 n}, v_{1}\right)=$
$\left(f_{1}, v_{1}\right)+\left(u_{1}, v_{1}\right)_{\Gamma}, \forall v_{1} \in V_{n}$
$\left(y_{1 n}^{0}, v_{1}\right)=\left(y_{1}^{0}, v_{1}\right), \quad \forall v_{1} \in V_{n}$
$\left\langle y_{2 n t}, v_{2}\right\rangle+\left(\nabla y_{2 n}, \nabla v_{2}\right)+\left(y_{2 n}, v_{2}\right)+\left(y_{3 n}, v_{2}\right)+\left(y_{1 n}, v_{2}\right)=$
$\left(f_{2}, v_{2}\right)+\left(u_{2}, v_{2}\right)_{\Gamma}, \forall v_{2} \in V_{n}$
$\left(y_{2 n}^{0}, v_{2}\right)=\left(y_{2}^{0}, v_{2}\right), \quad \forall v_{2} \in V_{n}$
$\left\langle y_{3 n t}, v_{3}\right\rangle+\left(\nabla y_{3 n}, \nabla v_{3}\right)+\left(y_{3 n}, v_{3}\right)+\left(y_{1 n}, v_{3}\right)-\left(y_{2 n}, v_{3}\right)=$
$\left(f_{3}, v_{3}\right)+\left(u_{3}, v_{3}\right)_{\Gamma}, \forall v_{3} \in V_{n}$
$\left(y_{3 n}^{0}, v_{3}\right)=\left(y_{3}^{0}, v_{3}\right), \quad \forall v_{3} \in V_{n}$
Where $y_{i n}^{0}=y_{i n}^{0}(x)=y_{i n}(x, 0) \in V_{n} \subset V_{i} \subset L^{2}(\Omega)$ is the projection of y_{i}^{0}, thus $\left(y_{i n}^{0}, v_{i}\right)=$ $\left(y_{i}^{0}, v_{i}\right), \quad \forall v_{i} \in V_{n} \Leftrightarrow\left\|y_{i n}^{0}-y_{i}^{0}\right\|_{0} \leq\left\|y_{i}^{0}-v_{i}\right\|_{0}, \forall v_{i} \in V_{n}$.
Substituting (14) - (16) in (17)-(19) respectively, and then setting $v_{1}=v_{1 l}, v_{2}=v_{2 l}$ $\& v_{3}=v_{3 l} \forall l=1,2, \ldots, n$, the obtained equations are equivalent to the following linear system (LS) of $1^{\text {st }}$ order ODEs with ICs (which has a unique solution), i.e.
$A C_{1}^{\prime}(t)+B C_{1}(t)-D C_{2}(t)-E C_{3}(t)=b_{1}$,
$A C_{1}(0)=b_{1}^{0}$,
$F C_{2}^{\prime}(t)+G C_{2}(t)+H C_{3}(t)+K C_{1}(t)=b_{2}$,
$F C_{2}(0)=b_{2}^{0}$,
$M C_{3}^{\prime}(t)+N C_{3}(t)+R C_{1}(t)-W C_{2}(t)=b_{3}$,
$M C_{3}(0)=b_{3}^{0}$,
Where
$A=\left(a_{l j}\right)_{n \times n}, a_{l j}=\left(v_{1 j}, v_{1 l}\right), B=\left(b_{l j}\right)_{n \times n}, b_{l j}=\left(\nabla v_{1 j}, \nabla v_{1 l}\right)+\left(v_{1 j}, v_{1 l}\right), D=\left(d_{l j}\right)_{n \times n}$, $\left.d_{l j}=\left(v_{2 j}, v_{1 l}\right), \quad E=\left(e_{l j}\right)_{n \times n}, e_{l j}=v_{3 j}, v_{1 l}\right), \quad F=\left(f_{l j}\right)_{n \times n}, \quad f_{l j}=\left(v_{2 j}, v_{2 l}\right), G=$ $\left(g_{l j}\right)_{n \times n}, g_{l j}=\left(\nabla v_{2 j}, \nabla v_{2 l}\right)+\left(v_{2 j}, v_{2 l}\right), H=\left(h_{l j}\right)_{n \times n}, h_{l j}=\left(v_{3 j}, v_{2 l}\right), K=\left(k_{l j}\right)_{n \times n}$, $k_{l j}=\left(v_{1 j}, v_{2 l}\right), \quad M=\left(m_{l j}\right)_{n \times n}, m_{l j}=\left(v_{3 j}, v_{3 l}\right), N=\left(n_{l j}\right)_{n \times n}, n_{l j}=\left(\nabla v_{3 j}, \nabla v_{3 l}\right)+$ $\left(v_{3 j}, v_{3 l}\right), R=\left(r_{l j}\right)_{n \times n}, r_{l j}=\left(v_{1 j}, v_{3 l}\right), W=\left(w_{l j}\right)_{n \times n}, w_{l j}=\left(v_{2 j}, v_{3 l}\right), b_{i}^{0}=\left(b_{i l}^{0}\right), b_{i l}^{0}=$ $\left(y_{i}^{0}, v_{i l}\right), \quad b_{i}=\left(b_{i l}\right)_{n \times 1}, \quad b_{i l}=\left(f_{i}, v_{i l}\right)+\left(u_{i}, v_{i l}\right)_{\Gamma} \quad, \quad \mathrm{C}_{i}^{\prime}(\mathrm{t})=\left(c_{i j}^{\prime}(\mathrm{t})_{\mathrm{n} \times 1}\right), C_{i}(\mathrm{t})=$ $\left(c_{i j}(\mathrm{t})_{\mathrm{n} \times 1}\right), C_{i}(0)=\left(c_{i j}(0)_{\mathrm{n} \times 1}\right), \forall l=1,2,3 \ldots n, i=1,2,3$.

To show the norm $\left\|\overrightarrow{\mathbf{y}_{\mathbf{n}}}\right\|_{0}$ is bounded:

Since $y_{1}^{0} \in L^{2}(\Omega)$, there exists a sequence $\left\{v_{1 n}^{0}\right\}$ with $v_{1 n}^{0} \in V_{n}$, such that $v_{1 n}^{0} \rightarrow y_{1}^{0}$ strongly in $L^{2}(\Omega)$, then from the projection Theorem [16]. And (17.b),
$\left\|y_{1 n}^{0}-y_{1}^{0}\right\|_{0} \leq\left\|y_{1}^{0}-v_{1}\right\|_{0}, \forall v_{1} \in V$, and then
$\left\|y_{1 n}^{0}-y_{1}^{0}\right\|_{0} \leq\left\|y_{1}^{0}-v_{1 n}^{0}\right\|_{0}, \forall v_{1 n}^{0} \in V_{n} \subset V, \forall n$
$\Rightarrow y_{1 n}^{0} \longrightarrow y_{1}^{0}$, strongly in $L^{2}(\Omega)$, implies to
$\left\|y_{1 n}^{0}\right\|_{0} \leq b_{1}$, similarly $\left\|y_{2 n}^{0}\right\|_{0} \leq b_{2} \&\left\|y_{3 n}^{0}\right\|_{0} \leq b_{3}$, thus $\left\|\overrightarrow{y_{n}^{0}}\right\|_{0}$ is bounded in $\left(L^{2}(\Omega)\right)^{3}$.
The norms $\left\|\overrightarrow{\boldsymbol{y}}_{\boldsymbol{n}}(\boldsymbol{t})\right\|_{\boldsymbol{L}^{\infty}\left(\tilde{1}, L^{2}(\Omega)\right)}$ and $\left\|\overrightarrow{\boldsymbol{y}}_{\boldsymbol{n}}(\boldsymbol{t})\right\|_{\boldsymbol{Q}}$ are bounded:
Setting $v_{1}=y_{1 n}, v_{2}=y_{2 n}$ and $v_{3}=y_{3 n}$ in (17), (18) \& (19) respectively, integrating w.r.t. t from 0 to T, and then adding the obtained three equations, one gets
$\int_{0}^{T}\left\langle\vec{y}_{n t}, \vec{y}_{n}\right\rangle d t+\int_{0}^{T}\left\|\vec{y}_{n}\right\|_{1}^{2} d t=$
$\int_{0}^{T}\left[\left(f_{1}, y_{1 n}\right)+\left(u_{1}, y_{1 n}\right)_{\Gamma}+\left(f_{2}, y_{2 n}\right)+\left(u_{2}, y_{2 n}\right)_{\Gamma}+\left(f_{3}, y_{3 n}\right)+\left(u_{3}, y_{3 n}\right)_{\Gamma}\right] d t$,
Using Lemma (1.2) in [11]. For the $1^{\text {st }}$ term in the L.H.S. of (23), and since the $2^{\text {nd }}$ term is positive, taking $T=t \in[0, T]$. Finally, using assumption (A) for the R.H.S. of (23), it yields to
$\frac{1}{2} \int_{0}^{t} \frac{d}{d t}\left\|\vec{y}_{n}(t)\right\|_{0}^{2} d t \leq$
$\frac{1}{2}\left[\int_{0}^{t} \int_{\Omega}\left(\eta_{1}^{2}+\left|y_{1 n}\right|^{2}\right) d x d t+\int_{0}^{t} \int_{\Gamma}\left(\left|u_{1}\right|^{2}+\left|y_{1 n}\right|^{2}\right) d \gamma d t+\int_{0}^{t} \int_{\Omega}\left(\eta_{2}^{2}+\left|y_{2 n}\right|^{2}\right) d x d t+\right.$
$\left.\int_{0}^{t} \int_{\Gamma}\left(\left|u_{2}\right|^{2}+\left|y_{2 n}\right|^{2}\right) d \gamma d t+\int_{0}^{t} \int_{\Omega}\left(\eta_{3}^{2}+\left|y_{3 n}\right|^{2}\right) d x d t+\int_{0}^{t} \int_{\Gamma}\left(\left|u_{3}\right|^{2}+\left|y_{3 n}\right|^{2}\right) d \gamma d t\right]$.
Using the Trace Theorem [17]. Of the R.H.S., to get
$\left\|\vec{y}_{n}(t)\right\|_{0}^{2}-\left\|\vec{y}_{n}(0)\right\|_{0}^{2} \leq$
$\left\|\eta_{1}\right\|_{Q}^{2}+\left\|\eta_{2}\right\|_{Q}^{2}+\left\|\eta_{3}\right\|_{Q}^{2}+\left\|u_{1}\right\|_{\Sigma}^{2}+\left\|u_{2}\right\|_{\Sigma}^{2}+\left\|u_{3}\right\|_{\Sigma}^{2}+\int_{0}^{t}\left\|y_{1 n}\right\|_{0}^{2} d t+c_{1}^{2} \int_{0}^{t}\left\|y_{1 n}\right\|_{0}^{2} d t+$
$\int_{0}^{t}\left\|y_{2 n}\right\|_{0}^{2} d t+c_{2}^{2} \int_{0}^{t}\left\|y_{2 n}\right\|_{0}^{2} d t+\int_{0}^{t}\left\|y_{3 n}\right\|_{0}^{2} d t+c_{3}^{2} \int_{0}^{t}\left\|y_{3 n}\right\|_{0}^{2} d t$.
Since $\left\|\eta_{i}\right\|_{Q}^{2} \leq \dot{b}_{i},\left\|u_{i}\right\|_{\Sigma}^{2} \leq \dot{c}_{i}, \forall i=1,2,3,\left\|\vec{y}_{n}(0)\right\|_{0}^{2} \leq b$, then
$\left\|\vec{y}_{n}(t)\right\|_{0}^{2} \leq c_{1}^{*}+\hbar \int_{0}^{t}\left\|\vec{y}_{n}\right\|_{0}^{2} d t$,
where $c_{1}^{*}=\hat{b}_{1}+\hat{b}_{2}+\dot{b}_{3}+\dot{c}_{1}+\dot{c}_{2}+\dot{c}_{3}+b$ and $\hbar=\max \left(\hbar_{1}^{*}, \hbar_{2}^{*}, \hbar_{3}^{*}\right) ; \hbar_{1}^{*}=1+c_{1}^{2}, \hbar_{2}^{*}=$ $1+c_{2}^{2}, \hbar_{3}^{*}=1+c_{3}^{2}$.
Using the continuous Bellman Gronwall Inequality (BGI), one gets
$\left\|\vec{y}_{n}(t)\right\|_{0}^{2} \leq c_{1}^{*} e^{\hbar T}=b^{2}(c), \forall t \in[0, T]$ or $\left\|\vec{y}_{n}(t)\right\|_{L^{\infty}\left(\tilde{T}, L^{2}(\Omega)\right)} \leq b(c) \Rightarrow\left\|\vec{y}_{n}(t)\right\|_{Q} \leq b_{1}(c)$.
The norm $\left\|\vec{y}_{n}(t)\right\|_{L^{2}(\tilde{I}, V)}$ is bounded :
Again for (23) by using Lemma (1.2) in [11]. For the L.H.S. the same results may be obtained (from the above steps) and since $\left\|\vec{y}_{n}(0)\right\|_{0}^{2}$ is bounded, equation (23) with $t=T$, becomes
$\left\|\vec{y}_{n}(t)\right\|_{0}^{2}-\left\|\vec{y}_{n}(0)\right\|_{0}^{2}+2 \int_{0}^{T}\left\|\vec{y}_{n}\right\|_{1}^{2} d t \leq\left\|\eta_{1}\right\|_{Q}^{2}+\left\|\eta_{2}\right\|_{Q}^{2}+\left\|\eta_{3}\right\|_{Q}^{2}+\left\|u_{1}\right\|_{\Sigma}^{2}+\left\|u_{2}\right\|_{\Sigma}^{2}+$ $\left\|u_{3}\right\|_{\Sigma}^{2}+\hbar\left\|\vec{y}_{n}\right\|_{Q}^{2}$.
Which gives
$\int_{0}^{T}\left\|\vec{y}_{n}\right\|_{1}^{2} d t \leq b_{3}^{2}(c)$, with $b_{3}^{2}(c)=\frac{\left(\dot{b}_{1}+\dot{b}_{2}+\dot{b}_{3}+\dot{c}_{1}+\dot{c}_{2}+\dot{c}_{3}+b+\hbar b_{1}(c)\right)}{2}$, thus $\left\|\vec{y}_{n}\right\|_{L^{2}(\tilde{I}, V)} \leq b_{3}(c)$.
The convergence of the solution:
Let $\left\{\vec{V}_{n}\right\}_{n=1}^{\infty}$ be a sequence of subspaces of \vec{V}, s.t. $\forall \vec{v} \in \vec{V}$, there exists a sequence $\left\{\vec{v}_{n}\right\}$ with $\vec{v}_{n} \in \vec{V}_{n}, \forall n$ and $\vec{v}_{n} \rightarrow \vec{v}$, strongly in $\vec{V} \Rightarrow \vec{v}_{n} \rightarrow \vec{v}$, strongly in $\left(L^{2}(\Omega)\right)^{3}$, since for each n, with $\vec{V}_{n} \subset \vec{V}$, (17) - (19) has a unique solution $\vec{y}_{n}=\left(y_{1 n}, y_{2 n}, y_{3 n}\right)$, hence corresponding to the sequence of subspaces $\left\{\vec{V}_{n}\right\}_{n=1}^{\infty}$, there exists a sequence of (approximation) problems like (17) - (19), thus by substituting $\vec{v}=\vec{v}_{n}=\left(v_{1 n}, v_{2 n}, v_{3 n}\right)$, one has for $n=1,2, \ldots$
$\left\langle y_{1 n t}, v_{1 n}\right\rangle+\left(\nabla y_{1 n}, \nabla v_{1 n}\right)+\left(y_{1 n}, v_{1 n}\right)-\left(y_{2 n}, v_{1 n}\right)-\left(y_{3 n}, v_{1 n}\right)=$
$\left(f_{1}, v_{1 n}\right)+\left(u_{1}, v_{1 n}\right)_{\Gamma}, \quad \forall v_{1 n} \in V_{n}$
$\left(y_{1 n}^{0}, v_{1 n}\right)=\left(y_{1}^{0}, v_{1 n}\right), \quad \forall v_{1 n} \in V_{n}$

```
\(\left\langle y_{2 n t}, v_{2 n}\right\rangle+\left(\nabla y_{2 n}, \nabla v_{2 n}\right)+\left(y_{2 n}, v_{2 n}\right)+\left(y_{3 n}, v_{2 n}\right)+\left(y_{1 n}, v_{2 n}\right)=\)
\(\left(f_{2}, v_{2 n}\right)+\left(u_{2}, v_{2 n}\right)_{\Gamma}, \quad \forall v_{2 n} \in V_{n}\)
\(\left(y_{2 n}^{0}, v_{2 n}\right)=\left(y_{2}^{0}, v_{2 n}\right), \quad \forall v_{2 n} \in V_{n}\)
\(\left\langle y_{3 n t}, v_{3 n}\right\rangle+\left(\nabla y_{3 n}, \nabla v_{3 n}\right)+\left(y_{3 n}, v_{3 n}\right)+\left(y_{1 n}, v_{3 n}\right)-\left(y_{2 n}, v_{3 n}\right)=\)
\(\left(f_{3}, v_{3 n}\right)+\left(u_{3}, v_{3 n}\right)_{\Gamma}, \quad \forall v_{3 n} \in V_{n}\)
\(\left(y_{3 n}^{0}, v_{3 n}\right)=\left(y_{3}^{0}, v_{3 n}\right), \quad \forall v_{3 n} \in V_{n}\)
```

which has a sequence of solutions $\left\{\vec{y}_{n}\right\}_{n=1}^{\infty}$, with \vec{y}_{n}, but from the above steps we have $\left\|\vec{y}_{n}\right\|_{L^{2}(\boldsymbol{Q})}$ and $\left\|\vec{y}_{n}\right\|_{L^{2}(\mathbb{I}, V)}$ are bounded, then by Alaoglu's Theorem (ATh), there exists a subsequence of $\left\{\vec{y}_{n}\right\}_{n \in N}$, say again $\left\{\vec{y}_{n}\right\}_{n \in N}$ s.t. $\vec{y}_{n} \rightarrow \vec{y}$ weakly in $\left(L^{2}(Q)\right)^{3}$ and in $\left(L^{2}(\tilde{\mathrm{I}}, V)\right)^{3}$. Multiplying both sides of (24.a), (25.a) \& (26.a) by $\varphi_{i}(t) \in C^{1}[0, T], \forall i=$ $1,2,3$, respectively, s.t. $\varphi_{i}(T)=0, \varphi_{i}(0) \neq 0$, integrating both sides w.r.t. t on [$0, T$], then integrating by parts the $1^{\text {st }}$ terms in the L.H.S. of each one obtained equation, one gets
$-\int_{0}^{T}\left(y_{1 n}, v_{1 n}\right) \varphi_{1}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1 n}, \nabla v_{1 n}\right)+\left(y_{1 n}, v_{1 n}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2 n}, v_{1 n}\right) \varphi_{1}(t) d t-$ $\int_{0}^{T}\left(y_{3 n}, v_{1 n}\right) \varphi_{1}(t) d t=\int_{0}^{T}\left(f_{1}, v_{1 n}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(u_{1}, v_{1 n}\right)_{\Gamma} \varphi_{1}(t) d t+\left(y_{1 n}^{0}, v_{1 n}\right) \varphi_{1}(0)$,
$-\int_{0}^{T}\left(y_{2 n}, v_{2 n}\right) \varphi_{2}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2 n}, \nabla v_{2 n}\right)+\left(y_{2 n}, v_{2 n}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3 n}, v_{2 n}\right) \varphi_{2}(t) d t+$ $\int_{0}^{T}\left(y_{1 n}, v_{2 n}\right) \varphi_{2}(t) d t=\int_{0}^{T}\left(f_{2}, v_{2 n}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(u_{2}, v_{2 n}\right)_{\Gamma} \varphi_{2}(t) d t+\left(y_{2 n}^{0}, v_{2 n}\right) \varphi_{2}(0)$,
$-\int_{0}^{T}\left(y_{3 n}, v_{3 n}\right) \varphi_{3}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3 n}, \nabla v_{3 n}\right)+\left(y_{3 n}, v_{3 n}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1 n}, v_{3 n}\right) \varphi_{3}(t) d t-$
$\int_{0}^{T}\left(y_{2 n}, v_{3 n}\right) \varphi_{3}(t) d t=\int_{0}^{T}\left(f_{3}, v_{3 n}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(u_{3}, v_{3 n}\right)_{\Gamma} \varphi_{3}(t) d t+\left(y_{3 n}^{0}, v_{3 n}\right) \varphi_{3}(0)$,
Since $\left.\begin{array}{l}v_{i n} \rightarrow v_{i} \text { strongly in } L^{2}(\Omega) \\ v_{i n} \rightarrow v_{i} \text { strongly in } V\end{array}\right\} \Rightarrow\left\{\begin{array}{c}v_{i n} \varphi_{i}^{\prime} \rightarrow v_{i} \varphi_{i}^{\prime} \text { strongly in } L^{2}(Q) \\ v_{i n} \varphi_{i} \rightarrow v_{i} \varphi_{i} \text { strongly in } L^{2}(\tilde{\mathrm{I}}, V),\end{array}\right.$,
Also, since
$y_{\text {in }} \rightarrow y_{i}$ weakly in $L^{2}(Q)$, and
$y_{i n}^{0} \rightarrow y_{i}^{0}$ weakly in $L^{2}(Q), \forall i=1,2,3$, then
$\int_{0}^{T}\left(y_{1 n}, v_{1 n}\right) \varphi_{1}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1 n}, \nabla v_{1 n}\right)+\left(y_{1 n}, v_{1 n}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2 n}, v_{1 n}\right) \varphi_{1}(t) d t-$ $\int_{0}^{T}\left(y_{3 n}, v_{1 n}\right) \varphi_{1}(t) d t \rightarrow$
$\int_{0}^{T}\left(y_{1}, v_{1}\right) \varphi_{1}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2}, v_{1}\right) \varphi_{1}(t) d t-$
$\int_{0}^{T}\left(y_{3}, v_{1}\right) \varphi_{1}(t) d t$,
$\int_{0}^{T}\left(y_{2 n}, v_{2 n}\right) \varphi_{2}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2 n}, \nabla v_{2 n}\right)+\left(y_{2 n}, v_{2 n}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3 n}, v_{2 n}\right) \varphi_{2}(t) d t+$
$\int_{0}^{T}\left(y_{1 n}, v_{2 n}\right) \varphi_{2}(t) d t \rightarrow$
$\int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3}, v_{2}\right) \varphi_{2}(t) d t+$
$\int_{0}^{T}\left(y_{1}, v_{2}\right) \varphi_{2}(t) d t$,
$\int_{0}^{T}\left(y_{3 n}, v_{3 n}\right) \varphi_{3}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3 n}, \nabla v_{3 n}\right)+\left(y_{3 n}, v_{3 n}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1 n}, v_{3 n}\right) \varphi_{3}(t) d t-$
$\int_{0}^{T}\left(y_{2 n}, v_{3 n}\right) \varphi_{3}(t) d t \rightarrow$
$\int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1}, v_{3}\right) \varphi_{3}(t) d t-$
$\int_{0}^{T}\left(y_{2}, v_{3}\right) \varphi_{3}(t) d t$,
$\left(y_{1 n}^{0}, v_{1 n}\right) \varphi_{1}(0) \rightarrow\left(y_{1}^{0}, v_{1}\right) \varphi_{1}(0)$,
$\left(y_{2 n}^{0}, v_{2 n}\right) \varphi_{2}(0) \rightarrow\left(y_{2}^{0}, v_{2}\right) \varphi_{2}(0)$,
since $v_{\text {in }} \rightarrow v_{i}$, weakly in $L^{2}(\Omega)$, then
$\int_{0}^{T}\left[\left(f_{1}, v_{1 n}\right)+\left(u_{1}, v_{1 n}\right)_{\Gamma}\right] \varphi_{1}(t) d t \rightarrow \int_{0}^{T}\left[\left(f_{1}, v_{1}\right)+\left(u_{1}, v_{1}\right)_{\Gamma}\right] \varphi_{1}(t) d t$,
$\int_{0}^{T}\left[\left(f_{2}, v_{2 n}\right)+\left(u_{2}, v_{2 n}\right)_{\Gamma}\right] \varphi_{2}(t) d t \rightarrow \int_{0}^{T}\left[\left(f_{2}, v_{2}\right)+\left(u_{2}, v_{2}\right)_{\Gamma}\right] \varphi_{2}(t) d t$,
$\int_{0}^{T}\left[\left(f_{3}, v_{3 n}\right)+\left(u_{3}, v_{3 n}\right)_{\Gamma}\right] \varphi_{3}(t) d t \rightarrow \int_{0}^{T}\left[\left(f_{3}, v_{3}\right)+\left(u_{3}, v_{3}\right)_{\Gamma}\right] \varphi_{3}(t) d t$,
which means (30) - (32), converge to (33-35), respectively
$-\int_{0}^{T}\left(y_{1}, v_{1}\right) \varphi_{1}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2}, v_{1}\right) \varphi_{1}(t) d t-$
$\int_{0}^{T}\left(y_{3}, v_{1}\right) \varphi_{1}(t) d t=\int_{0}^{T}\left(f_{1}, v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(u_{1}, v_{1}\right)_{\Gamma} \varphi_{1}(t) d t+\left(y_{1}^{0}, v_{1}\right) \varphi_{1}(0)$,
$-\int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3}, v_{2}\right) \varphi_{2}(t) d t+$
$\int_{0}^{T}\left(y_{1}, v_{2}\right) \varphi_{2}(t) d t=\int_{0}^{T}\left(f_{2}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(u_{2}, v_{2}\right)_{\Gamma} \varphi_{2}(t) d t+\left(y_{2}^{0}, v_{2}\right) \varphi_{2}(0)$,
$-\int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1}, v_{3}\right) \varphi_{3}(t) d t-$
$\int_{0}^{T}\left(y_{2}, v_{3}\right) \varphi_{3}(t) d t=\int_{0}^{T}\left(f_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(u_{3}, v_{3}\right)_{\Gamma} \varphi_{3}(t) d t+\left(y_{3}^{0}, v_{3}\right) \varphi_{3}(0)$,
Case1: Choose $\varphi_{i} \in D[0, T]$, i.e. $\varphi_{i}(0)=\varphi_{i}(T)=0, \quad \forall i=1,2,3$. Substituting in (33)-(35), using integration by parts for the $1^{\text {st }}$ terms in the L.H.S. of each one of the obtained equations, one has
$\int_{0}^{T}\left\langle y_{1 t}, v_{1}\right\rangle \varphi_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2}, v_{1}\right) \varphi_{1}(t) d t-$ $\int_{0}^{T}\left(y_{3}, v_{1}\right) \varphi_{1}(t) d t=\int_{0}^{T}\left(f_{1}, v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(u_{1}, v_{1}\right)_{\Gamma} \varphi_{1}(t) d t$,
$\int_{0}^{T}\left\langle y_{2 t}, v_{2}\right\rangle \varphi_{2}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3}, v_{2}\right) \varphi_{2}(t) d t+$
$\int_{0}^{T}\left(y_{1}, v_{2}\right) \varphi_{2}(t) d t=\int_{0}^{T}\left(f_{2}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(u_{2}, v_{2}\right)_{\Gamma} \varphi_{2}(t) d t$,
$\int_{0}^{T}\left\langle y_{3 t}, v_{3}\right\rangle \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1}, v_{3}\right) \varphi_{3}(t) d t-$
$\int_{0}^{T}\left(y_{2}, v_{3}\right) \varphi_{3}(t) d t=\int_{0}^{T}\left(f_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(u_{3}, v_{3}\right)_{\Gamma} \varphi_{3}(t) d t$,
i.e. \vec{y} is a solution of the $\mathrm{wf}(11)-(13)$.

Case 2: Choose $\varphi_{i} \in C^{1}[0, T]$, s.t. $\varphi_{i}(T)=0 \& \varphi_{i}(0) \neq 0, \forall i=1,2,3$. Using integration by parts for $1^{\text {st }}$ term in the L.H.S. of (36), one gets
$-\int_{0}^{T}\left(y_{1}, v_{1}\right) \varphi_{1}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2}, v_{1}\right) \varphi_{1}(t) d t-$
$\int_{0}^{T}\left(y_{3}, v_{1}\right) \varphi_{1}(t) d t=\int_{0}^{T}\left(f_{1}, v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(u_{1}, v_{1}\right)_{\Gamma} \varphi_{1}(t) d t+\left(y_{1}(0), v_{1}\right) \varphi_{1}(0)$,
Subtracting (33) from (39), one obtains that
$\left(y_{1}^{0}, v_{1}\right) \varphi_{1}(0)=\left(y_{1}(0), v_{1}\right) \varphi_{1}(0), \varphi_{1}(0) \neq 0, \forall \varphi_{1} \in C^{1}[0, T] \Rightarrow\left(y_{1}^{0}, v_{1}\right)=\left(y_{1}(0), v_{1}\right)$, i.e. the ICs (11.b) holds. By the same above way one can show that $\left(y_{2}^{0}, v_{2}\right)=\left(y_{2}(0), v_{2}\right)$, $\left(y_{3}^{0}, v_{3}\right)=\left(y_{3}(0), v_{3}\right)$ which means the ICs (12.b) \& (13.b) are holds.

The strongly convergence for $\overrightarrow{\mathbf{y}}_{\mathbf{n}}$:

Substituting $v_{1}=y_{1 n}, v_{2}=y_{2 n}$ and $v_{3}=y_{3 n}$ in (17.a), (18.a)\&(19.a) respectively, adding the three obtained equations together, and then integrating the obtained equation from 0 to T, on the other hand substituting $v_{1}=y_{1}, v_{2}=y_{2} \& v_{3}=y_{3}$ in (11.a), (12.a) \&(13.a) respectively, adding them together, integrating the obtained equations from 0 to T, one gets
$\int_{0}^{T}\left\langle\vec{y}_{n t}, \vec{y}_{n}\right\rangle d t+\int_{0}^{T} a\left(\vec{y}_{n}, \vec{y}_{n}\right) d t=$
$\int_{0}^{T}\left[\left(f_{1}, y_{1 n}\right)+\left(u_{1}, y_{1 n}\right)_{\Gamma}+\left(f_{2}, y_{2 n}\right)+\left(u_{2}, y_{2 n}\right)_{\Gamma}+\left(f_{3}, y_{3 n}\right)+\left(u_{3}, y_{3 n}\right)_{\Gamma}\right] d t$,
$\int_{0}^{T}\left\langle\vec{y}_{t}, \vec{y}\right\rangle d t+\int_{0}^{T} a(\vec{y}, \vec{y}) d t=$
$\int_{0}^{T}\left[\left(f_{1}, y_{1}\right)+\left(u_{1}, y_{1}\right)_{\Gamma}+\left(f_{2}, y_{2}\right)+\left(u_{2}, y_{2}\right)_{\Gamma}+\left(f_{3}, y_{3}\right)+\left(u_{3}, y_{3}\right)_{\Gamma}\right] d t$,
using Lemma(1.2) in [11] for the $1^{\text {st }}$ terms in the L.H.S. of ($40 . \mathrm{a} \& \mathrm{~b}$), they become

$$
\begin{align*}
& \frac{1}{2}\left\|\vec{y}_{n}(T)\right\|_{0}^{2}-\frac{1}{2}\left\|\vec{y}_{n}(0)\right\|_{0}^{2}+\int_{0}^{T} a\left(\vec{y}_{n}, \vec{y}_{n}\right) d t= \tag{40.b}\\
& \int_{0}^{T}\left[\left(f_{1}, y_{1 n}\right)+\left(u_{1}, y_{1 n}\right)_{\Gamma}+\left(f_{2}, y_{2 n}\right)+\left(u_{2}, y_{2 n}\right)_{\Gamma}+\left(f_{3}, y_{3 n}\right)+\left(u_{3}, y_{3 n}\right)_{\Gamma}\right] d t \tag{41.a}
\end{align*}
$$

$\frac{1}{2}\|\vec{y}(T)\|_{0}^{2}-\frac{1}{2}\|\vec{y}(0)\|_{0}^{2}+\int_{0}^{T} a(\vec{y}, \vec{y}) d t=\int_{0}^{T}\left[\left(f_{1}, y_{1}\right)+\left(u_{1}, y_{1}\right)_{\Gamma}+\left(f_{2}, y_{2}\right)+\left(u_{2}, y_{2}\right)_{\Gamma}+\right.$ $\left.\left(f_{3}, y_{3}\right)+\left(u_{3}, y_{3}\right)_{\Gamma}\right] d t$,
since
$\frac{1}{2}\left\|\vec{y}_{n}(T)-\vec{y}(T)\right\|_{0}^{2}-\frac{1}{2}\left\|\vec{y}_{n}(0)-\vec{y}(0)\right\|_{0}^{2}+\int_{0}^{T} a\left(\vec{y}_{n}-\vec{y}, \vec{y}_{n}-\vec{y}\right) d t=A_{1}-B_{1}-C_{1}$,
where
$A_{1}=\frac{1}{2}\left\|\vec{y}_{n}(T)\right\|_{0}^{2}-\frac{1}{2}\left\|\vec{y}_{n}(0)\right\|_{0}^{2}+\int_{0}^{T} a\left(\vec{y}_{n}(t), \vec{y}_{n}(t)\right) d t$
$B_{1}=\frac{1}{2}\left(\vec{y}_{n}(T), \vec{y}(T)\right)-\frac{1}{2}\left(\vec{y}_{n}(0), \vec{y}(0)\right)+\int_{0}^{T} a\left(\vec{y}_{n}(t), \vec{y}(t)\right) d t$,
$C_{1}=\frac{1}{2}\left(\vec{y}(T), \vec{y}_{n}(T)-\vec{y}(T)\right)-\frac{1}{2}\left(\vec{y}(0), \vec{y}_{n}(0)-\vec{y}(0)\right)+\int_{0}^{T} a\left(\vec{y}(t), \vec{y}_{n}(t)-\vec{y}(t)\right) d t$,
Since
$\vec{y}_{n}^{0}=\vec{y}_{n}(0) \rightarrow \vec{y}^{0}=\vec{y}(0)$ strongly in $\left(L^{2}(\Omega)\right)^{3}$,
$\vec{y}_{n}(T) \rightarrow \vec{y}(T) \quad$ strongly in $\quad\left(L^{2}(\Omega)\right)^{3}$,
Then
$\left\{\begin{array}{l}\left(\vec{y}(0), \vec{y}_{n}(0)-\vec{y}(0)\right) \rightarrow 0 \\ \left(\vec{y}(T), \vec{y}_{n}(T)-\vec{y}(T)\right) \rightarrow 0\end{array}\right.$,
$\left\{\begin{array}{c}\left\|\vec{y}_{n}(0)-\vec{y}(0)\right\|_{0}^{2} \rightarrow 0 \\ \left\|\vec{y}_{n}(T)-\vec{y}(T)\right\|_{0}^{2} \rightarrow 0\end{array}\right.$,
Since $\vec{y}_{n} \rightarrow \vec{y}$ weakly in $\left(L^{2}(\tilde{I}, V)\right)^{3}$, then $\int_{0}^{T} a\left(\vec{y}(t), \vec{y}_{n}(t)-\vec{y}(t)\right) d t \rightarrow 0$,
As well as, since $\vec{y}_{n} \rightarrow \vec{y}$ weakly in $\left(L^{2}(Q)\right)^{3}$, then
$\int_{0}^{T}\left[\left(f_{1}, y_{1 n}\right)+\left(u_{1}, y_{1 n}\right)_{\Gamma}+\left(f_{2}, y_{2 n}\right)+\left(u_{2}, y_{2 n}\right)_{\Gamma}+\left(f_{3}, y_{3 n}\right)+\left(u_{3}, y_{3 n}\right)_{\Gamma}\right] d t \rightarrow$
$\int_{0}^{T}\left[\left(f_{1}, y_{1}\right)+\left(u_{1}, y_{1}\right)_{\Gamma}+\left(f_{2}, y_{2}\right)+\left(u_{2}, y_{2}\right)_{\Gamma}+\left(f_{3}, y_{3}\right)+\left(u_{3}, y_{3}\right)_{\Gamma}\right] d t$,
i.e. when $n \rightarrow \infty$ in both sides of (42), one has the following results:
(1) The first two terms in the L.H.S. of (42) are tending to zero from (42.d).
(2) From (41.a)

Eq. $A_{1}=\int_{0}^{T}\left[\left(f_{1}, y_{1 n}\right)+\left(u_{1}, y_{1 n}\right)_{\Gamma}+\left(f_{2}, y_{2 n}\right)+\left(u_{2}, y_{2 n}\right)_{\Gamma}+\left(f_{3}, y_{3 n}\right)+\left(u_{3}, y_{3}\right)_{\Gamma}\right] d t$
from
$\underset{42 . \mathrm{f})}{\rightarrow} \int_{0}^{T}\left[\left(f_{1}, y_{1}\right)+\left(u_{1}, y_{1}\right)_{\Gamma}+\left(f_{2}, y_{2}\right)+\left(u_{2}, y_{2}\right)_{\Gamma}+\left(f_{3}, y_{3}\right)+\left(u_{3}, y_{3}\right)_{\Gamma}\right] d t$,
(3) Eq. $\quad B_{1} \rightarrow$ L.H.S. of $(3.41 . \mathrm{b})=\int_{0}^{T}\left[\left(f_{1}, y_{1}\right)+\left(u_{1}, y_{1}\right)_{\Gamma}+\left(f_{2}, y_{2}\right)+\left(u_{2}, y_{2}\right)_{\Gamma}+\right.$ $\left.\left(f_{3}, y_{3}\right)+\left(u_{3}, y_{3}\right)_{\Gamma}\right] d t$,
(4) The $1^{\text {st }}$ two terms in Eq. C_{1} are tending to zero from (42.c), and the last one term also tend to zero from (42.e), from these results (42) gives when $n \rightarrow \infty$
$\int_{0}^{T}\left\|\vec{y}_{n}-\vec{y}\right\|_{1}^{2} d t=\int_{0}^{T} a\left(\vec{y}_{n}-\vec{y}, \vec{y}_{n}-\vec{y}\right) d t \rightarrow 0 \Rightarrow \vec{y}_{n} \rightarrow \vec{y}$ strongly in $\left(L^{2}(\tilde{\mathrm{I}}, V)\right)^{3}$.
Uniqueness of the solution: Let $\vec{y}, \overrightarrow{\bar{y}}$ are two solutions of the $\mathrm{wf}(11)-(13)$ i.e. y_{1} and \bar{y}_{1} are satisfied (11.a), or
$\left\langle y_{1 t}, v_{1}\right\rangle+a_{1}\left(y_{1}, v_{1}\right)-\left(y_{2}, v_{1}\right)-\left(y_{3}, v_{1}\right)=\left(f_{1}, v_{1}\right)+\left(u_{1}, v_{1}\right)_{\Gamma}, \quad \forall v_{1} \in V_{1}$
$\left\langle\bar{y}_{1 t}, v_{1}\right\rangle+a_{1}\left(\bar{y}_{1}, v_{1}\right)-\left(\bar{y}_{2}, v_{1}\right)-\left(\bar{y}_{3}, v_{1}\right)=\left(f_{1}, v_{1}\right)+\left(u_{1}, v_{1}\right)_{\Gamma}, \quad \forall v_{1} \in V_{1}$
Subtracting the $2^{\text {nd }}$ equation from the $1^{\text {st }}$ one and substituting $v_{1}=y_{1}-\bar{y}_{1}$ in the obtained equation, one gets that
$\left\langle\left(y_{1}-\bar{y}_{1}\right)_{t}, y_{1}-\bar{y}_{1}\right\rangle+a_{1}\left(y_{1}-\bar{y}_{1}, y_{1}-\bar{y}_{1}\right)-\left(y_{2}-\bar{y}_{2}, y_{1}-\bar{y}_{1}\right)-\left(y_{3}-\bar{y}_{3}, y_{1}-\bar{y}_{1}\right)=$ 0 ,
by the same way, one gets
$\left\langle\left(y_{2}-\bar{y}_{2}\right)_{t}, y_{2}-\bar{y}_{2}\right\rangle+a_{2}\left(y_{2}-\bar{y}_{2}, y_{2}-\bar{y}_{2}\right)+\left(y_{3}-\bar{y}_{3}, y_{2}-\bar{y}_{2}\right)+\left(y_{1}-\bar{y}_{1}, y_{2}-\bar{y}_{2}\right)=$ 0 ,
$\left\langle\left(y_{3}-\bar{y}_{3}\right)_{t}, y_{3}-\bar{y}_{3}\right\rangle+a_{3}\left(y_{3}-\bar{y}_{3}, y_{3}-\bar{y}_{3}\right)+\left(y_{1}-\bar{y}_{1}, y_{3}-\bar{y}_{3}\right)-\left(y_{2}-\bar{y}_{2}, y_{3}-\bar{y}_{3}\right)=$ 0 ,
adding (43) - (45), using Lemma(1.2) in [11]. In the $1^{\text {st }}$ term of the obtained equations, to get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\vec{y}-\vec{y}\|_{0}^{2}+\|\vec{y}-\vec{y}\|_{1}^{2}=0 \tag{46}
\end{equation*}
$$

The $2^{\text {nd }}$ term of the L.H.S. of (46) is positive, integrating both sides of (46) w.r.t. t from 0 to t, one gets
$\int_{0}^{t} \frac{d}{d t}\|\vec{y}-\vec{y}\|_{0}^{2} d t \leq 0 \Rightarrow\|(\vec{y}-\vec{y})(t)\|_{0}^{2} \leq 0 \Rightarrow\|\vec{y}-\vec{y}\|_{0}^{2}=0 \quad \forall t \in \tilde{I}$,
integrating both sides of (46) from 0 to T, using the given ICs, one has
$\int_{0}^{T}\|\vec{y}-\vec{y}\|_{1}^{2} d t=0 \Rightarrow\|\vec{y}-\vec{y}\|_{L^{2}(\mathbb{I}, V)}=0 \Rightarrow \vec{y}=\vec{y}$.
4. Existence of a CCBOCP:

Theorem 4.1: In addition to assumptions (A), assume that \vec{y} and $\vec{y}+\delta \vec{y}$ are the SVS corresponding to the CVS \vec{u} and $\vec{u}+\delta \vec{u}$ respectively with \vec{u} and $\delta \vec{u}$ are bounded in $\left(L^{2}(\Sigma)\right)^{3}$, then
$\|\delta \vec{y}\|_{L^{\infty}\left(\tilde{i}, L^{2}(\Omega)\right)} \leq L\|\delta \vec{u}\|_{\Sigma}, \quad L \in \mathbb{R}^{+}$
$\|\delta \vec{y}\|_{L^{2}(Q)} \leq \bar{L}\|\delta \vec{u}\|_{\Sigma}, \quad \bar{L} \in \mathbb{R}^{+}$
$\|\delta \vec{y}\|_{L^{2}(\tilde{I}, V)} \leq \bar{L}_{1}\|\delta \vec{u}\|_{\Sigma}, \quad \bar{L}_{1} \in \mathbb{R}^{+}$
Proof: Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right) \in\left(L^{2}(\Sigma)\right)^{3}$ be given, then by Theorem3.1, there exists $\vec{y}=$ $\left(y_{1}=y_{u_{1}}, y_{2}=y_{u_{2}}, y_{3}=y_{u_{3}}\right.$) which is satisfied (11)-(13) and also let $\overrightarrow{\bar{y}}=\left(\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}\right)$ be the solution of (11)-(13), corresponds to the CV $\overrightarrow{\vec{u}}=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right) \in\left(L^{2}(\Sigma)\right)^{3}$ i.e.
$\left\langle\bar{y}_{1 t}, v_{1}\right\rangle+\left(\nabla \bar{y}_{1}, \nabla v_{1}\right)+\left(\bar{y}_{1}, v_{1}\right)-\left(\bar{y}_{2}, v_{1}\right)-\left(\bar{y}_{3}, v_{1}\right)=\left(f_{1}, v_{1}\right)+\left(\bar{u}_{1}, v_{1}\right)_{\Gamma}$, $\left(\bar{y}_{1}(0), v_{1}\right)=\left(y_{1}^{0}, v_{1}\right)$,
$\left\langle\bar{y}_{2 t}, v_{2}\right\rangle+\left(\nabla \bar{y}_{2}, \nabla v_{2}\right)+\left(\bar{y}_{2}, v_{2}\right)+\left(\bar{y}_{3}, v_{2}\right)+\left(\bar{y}_{1}, v_{2}\right)=\left(f_{2}, v_{2}\right)+\left(\bar{u}_{2}, v_{2}\right)_{\Gamma}$,
$\left(\bar{y}_{2}(0), v_{2}\right)=\left(y_{2}^{0}, v_{2}\right)$,
$\left\langle\bar{y}_{3 t}, v_{3}\right\rangle+\left(\nabla \bar{y}_{3}, \nabla v_{3}\right)+\left(\bar{y}_{3}, v_{3}\right)+\left(\bar{y}_{1}, v_{3}\right)-\left(\bar{y}_{2}, v_{3}\right)=\left(f_{3}, v_{3}\right)+\left(\bar{u}_{3}, v_{3}\right)_{\Gamma}$,
$\left(\bar{y}_{3}(0), v_{3}\right)=\left(y_{3}^{0}, v_{3}\right)$, and setting $\delta y_{1}=\bar{y}_{1}-y_{1}, \delta y_{2}=\bar{y}_{2}-y_{2}, \delta y_{3}=\bar{y}_{3}-y_{3}, \delta u_{1}=\bar{u}_{1}-u_{1}, \delta u_{2}=\bar{u}_{2}-$ u_{2} and $\delta u_{3}=\bar{u}_{3}-u_{3}$ in the obtained equations, they give
$\left\langle\delta y_{1 t}, v_{1}\right\rangle+\left(\nabla \delta y_{1}, \nabla v_{1}\right)+\left(\delta y_{1}, v_{1}\right)-\left(\delta y_{2}, v_{1}\right)-\left(\delta y_{3}, v_{1}\right)=\left(\delta u_{1}, v_{1}\right)_{\Gamma}$,
$\left(\delta y_{1}(0), v_{1}\right)=0$,
$\left\langle\delta y_{2 t}, v_{2}\right\rangle+\left(\nabla \delta y_{2}, \nabla v_{2}\right)+\left(\delta y_{2}, v_{2}\right)+\left(\delta y_{3}, v_{2}\right)+\left(\delta y_{1}, v_{2}\right)=\left(\delta u_{2}, v_{2}\right)_{\Gamma}$,
$\left(\delta y_{2}(0), v_{2}\right)=0$,
$\left\langle\delta y_{3 t}, v_{3}\right\rangle+\left(\nabla \delta y_{3}, \nabla v_{3}\right)+\left(\delta y_{3}, v_{3}\right)+\left(\delta y_{1}, v_{3}\right)-\left(\delta y_{2}, v_{3}\right)=\left(\delta u_{3}, v_{3}\right)_{\Gamma}$,
$\left(\delta y_{3}(0), v_{3}\right)=0$,
substituting $v_{1}=\delta y_{1}, v_{2}=\delta y_{2} \& v_{3}=\delta y_{3}$ in (3.50), (3.51) \& (3.52) respectively, adding the obtained equations, using $\operatorname{Lemma}(1.2)$ in [11]. They give
$\frac{1}{2} \frac{d}{d t}\|\delta \vec{y}\|_{0}^{2}+\|\delta \vec{y}\|_{1}^{2}=\left(\delta u_{1}, \delta y_{1}\right)_{\Gamma}+\left(\delta u_{2}, \delta y_{2}\right)_{\Gamma}+\left(\delta u_{3}, \delta y_{3}\right)_{\Gamma}$,
Since the $2^{\text {nd }}$ term of (53) is positive, integrating w.r.t. t from 0 to t, and then using the Cauchy Schwartz inequality (CSI), it becomes
$\int_{0}^{t} \frac{d}{d t}\|\delta \vec{y}\|_{0}^{2} d t \leq\left\|\delta u_{1}\right\|_{\Sigma}^{2}+\int_{0}^{t}\left\|\delta y_{1}\right\|_{\Gamma}^{2} d t+\left\|\delta u_{2}\right\|_{\Sigma}^{2}+\int_{0}^{t}\left\|\delta y_{2}\right\|_{\Gamma}^{2} d t+\left\|\delta u_{3}\right\|_{\Sigma}^{2}+$
$\int_{0}^{t}\left\|\delta y_{3}\right\|_{\Gamma}^{2} d t$,
which gives by using the Trace Theorem [17].
$\|\delta \vec{y}(t)\|_{0}^{2} \leq\|\delta \vec{u}\|_{\Sigma}^{2}+c^{2} \int_{0}^{t}\|\delta \vec{y}\|_{0}^{2} d t, \forall t \in[0, T]$ using the BGI, one gets
$\|\delta \vec{y}(t)\|_{0}^{2} \leq e^{T c^{2}}\|\delta \vec{u}\|_{\Sigma}^{2}=L^{2}\|\delta \vec{u}\|_{\Sigma}^{2}, e^{T c^{2}}=L^{2}, L>0$
or $\quad\|\delta \vec{y}\|_{L^{\infty}\left(\tilde{1}, L^{2}(\Omega)\right)} \leq L\|\delta \vec{u}\|_{\Sigma}$
Since $\|\delta \vec{y}\|_{L^{2}(\boldsymbol{Q})}^{2} \leq T L^{2}\|\delta \vec{u}\|_{\Sigma}^{2}$, thus $\|\delta \vec{y}\|_{L^{2}(\boldsymbol{Q})} \leq \bar{L}\|\delta \vec{u}\|_{\Sigma}, T L^{2}=\bar{L}^{2}$
Using a similar way which is used in the above steps, gives
$\int_{0}^{T} \frac{d}{d t}\|\delta \vec{y}\|_{0}^{2}+2 \int_{0}^{T}\|\delta \vec{y}\|_{1}^{2} d t \leq\|\delta \vec{u}\|_{\Sigma}^{2}+c^{2} \int_{0}^{T}\|\delta \vec{y}\|_{0}^{2} d t$
$\Rightarrow\|\delta \vec{y}\|_{L^{2}(\tilde{I}, V)}^{2} \leq \bar{L}_{1}^{2}\|\delta \vec{u}\|_{\Sigma}^{2} \quad$ where $\quad \bar{L}_{1}^{2}=\left(1+\bar{L}^{2} c^{2}\right) / 2$
or $\|\delta \vec{y}\|_{L^{2}(\mathbb{1}, V)} \leq \bar{L}_{1}\|\delta \vec{u}\|_{\Sigma}$.
Theorem 4.2: With assumption (A), the operator $\vec{u} \mapsto \vec{y}_{\vec{u}}$ is continuous from $\left(L^{2}(\Sigma)\right)^{3}$ in to $\left(L^{\infty}{ }_{\left(\mathrm{I}, L^{2}(\Omega)\right)}\right)^{3}$ or in to $\left(L^{2}(\tilde{\mathrm{I}}, V)\right)^{3}$ or in to $\left(L^{2}(Q)\right)^{3}$.
Proof: Let $\delta \vec{u}=\overrightarrow{\vec{u}}-\vec{u}$ and $\vec{y}=\overrightarrow{\bar{y}}-\vec{y}$, where $\overrightarrow{\bar{y}}$ and \vec{y} are the corresponding SVS to the CVS $\overrightarrow{\vec{u}}$ and \vec{u} respectively, using the first result in Theorem4.1, we get
$\vec{y} \underset{L^{\infty}\left(\tilde{I}, L^{2}(\Omega)\right)}{ } \vec{y}$ if $\overrightarrow{\vec{u}} \underset{L^{2}(\Sigma)}{\longrightarrow} \vec{u}$,
i.e. the operator $\vec{u} \mapsto \vec{y}_{\vec{u}}$ is Lipschitz continuous (LC) from $\boldsymbol{L}^{2}(\boldsymbol{\Sigma})$ in to $\mathbf{L}^{\infty}\left(\tilde{I}, \mathbf{L}^{2}(\Omega)\right)$.

Easily, one can get this operator is also LC from $\boldsymbol{L}^{2}(\boldsymbol{\Sigma})$ into $\boldsymbol{L}^{2}(\boldsymbol{Q})$ and into $\boldsymbol{L}^{\mathbf{2}}(\mathrm{I}, \boldsymbol{V})$.
Lemma 4.1: $[\mathbf{1 0}]$. The norm $\|.\|_{0}$ is weakly lower semi continuous (W.L.S.C.).
Lemma 4.2: The CoF which is given by (10) is W.L.S.C.
Proof: From Lemma(4.1), we got that the norm $\|\vec{u}\|_{\Sigma}$ is W.L.S.C., $\vec{u}_{k} \rightarrow \vec{u}$ weakly in $\boldsymbol{L}^{2}(\boldsymbol{\Sigma})$, then by (Theorem 4.2) $\vec{y}_{k} \rightarrow \vec{y}=\vec{y}_{\vec{u}}$ is weakly in $\boldsymbol{L}^{2}(\boldsymbol{\Sigma})$, which gives that the norm $\left\|\vec{y}-\vec{y}_{d}\right\|_{\Sigma}$ is W.L.S.C. (by Lemma 4.1), hence $G_{0}(\vec{u})$ is W.L.S.C. .
Theorem 4.3: Consider the cost function (10), if $G_{0}(\vec{u})$ is coercive, then there exists a CCBOCV.
Proof: Since $G_{0}(\vec{u}) \geq 0$ and $G_{0}(\vec{u})$ is coercive, then there exists a minimizing sequence $\left\{\vec{u}_{k}\right\}=\left\{\left(u_{1 k}, u_{2 k}, u_{3 k}\right)\right\} \in \vec{W}_{A}, \forall k$ such that $\lim _{n \rightarrow \infty} G_{0}\left(\vec{u}_{k}\right)=\inf _{\vec{u} \in \vec{W}_{A}} G_{0}(\overrightarrow{\vec{u}})$, then $\left\|\vec{u}_{k}\right\|_{\Sigma} \leq$ $\hat{\mathrm{C}}_{1}, \hat{\mathrm{C}}_{1}>0$, then by ATh there exists a subsequence of $\left\{\vec{u}_{k}\right\}$, for simplicity say again $\left\{\vec{u}_{k}\right\}$ s.t. $\vec{u}_{k} \rightarrow \vec{u}$ weakly in $\left(L^{2}(\Sigma)\right)^{3}$, as $k \rightarrow \infty$, from Theorem 3.1 , corresponding to the sequence of controls $\left\{\vec{u}_{k}\right\}$, there exists a sequence of solutions $\left\{\vec{y}_{k}\right\}$, but the norms $\left\|\vec{y}_{k}\right\|_{L^{\infty}\left(\tilde{\mathrm{I}}, \mathrm{L}^{2}(\Omega)\right)},\left\|\vec{y}_{k}\right\|_{L^{2}(\boldsymbol{Q})} \&\left\|\vec{y}_{k}\right\|_{L^{2}(\mathbb{I}, \boldsymbol{V})}$ are bounded, then by ATh there exists a subsequence of $\left\{\vec{y}_{k}\right\}$, for simplicity, say again $\left\{\vec{y}_{k}\right\}$, such that
$\vec{y}_{k} \rightarrow \vec{y}$ weakly in $\left(L^{\infty}\left(\tilde{\mathrm{I}}, L^{2}(\Omega)\right)\right)^{3}$, in $\left(L^{2}(Q)\right)^{3}$, and in $\left(L^{2}(\tilde{\mathrm{I}}, V)\right)^{3}$,
Suppose that (17.a), (18.a) \& (19.a) can be rewritten as
$\left\langle y_{1 k t}, v_{1}\right\rangle=-\left(\nabla y_{1 k}, \nabla v_{1}\right)-\left(y_{1 k}, v_{1}\right)+\left(y_{2 k}, v_{1}\right)+\left(y_{3 k}, v_{1}\right)+\left(f_{1}, v_{1}\right)+\left(u_{1 k}, v_{1}\right)_{\Gamma}$,
$\left\langle y_{2 k t}, v_{2}\right\rangle=-\left(\nabla y_{2 k}, \nabla v_{2}\right)-\left(y_{2 k}, v_{2}\right)-\left(y_{3 k}, v_{2}\right)-\left(y_{1 k}, v_{2}\right)+\left(f_{2}, v_{2}\right)+\left(u_{2 k}, v_{2}\right)_{\Gamma}$,
$\left\langle y_{3 k t}, v_{3}\right\rangle=-\left(\nabla y_{3 k}, \nabla v_{3}\right)-\left(y_{3 k}, v_{3}\right)-\left(y_{1 k}, v_{3}\right)+\left(y_{2 k}, v_{3}\right)+\left(f_{1}, v_{1}\right)+\left(u_{3 k}, v_{1}\right)_{\Gamma}$,
Adding the above three equations and integrating both sides of the obtained equation from 0 to T, taking the absolute value, then using CSI. Finally, using assumption (A), it yields
$\left|\int_{0}^{T}\left\langle\vec{y}_{k t}, \vec{v}\right\rangle d t\right| \leq\left\|\nabla y_{1 k}\right\|_{Q}\left\|\nabla v_{1}\right\|_{Q}+\left\|y_{1 k}\right\|_{Q}\left\|v_{1}\right\|_{Q}+\left\|y_{2 k}\right\|_{Q}\left\|v_{1}\right\|_{Q}+\left\|y_{3 k}\right\|_{Q}\left\|v_{1}\right\|_{Q}+$
$\left\|\nabla y_{2 k}\right\|_{Q}\left\|\nabla v_{2}\right\|_{Q}+\left\|y_{2 k}\right\|_{Q}\left\|v_{2}\right\|_{Q}+\left\|y_{3 k}\right\|_{Q}\left\|v_{2}\right\|_{Q}+\left\|y_{1 k}\right\|_{Q}\left\|v_{2}\right\|_{Q}+\left\|\nabla y_{3 k}\right\|_{Q}\left\|\nabla v_{3}\right\|_{Q}+$
$\left\|y_{3 k}\right\|_{Q}\left\|v_{3}\right\|_{Q}+\left\|y_{1 k}\right\|_{Q}\left\|v_{3}\right\|_{Q}+\left\|y_{2 k}\right\|_{Q}\left\|v_{3}\right\|_{Q}+\left\|\eta_{1}\right\|_{Q}\left\|v_{1}\right\|_{Q}+\left\|\eta_{2}\right\|_{Q}\left\|v_{2}\right\|_{Q}+$
$\left\|\eta_{3}\right\|_{Q}\left\|v_{3}\right\|_{Q}+\left\|u_{1 k}\right\|_{\Sigma}\left\|v_{1}\right\|_{\Sigma}+\left\|u_{2 k}\right\|_{\Sigma}\left\|v_{2}\right\|_{\Sigma}+\left\|u_{3 k}\right\|_{\Sigma}\left\|v_{3}\right\|_{\Sigma}$.
Since for each $i=1,2,3$, the following inequalities are satisfied
$\left\|\nabla y_{i k}\right\|_{Q} \leq\left\|\nabla \vec{y}_{k}\right\|_{Q} \leq\left\|\vec{y}_{k}\right\|_{L^{2}(\mathbb{I}, V)},\left\|\nabla v_{i}\right\|_{Q} \leq\|\nabla \vec{v}\|_{Q} \leq\|\vec{v}\|_{L^{2}(\mathbb{I}, V)},\left\|y_{i k}\right\|_{Q} \leq\left\|\vec{y}_{k}\right\|_{Q} \leq$ $\left\|\vec{y}_{k}\right\|_{L^{2}(\mathbb{I}, V)}, \quad\left\|v_{i}\right\|_{Q} \leq\|\vec{v}\|_{Q} \leq\|\vec{v}\|_{L^{2}(\mathbb{I}, V)} \quad,\left\|u_{i k}\right\|_{\Sigma} \leq\left\|\vec{u}_{k}\right\|_{\Sigma} \leq \hat{C}_{1}, \quad\left\|v_{i}\right\|_{\Sigma} \leq\|\vec{v}\|_{\Sigma} \leq$ $\hat{\mathrm{h}}_{1}\|\vec{v}\|_{L^{2}(\mathbb{I}, V)},\left\|\eta_{i}\right\|_{Q} \leq b_{i}^{\prime}$, then
$\left|\int_{0}^{T}\left\langle\vec{y}_{k t}, \vec{v}\right\rangle d t\right| \leq 12\left\|\vec{y}_{k}\right\|_{L^{2}(, V, V)}\|\vec{v}\|_{L^{2}(\mathbb{I}, V)}+\left(b_{1}^{\prime}+b_{2}^{\prime}+b_{3}^{\prime}+3 \hat{C}_{1} \hat{h}_{1}\right)\|\vec{v}\|_{L^{2}(\mathbb{I}, V)}$
Or $\left|\int_{0}^{T}\left\langle\vec{y}_{k t}, \vec{v}\right\rangle d t\right| \leq\left(12 b_{2}(c)+b^{\prime}(c)\right)\|\vec{v}\|_{L^{2}(\tilde{V}, v)}$
With $\left\|\vec{y}_{k}\right\|_{L^{2}(\mathbb{I}, V)} \leq b_{2}(c) \& b^{\prime}(c)=b_{1}^{\prime}+b_{2}^{\prime}+b_{3}^{\prime}+3 \hat{C}_{1} \hat{\mathrm{~h}}_{1}$
$\Rightarrow \frac{\left.\mid J_{0}^{T} \hat{y}_{k k}, \vec{v}\right) d t \mid}{\|\vec{v}\|_{L^{2}(, V)}} \leq b_{3}(c)$, with $b_{3}(c)=12 b_{2}(c)+b^{\prime}(c) \Rightarrow\left\|\vec{y}_{k t}\right\|_{L^{2}\left(\mathbb{V}, V^{*}\right)} \leq b_{3}(c)$
Since for each k, \vec{y}_{k} is a solution of the TSEs (1) - (9), then
$\left\langle y_{1 k t}, v_{1}\right\rangle+\left(\nabla y_{1 k}, \nabla v_{1}\right)+\left(y_{1 k}, v_{1}\right)-\left(y_{2 k}, v_{1}\right)-\left(y_{3 k}, v_{1}\right)=\left(f_{1}, v_{1}\right)+\left(u_{1 k}, v_{1}\right)_{\Gamma}$,
$\left\langle y_{2 k}, v_{2}\right\rangle+\left(\nabla y_{2 k}, \nabla v_{2}\right)+\left(y_{2 k}, v_{2}\right)+\left(y_{3 k}, v_{2}\right)+\left(y_{1 k}, v_{2}\right)=\left(f_{2}, v_{2}\right)+\left(u_{2 k}, v_{2}\right)_{\Gamma}$,
$\left\langle y_{3 k t}, v_{3}\right\rangle+\left(\nabla y_{3 k}, \nabla v_{3}\right)+\left(y_{3 k}, v_{3}\right)+\left(y_{1 k}, v_{3}\right)-\left(y_{2 k}, v_{3}\right)=\left(f_{3}, v_{3}\right)+\left(u_{3 k}, v_{3}\right)_{\Gamma}$,
Let $\varphi_{i} \in C^{1}[0, T]$, s.t. $\varphi_{i}(T)=0, \varphi_{i}(0) \neq 0, \forall i=1,2,3$, rewriting the $1^{\text {st }}$ terms in the L.H.S. of (54) - (56) multiplying their both sides by $\varphi_{i}(t), \forall i=1,2,3$, respectively, integrating both sides w.r.t. t from 0 to T, and integration by parts for the $1^{\text {st }}$ terms in the L.H.S. of each obtained equations, one gets that
$-\int_{0}^{T}\left(y_{1 k}, v_{1}\right) \varphi_{1}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1 k}, \nabla v_{1}\right)+\left(y_{1 k}, v_{1}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2 k}, v_{1}\right) \varphi_{1}(t) d t-$
$\int_{0}^{T}\left(y_{3 k}, v_{1}\right) \varphi_{1}(t) d t=\int_{0}^{T}\left(f_{1}, v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(u_{1 k}, v_{1}\right)_{\Gamma} \varphi_{1}(t) d t+\left(y_{1 k}(0), v_{1}\right) \varphi_{1}(0),(57)$
$-\int_{0}^{T}\left(y_{2 k}, v_{2}\right) \varphi_{2}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2 k}, \nabla v_{2}\right)+\left(y_{2 k}, v_{2}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3 k}, v_{2}\right) \varphi_{2}(t) d t+$
$\int_{0}^{T}\left(y_{1 k}, v_{2}\right) \varphi_{2}(t) d t=\int_{0}^{T}\left(f_{2}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(u_{2 k}, v_{2}\right)_{\Gamma} \varphi_{2}(t) d t+\left(y_{2 k}(0), v_{2}\right) \varphi_{2}(0),(58)$
$-\int_{0}^{T}\left(y_{3 k}, v_{3}\right) \varphi_{3}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3 k}, \nabla v_{3}\right)+\left(y_{3 k}, v_{3}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1 k}, v_{3}\right) \varphi_{3}(t) d t-$
$\int_{0}^{T}\left(y_{2 k}, v_{3}\right) \varphi_{3}(t) d t=\int_{0}^{T}\left(f_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(u_{3 k}, v_{3}\right)_{\Gamma} \varphi_{3}(t) d t+\left(y_{3 k}(0), v_{3}\right) \varphi_{3}(0),(59)$
Since $\vec{y}_{k} \rightarrow \vec{y}$ weakly in $\left(L^{2}(Q)\right)^{3}$ and in $\left(L^{2}(\tilde{I}, V)\right)^{3}$, then the following convergences are held
$-\int_{0}^{T}\left(y_{1 k}, v_{1}\right) \varphi_{1}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1 k}, \nabla v_{1}\right)+\left(y_{1 k}, v_{1}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2 k}, v_{1}\right) \varphi_{1}(t) d t-$
$\int_{0}^{T}\left(y_{3 k}, v_{1}\right) \varphi_{1}(t) d t \rightarrow$
$-\int_{0}^{T}\left(y_{1}, v_{1}\right) \varphi_{1}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2}, v_{1}\right) \varphi_{1}(t) d t-$
$\int_{0}^{T}\left(y_{3}, v_{1}\right) \varphi_{1}(t) d t$,
$-\int_{0}^{T}\left(y_{2 k}, v_{2}\right) \varphi_{2}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2 k}, \nabla v_{2}\right)+\left(y_{2 k}, v_{2}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3 k}, v_{2}\right) \varphi_{2}(t) d t+$
$\int_{0}^{T}\left(y_{1 k}, v_{2}\right) \varphi_{2}(t) d t \rightarrow-\int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right)+\right.$
$\left.\left(y_{2}, v_{2}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{1}, v_{2}\right) \varphi_{2}(t) d t$,
(61)
$-\int_{0}^{T}\left(y_{3 k}, v_{3}\right) \varphi_{3}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3 k}, \nabla v_{3}\right)+\left(y_{3 k}, v_{3}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1 k}, v_{3}\right) \varphi_{3}(t) d t-$
$\int_{0}^{T}\left(y_{2 k}, v_{3}\right) \varphi_{3}(t) d t \rightarrow-\int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right)+\right.$
$\left.\left(y_{3}, v_{3}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1}, v_{3}\right) \varphi_{3}(t) d t-\int_{0}^{T}\left(y_{2}, v_{3}\right) \varphi_{3}(t) d t$,
(62)

Since $y_{i k}(0)$ is bounded in $L^{2}(\Omega) \forall i=1,2,3$, then
$\left(y_{1 k}^{0}, v_{1}\right) \varphi_{1}(0) \rightarrow\left(y_{1}^{0}, v_{1}\right) \varphi_{1}(0)$,
$\left(y_{2 k}^{0}, v_{2}\right) \varphi_{2}(0) \rightarrow\left(y_{2}^{0}, v_{2}\right) \varphi_{2}(0)$,
$\left(y_{3 k}^{0}, v_{3}\right) \varphi_{3}(0) \rightarrow\left(y_{3}^{0}, v_{3}\right) \varphi_{3}(0)$,
and since $\vec{u}_{k} \rightarrow \vec{u}$ weakly in $\left(L^{2}(\Sigma)\right)^{3}$, then
$\int_{0}^{T}\left(f_{1}, v_{1}\right) d t+\int_{0}^{T}\left(u_{1 k}, v_{1}\right)_{\Gamma} d t \rightarrow \int_{0}^{T}\left(f_{1}, v_{1}\right) d t+\int_{0}^{T}\left(u_{1}, v_{1}\right)_{\Gamma} d t$,
$\int_{0}^{T}\left(f_{2}, v_{2}\right) d t+\int_{0}^{T}\left(u_{2 k}, v_{2}\right)_{\Gamma} d t \rightarrow \int_{0}^{T}\left(f_{2}, v_{2}\right) d t+\int_{0}^{T}\left(u_{2}, v_{2}\right)_{\Gamma} d t$,
$\int_{0}^{T}\left(f_{3}, v_{3}\right) d t+\int_{0}^{T}\left(u_{3 k}, v_{3}\right)_{\Gamma} d t \rightarrow \int_{0}^{T}\left(f_{3}, v_{3}\right) d t+\int_{0}^{T}\left(u_{3}, v_{3}\right)_{\Gamma} d t$,
Finally, using (60) -(62), (63) - (65),(66) - (68) in (57) - (59), one gets
$-\int_{0}^{T}\left(y_{1}, v_{1}\right) \varphi_{1}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2}, v_{1}\right) \varphi_{1}(t) d t-$
$\int_{0}^{T}\left(y_{3}, v_{1}\right) \varphi_{1}(t) d t=\int_{0}^{T}\left(f_{1}, v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(u_{1}, v_{1}\right) \varphi_{1}(t) d t+\left(y_{1}^{0}, v_{1}\right) \varphi_{1}(0)$,
$-\int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3}, v_{2}\right) \varphi_{2}(t) d t+$
$\int_{0}^{T}\left(y_{1}, v_{2}\right) \varphi_{2}(t) d t=\int_{0}^{T}\left(f_{2}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(u_{2}, v_{2}\right)_{\Gamma} \varphi_{2}(t) d t+\left(y_{2}^{0}, v_{2}\right) \varphi_{2}(0)$,
$-\int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1}, v_{3}\right) \varphi_{3}(t) d t-$
$\int_{0}^{T}\left(y_{2}, v_{3}\right) \varphi_{3}(t) d t=\int_{0}^{T}\left(f_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(u_{3}, v_{3}\right)_{\Gamma} \varphi_{3}(t) d t+\left(y_{3}^{0}, v_{3}\right) \varphi_{3}(0)$,
Case1: We choose $\varphi_{i} \in D[0, T]$, i.e. $\varphi_{i}(0)=\varphi_{i}(T)=0, \forall i=1,2,3$, now by using integration by parts for the $1^{\text {st }}$ terms in the L.H.S. of (69-71), one gets
$\int_{0}^{T}\left\langle y_{1 t}, v_{1}\right\rangle \varphi_{1}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2}, v_{1}\right) \varphi_{1}(t) d t-$
$\int_{0}^{T}\left(y_{3}, v_{1}\right) \varphi_{1}(t) d t=\int_{0}^{T}\left(f_{1}, v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(u_{1}, v_{1}\right)_{\Gamma} \varphi_{1}(t) d t, \forall v_{1} \in V, \forall \varphi_{1} \in D[0, T]$
$\int_{0}^{T}\left\langle y_{2 t}, v_{2}\right\rangle \varphi_{2}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3}, v_{2}\right) \varphi_{2}(t) d t+$
$\int_{0}^{T}\left(y_{1}, v_{2}\right) \varphi_{2}(t) d t=\int_{0}^{T}\left(f_{2}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(u_{2}, v_{2}\right)_{\Gamma} \varphi_{2}(t) d t, \forall v_{2} \in V, \forall \varphi_{2} \in D[0, T]$
$\int_{0}^{T}\left\langle y_{3 t}, v_{3}\right\rangle \varphi_{3}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1}, v_{3}\right) \varphi_{3}(t) d t-$
$\int_{0}^{T}\left(y_{2}, v_{3}\right) \varphi_{3}(t) d t=\int_{0}^{T}\left(f_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(u_{3}, v_{3}\right)_{\Gamma} \varphi_{3}(t) d t, \forall v_{3} \in V, \forall \varphi_{3} \in D[0, T]$
Then

$$
\begin{gather*}
\left\langle y_{1 t}, v_{1}\right\rangle+\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)-\left(y_{2}, v_{1}\right)-\left(y_{3}, v_{1}\right)=\left(f_{1}, v_{1}\right)+\left(u_{1}, v_{1}\right)_{\Gamma}, \tag{74}\\
\forall v_{1} \in V, \text { a.e. on } \tilde{I} \\
\left\langle y_{2 t}, v_{2}\right\rangle+\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)+\left(y_{3}, v_{2}\right)+\left(y_{1}, v_{2}\right)=\left(f_{2}, v_{2}\right)+\left(u_{2}, v_{2}\right)_{\Gamma}, \\
\forall v_{2} \in V, \text { a.e. on } \tilde{I} \\
\left\langle y_{3 t}, v_{3}\right\rangle+\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)+\left(y_{1}, v_{3}\right)-\left(y_{2}, v_{3}\right)=\left(f_{3}, v_{3}\right)+\left(u_{3}, v_{3}\right)_{\Gamma}, \\
\forall v_{3} \in V, \text { a.e. on } \tilde{I}
\end{gather*}
$$

i.e. \vec{y} is satisfied the wf of the TSEs .

Case2: We choose $\varphi_{i} \in C^{1}[\tilde{I}]$, s.t. $\varphi_{i}(T)=0 \& \varphi_{i}(0) \neq 0, \quad \forall i=1,2,3$, by using integration by parts for the $1^{\text {st }}$ terms in the L.H.S. of (72-74), one has
$-\int_{0}^{T}\left(y_{1}, v_{1}\right) \varphi_{1}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{1}, \nabla v_{1}\right)+\left(y_{1}, v_{1}\right)\right] \varphi_{1}(t) d t-\int_{0}^{T}\left(y_{2}, v_{1}\right) \varphi_{1}(t) d t-$
$\int_{0}^{T}\left(y_{3}, v_{1}\right) \varphi_{1}(t) d t=\int_{0}^{T}\left(f_{1}, v_{1}\right) \varphi_{1}(t) d t+\int_{0}^{T}\left(u_{1}, v_{1}\right)_{\Gamma} \varphi_{1}(t) d t+\left(y_{1}(0), v_{1}\right) \varphi_{1}(0)$,
$-\int_{0}^{T}\left(y_{2}, v_{2}\right) \varphi_{2}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{2}, \nabla v_{2}\right)+\left(y_{2}, v_{2}\right)\right] \varphi_{2}(t) d t+\int_{0}^{T}\left(y_{3}, v_{2}\right) \varphi_{2}(t) d t+$
$\int_{0}^{T}\left(y_{1}, v_{2}\right) \varphi_{2}(t) d t=\int_{0}^{T}\left(f_{2}, v_{2}\right) \varphi_{2}(t) d t+\int_{0}^{T}\left(u_{2}, v_{2}\right)_{\Gamma} \varphi_{2}(t) d t+\left(y_{2}(0), v_{2}\right) \varphi_{2}(0)$,
$-\int_{0}^{T}\left(y_{3}, v_{3}\right) \varphi_{3}^{\prime}(t) d t+\int_{0}^{T}\left[\left(\nabla y_{3}, \nabla v_{3}\right)+\left(y_{3}, v_{3}\right)\right] \varphi_{3}(t) d t+\int_{0}^{T}\left(y_{1}, v_{3}\right) \varphi_{3}(t) d t-$
$\int_{0}^{T}\left(y_{2}, v_{3}\right) \varphi_{3}(t) d t=\int_{0}^{T}\left(f_{3}, v_{3}\right) \varphi_{3}(t) d t+\int_{0}^{T}\left(u_{3}, v_{3}\right)_{\Gamma} \varphi_{3}(t) d t+\left(y_{3}(0), v_{3}\right) \varphi_{3}(0)$,
And subtracting (75) - (77) from (69) - (71) respectively, one gets
$\left(y_{1}^{0}, v_{1}\right) \varphi_{1}(0)=\left(y_{1}(0), v_{1}\right) \varphi_{1}(0), \varphi_{1}(0) \neq 0, \forall \varphi_{1} \in D[0, T] \Rightarrow y_{1}^{0}=y_{1}(0)=y_{1}^{0}(x)$,
by the same above way one can show that $y_{2}^{0}=y_{2}(0)=y_{2}^{0}(x)$ and $y_{3}^{0}=y_{3}(0)=y_{3}^{0}(x)$.
Then \vec{y} is a solutions of the wf of the TSEs, since $G_{0}(\vec{u})$ is W.L.S.C. from Lemma 4.2 and $\vec{u}_{k} \rightarrow \overrightarrow{\vec{u}}$ weakly in $\left(L^{2}(\Sigma)\right)^{3}$, then
$G_{0}(\vec{u}) \leq \lim _{k \rightarrow \infty} \inf _{\vec{u}_{k} \in \vec{W}_{A}} G_{0}\left(\vec{u}_{k}\right)=\lim _{k \rightarrow \infty} G_{0}\left(\vec{u}_{k}\right)=\inf _{\vec{u} \in \vec{W}_{A}} G_{0}(\overrightarrow{\vec{u}})$
$\Rightarrow G_{0}(\vec{u}) \leq \inf _{\vec{u} \in \vec{W}_{A}} G_{0}(\overrightarrow{\vec{u}})=\min _{\vec{u} \in \vec{W}_{A}} G_{0}(\overrightarrow{\vec{u}})$, then \vec{u} is a CCBOCV .

5. NCsThOP:

In order to state the NCcThOP for CCBOCV, the FrD of the CoF is derived and the NCcThOP is proved.
Theorem 5.1: Consider CoF (10), then the TAPEs of the TSEs are given by
$-z_{1 t}-\Delta z_{1}+z_{1}+z_{2}+z_{3}=\left(y_{1}-y_{1 d}\right)$, in Q
$-z_{2 t}-\Delta z_{2}+z_{2}-z_{1}-z_{3}=\left(y_{2}-y_{2 d}\right)$, in Q
$-z_{3 t}-\Delta z_{3}+z_{3}-z_{1}+z_{2}=\left(y_{3}-y_{3 d}\right)$, in Q
$z_{1}(x, T)=0, \quad$ in Ω
$z_{2}(x, T)=0, \quad$ in Ω
$z_{3}(x, T)=0, \quad$ in Ω
$\frac{\partial z_{1}}{\partial n_{a}}=\sum_{l=1}^{2} \frac{\partial z_{1}}{\partial x_{l}} \cos \left(n_{1}, x_{l}\right)=0$, on Σ
$\frac{\partial z_{2}}{\partial n_{b}}=\sum_{l=1}^{2} \frac{\partial z_{2}}{\partial x_{l}} \cos \left(n_{2}, x_{l}\right)=0$, on Σ
$\frac{\partial z_{3}}{\partial n_{c}}=\sum_{l=1}^{2} \frac{\partial z_{3}}{\partial x_{l}} \cos \left(n_{3}, x_{l}\right)=0, \quad$ on Σ
Then $\left(u_{1}, u_{2}, u_{3}\right) \in \vec{W}_{A}$ and the FrD of the CoF is given by $\left(G_{0}^{\prime}(\vec{u}), \delta \vec{u}\right)_{\Sigma}=(\vec{z}+\beta \vec{u}, \delta \vec{u})_{\Sigma}$
Proof: The wf of (78) - (86) for $v_{i} \in V_{i}, \quad \forall i=1,2,3$, is given by
$-\left\langle z_{1 t}, v_{1}\right\rangle+\left(\nabla z_{1}, \nabla v_{1}\right)+\left(z_{1}, v_{1}\right)+\left(z_{2}, v_{1}\right)+\left(z_{3}, v_{1}\right)=\left(y_{1}-y_{1 d}, v_{1}\right)$,
$-\left\langle z_{2 t}, v_{2}\right\rangle+\left(\nabla z_{2}, \nabla v_{2}\right)+\left(z_{2}, v_{2}\right)-\left(z_{1}, v_{2}\right)-\left(z_{3}, v_{2}\right)=\left(y_{2}-y_{2 d}, v_{2}\right)$,
$-\left\langle z_{3 t}, v_{3}\right\rangle+\left(\nabla z_{3}, \nabla v_{3}\right)+\left(z_{3}, v_{3}\right)-\left(z_{1}, v_{3}\right)+\left(z_{2}, v_{3}\right)=\left(y_{3}-y_{3 d}, v_{3}\right)$,
The existence of a unique solution of ($87-89$) can be proved by the same manner which is used in the proof of Theorem 3.1.
Now substituting $v_{1}=z_{1}, v_{2}=z_{2}$ and $v_{3}=z_{3}$ in (50.a), (51.a) and (52.a) respectively, to get
$\left\langle\delta y_{1 t}, z_{1}\right\rangle+\left(\nabla \delta y_{1}, \nabla z_{1}\right)+\left(\delta y_{1}, z_{1}\right)-\left(\delta y_{2}, z_{1}\right)-\left(\delta y_{3}, z_{1}\right)=\left(\delta u_{1}, z_{1}\right)_{\Gamma}$,
$\left\langle\delta y_{2 t}, z_{2}\right\rangle+\left(\nabla \delta y_{2}, \nabla z_{2}\right)+\left(\delta y_{2}, z_{2}\right)+\left(\delta y_{3}, z_{2}\right)+\left(\delta y_{1}, z_{2}\right)=\left(\delta u_{2}, z_{2}\right)_{\Gamma}$,
$\left\langle\delta y_{3}, z_{3}\right\rangle+\left(\nabla \delta y_{3}, \nabla z_{3}\right)+\left(\delta y_{3}, z_{3}\right)+\left(\delta y_{1}, z_{3}\right)-\left(\delta y_{2}, z_{3}\right)=\left(\delta u_{3}, z_{3}\right)_{\Gamma}$,
Also, substituting $v_{1}=\delta y_{1}, v_{2}=\delta y_{2}$ and $v_{3}=\delta y_{3}$ in (87),(88)\&(89) respectively, to get
$-\left\langle z_{1 t}, \delta y_{1}\right\rangle+\left(\nabla z_{1}, \nabla \delta y_{1}\right)+\left(z_{1}, \delta y_{1}\right)+\left(z_{2}, \delta y_{1}\right)+\left(z_{3}, \delta y_{1}\right)=\left(y_{1}-y_{1 d}, \delta y_{1}\right)$,
$-\left\langle z_{2 t}, \delta y_{2}\right\rangle+\left(\nabla z_{2}, \nabla \delta y_{2}\right)+\left(z_{2}, \delta y_{2}\right)-\left(z_{1}, \delta y_{2}\right)-\left(z_{3}, \delta y_{2}\right)=\left(y_{2}-y_{2 d}, \delta y_{2}\right)$,
$-\left\langle z_{3 t}, \delta y_{3}\right\rangle+\left(\nabla z_{3}, \nabla \delta y_{3}\right)+\left(z_{3}, \delta y_{3}\right)-\left(z_{1}, \delta y_{3}\right)+\left(z_{2}, \delta y_{3}\right)=\left(y_{3}-y_{3 d}, \delta y_{3}\right)$,
Integrating both sides of equations ($90 . \mathrm{a}, \mathrm{b} \& \mathrm{c}$) and ($91 . \mathrm{a}, \mathrm{b} \& \mathrm{c}$), w.r.t. t from 0 to T, using integration by parts for the $1^{\text {st }}$ terms of the L.H.S. of each of the obtained equations from (91.a), (91.b) \& (91.c), then subtracting each one of the obtained equations from its corresponding equation ($90 . \mathrm{a}, \mathrm{b} \& \mathrm{c}$), and adding all the obtained equations, give
$\int_{0}^{T}\left[\left(\delta u_{1}, z_{1}\right)_{\Gamma}+\left(\delta u_{2}, z_{2}\right)_{\Gamma}+\left(\delta u_{3}, z_{3}\right)_{\Gamma}\right] d t=\int_{0}^{T}\left[\left(y_{1}-y_{1 d}, \delta y_{1}\right)+\left(y_{2}-y_{2 d}, \delta y_{2}\right)+\right.$
$\left.\left(y_{3}-y_{3 d}, \delta y_{3}\right)\right] d t$,
Now, adding together each of the pair of equations (11.a\&50.a), (12.a\&51.a) and (13.a\&52.a), one has
$\left\langle\left(y_{1}+\delta y_{1}\right)_{t}, v_{1}\right\rangle+\left(\nabla\left(y_{1}+\delta y_{1}\right), \nabla v_{1}\right)+\left(y_{1}+\delta y_{1}, v_{1}\right)-\left(y_{2}+\delta y_{2}, v_{1}\right)-\left(y_{3}+\delta y_{3}, v_{1}\right)$
$=\left(f_{1}, v_{1}\right)+\left(u_{1}+\delta u_{1}, v_{1}\right)_{\Gamma}$,
$\left\langle\left(y_{2}+\delta y_{2}\right)_{t}, v_{2}\right\rangle+\left(\nabla\left(y_{2}+\delta y_{2}\right), \nabla v_{2}\right)+\left(y_{2}+\delta y_{2}, v_{2}\right)+\left(y_{3}+\delta y_{3}, v_{2}\right)+\left(y_{1}+\delta y_{1}, v_{2}\right)$
$=\left(f_{2}, v_{2}\right)+\left(u_{2}+\delta u_{2}, v_{2}\right)_{\Gamma}$,
$\left\langle\left(y_{3}+\delta y_{3}\right)_{t}, v_{3}\right\rangle+\left(\nabla\left(y_{3}+\delta y_{3}\right), \nabla v_{3}\right)+\left(y_{3}+\delta y_{3}, v_{3}\right)+\left(y_{1}+\delta y_{1}, v_{3}\right)-\left(y_{2}+\delta y_{2}, v_{3}\right)$
$=\left(f_{3}, v_{3}\right)+\left(u_{3}+\delta u_{3}, v_{3}\right)_{\Gamma}$,
Which means the $\mathrm{CV}\left(u_{1}+\delta u_{1}, u_{2}+\delta u_{2}, u_{3}+\delta u_{3}\right)$ gives that the solution $\left(y_{1}+\delta y_{1}\right.$, $y_{2}+\delta y_{2}, y_{3}+\delta y_{3}$) of (93) - (95).
On the other hand, from (92) and the CoF, we have

$$
\begin{aligned}
G_{0}(\vec{u}+\delta \vec{u})-G_{0}(\vec{u})= & \left(\delta u_{1}, z_{1}\right)_{\Sigma}+\left(\delta u_{2}, z_{2}\right)_{\Sigma}+\left(\delta u_{3}, z_{3}\right)_{\Sigma}+\left(\beta u_{1}, \delta u_{1}\right)_{\Sigma} \\
& +\left(\beta u_{2}, \delta u_{2}\right)_{\Sigma}+\left(\beta u_{3}, \delta u_{3}\right)_{\Sigma}+\frac{1}{2}\|\delta \vec{y}\|_{Q}^{2}+\frac{\beta}{2}\|\delta \delta \vec{u}\|_{\Sigma}^{2} \\
= & (\delta \vec{u}, \vec{z})_{\Sigma}+(\beta \vec{u}, \delta \vec{u})_{\Sigma}+\frac{1}{2}\|\delta \vec{y}\|_{Q}^{2}+\frac{\beta}{2}\|\delta \vec{u}\|_{\Sigma}^{2}
\end{aligned}
$$

Or
$G_{0}(\vec{u}+\delta \vec{u})-G_{0}(\vec{u})=(\vec{z}+\beta \vec{u}, \delta \vec{u})_{\Sigma}+\frac{1}{2}\|\delta \vec{y}\|_{Q}^{2}+\frac{\beta}{2}\|\delta \vec{u}\|_{\Sigma}^{2}$.
From Theorem 4.1, we have
$\frac{1}{2}\|\delta \vec{y}\|_{Q}^{2}=\varepsilon_{1}(\delta \vec{u})\|\delta \vec{u}\|_{\Sigma}$ and $\frac{\beta}{2}\|\delta \vec{u}\|_{\Sigma}^{2}=\varepsilon_{2}(\delta \vec{u})\|\delta \vec{u}\|_{\Sigma}$
With $\varepsilon_{1}(\delta \vec{u})=\frac{1}{2} \bar{M}^{2}\|\delta \vec{u}\|_{\Sigma}$, where $\varepsilon_{1}(\delta \vec{u}), \varepsilon_{2}(\delta \vec{u}) \rightarrow 0$ as $\|\delta \vec{u}\|_{\Sigma} \rightarrow 0$
Then
$G_{0}(\vec{u}+\delta \vec{u})-G_{0}(\vec{u})=(\vec{z}+\beta \vec{u}, \delta \vec{u})_{\Sigma}+\varepsilon(\delta \vec{u})\|\delta \vec{u}\|_{\Sigma}$
Where $\varepsilon_{1}(\delta \vec{u})+\varepsilon_{2}(\delta \vec{u})=\varepsilon(\delta \vec{u}) \rightarrow 0$ as $\|\delta \vec{u}\|_{\Sigma} \rightarrow 0$
Using the definition of FrD of G_{0}, one has
$\left(G_{0}^{\prime}(\vec{u}), \delta \vec{u}\right)_{\Sigma}=(\vec{z}+\beta \vec{u}, \delta \vec{u})_{\Sigma}$.
Theorem 5.2: The NCsThOP for the CCBOCV of the above problem is $G_{0}^{\prime}(\vec{u})=\vec{z}+\beta \vec{u}=$ 0 with $\vec{y}=\vec{y}_{\vec{u}}$ and $\vec{z}=\vec{z}_{\vec{u}}$.
Proof: If \vec{u} is an CCBOCV of the problem, then
$G_{0}(\overrightarrow{\vec{u}})=\min _{\vec{u} \in \vec{W}_{A}} G_{0}(\vec{u}) \quad \forall \vec{u} \in\left(L^{2}(\Sigma)\right)^{3}$,
i.e. $G_{0}^{\prime}(\overrightarrow{\vec{u}})=0 \Rightarrow \quad \vec{z}+\beta \overrightarrow{\vec{u}}=0$

From Theorem $5.1(\vec{z}+\beta \overrightarrow{\vec{u}}, \delta \vec{u})_{\Sigma} \geq 0$ with $\delta \vec{u}=\vec{w}-\overrightarrow{\vec{u}}$
$\Rightarrow(\vec{z}+\beta \overrightarrow{\bar{u}}, \vec{w})_{\Sigma} \geq(\vec{z}+\beta \overrightarrow{\bar{u}}, \overrightarrow{\bar{u}})_{\Sigma}, \forall \vec{w} \in\left(L^{2}(\Sigma)\right)^{3}$.

6. Conclusions

In this paper, The GM is employed to prove the existence theorem of a unique solution for a SVS of the TLPDEPAR when the CCBOCV is fixed. The existence theorem of a CCBOCV governed by the TLPDEPAR is developed and proved. The existence and uniqueness of a solution for the TAPEs associated with the TLPDEPAR is studied, the FrD for the CoF is obtained. At the end, the NCsThOP of the CCBOCV problem is stated and proved.

Acknowledgement

I wish to express my sincere thanks to the University of Mustansiriyah for providing a pleasurable and stimulating environment to carry out research. Also, I would like to extend our sincere esteems to the College of Science- Department of Mathematics for their timely support

References

1. Aro, M.K.; Luboobi, L.; Shahada, F. Application of Optimal Control Strategies For The Dynamics of Yellow Fever . J. Math. Computer. Sci.2015, 5, 3, 430-453.
2. Hajiabadi, M.E.; Mashhadi, H.R. Modeling of the Maximum Entropy Problem as an Optimal Control Problem and its Application to pdf Estimation of Electricity Price. IJEEE. Iran University of Science and Technology.2013, 9, 3, 150-157.
3. Bermudez, A. Some Applications of Optimal Control Theory of Distributed Systems. ESAIM : Control, Optimisation and Calculus of Variations .2002, 8,195-218.
4. Torre, D.La.; Kunze, H.; Ruiz-Galan, M.; Malik, T.; Marsiglio, S. Optimal Control: Theory and Application to Science Engineering and Social Sciences. Hindawi Publishing Corporation. Abstract and applied analysis.2015, ID 890527,2pages.doi:10.1155/2015/890527.
5. Chryssoverghi, I.; Al-Hawasy, J. The Continuous Classical Optimal Control Problem of Semi linear Parabolic Equations (CCOCP), Journal of Kerbala University.2010, 8, 3.
6. Al-Hawasy, J . The Continuous Classical Optimal Control Problem of a Nonlinear Hyperbolic Partial Differential Equations (CCOCP). Al-Mustansiriyah Journal of Science.2008, 19, 8, 96-110.
7. Brett, C.; Dedner, A.; Elliott, C. Optimal Control of Elliptic PDEs at Points. IMA Journal of Numerical Analysis.2015, 36, 3, 1-34
8. Al-Hawasy, J.; Kadhem, G.M. The Continuous Classical Optimal Control for a Coupled Nonlinear Parabolic Partial Differential Equations with Equality and Inequality Constraints. Journal of Al-Nahrain University.2016, 19, 1, 173-186.
9. Al-Hawasy, J. The Continuous Classical Optimal Control of a Couple Nonlinear Hyperbolic Partial Differential Equations with Equality and Inequality Constraints. Iraqi Journal of Science.2016, 57, 2C, 1528-1538.
10. Al-Rawdhanee, E.H. The Continuous Classical Optimal Control of a couple NonLinear Elliptic Partial Differential Equations. Master thesis; Al-Mustansiriyah University, 2015.
11. Al-Hawasy, J.; Naeif, A.A. The Continuous Classical Boundary Optimal Control of a Couple linear of Parabolic Partial Differential Equations. Al-Mustansiriyah Journal of Science. 2018, 29, 1, 118-126 . DOI: http://dx.doi.org/10.23851/mjs.v29i1.159.
12. Al-Hawasy, J. The Continuous Classical Boundary Optimal Control of Couple Nonlinear Hyperbolic Boundary Value Problem with Equality and Inequality Constraints. Baghdad Science Journal.2019, (Accepted for publishing).
13. Al-Hawasy, J.; Al-Qaisi, S.J. The Continuous Classical Optimal Boundary Control of a Couple Linear Elliptic Partial Differential Equations. Special Issue, $1^{\text {st }}$ Scientific International Conference, College of Science, Al-Nahrain University.2017, I, 137-142. DOI: 10.22401/ANJS.00.1.18.
14. Al-Hawasy, J.; Mohamed, A.J. The Continuous Classical Optimal Control governing by Triple Parabolic Boundary Value Problem, Submitted in Ibn Al-Haitham for pure and Applied Science in, 2020.
15. Al-Hawasy, J.; Jasim, D.A. The Continuous Classical Optimal Control Problems for Triple Elliptic Partial Differential Equations, Submitted in Ibn Al-Haitham for pure and Applied Science in, 2020.
16. Albiac, F.; Kalton, N.J. Topics in Banach Space Theory, 2 ${ }^{\text {nd }}$ ed.; Springer, Switzerland.2015, ISBN 978-3-319-31557-7.
17. Marsden, J.E.; Sirovich, L.; Golubitsky, M.; Jäger, W.; John, F. Introductory Functional Analysis With Applications to Boundary Value Problems and Finite Elements. Springer Science Business Media New York, 1998.
