

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

On Nano i-pre-g-Open Set

Rana B. Esmaeel

Ahmed. A. Jassam

Department of Mathematics, College of Education for Pure Sciences, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

ranamumosa@yahoo.com_

ahm7a7a@gmail.com

Article history: Received 20 October 2019, Accepted 21 November January 2019, Published in July 2020.

Doi: 10.30526/33.3.2474

Abstract

In this work, the notion Ñi-pre-g-openset is defined by using nano topological space and some properties of this set are studied also, nano i-pre-g-δ-set and nano i-pre-g-μ-closedset are two concepts that are defined by using Ni-pre-g-open set; many examples have been cited to indicate that the reverse of the propositions and remarks is not achieved. In addition, new application example of nano i-pre-g-closed set was studied.

Keywords: Nano İ-pre-g-open set, nano İpgδ-set, nano İpgμ-closed set, nano-open, nano-closed, ideal.

1. Introduction

In1933, kuratowski [1]. Introduced the concept of an ideal f on anon empty set X, where the hereditary and finite additively property were achieved.

In 1945, the notion of operator ()*: $P(X) \rightarrow P(X)$, was introduced by Vaidyanathaswamy [2]. And namely local function.

In 2013, Thivagar and Richard [3]. Introduced on X. nano forms of weakly open sets, Parimala and Jafari [4]. In 2018, introduced on some new notions in nano ideal topological spaces.

An ideal $\dot{f} \neq \emptyset$ such that $\dot{f} \subseteq P(X)$ was defined as the following:

i. if $A, B \in \dot{I}$, then $A \cup B \in \dot{I}$.

ii. if $A \in \dot{f}$ and $B \subseteq A$, then $B \in \dot{f}[1,2]$.

The closure operator $cl^*(\)$ for a topology $T^*(\ \dot{f},T)$, namely the * topology, finer than T, is defined by $cl^*(A) = A \cup A^*(\dot{f},T)$, and then, $T^*(\dot{f},T) = \{A \subseteq X : cl^*(X-A) = (X-A)\}$.

The collection $B(f,T) = \{A - B; A \in T \text{ and } B \in f\}$ is a basis for $T^*(T,f)$, when there is no chance for confusion. The simple A^* write for $A^*(T,f)$ and T^* for $T^*(f,T)$. The notion (X,T,f) will denote to a topological space (X,T) with an ideal f on X with no separation properties assumed and called an ideal topological space or an ideal space for short.

The elements of T^* are namely T^* -open sets. If (X - A) is T^* -open set, then A is namely T^* -closed and so it is closed in the space (X, T^*) . A subset A of an ideal space (X, T, I) is a T^* -closed if and only if $A^* \subseteq A$.

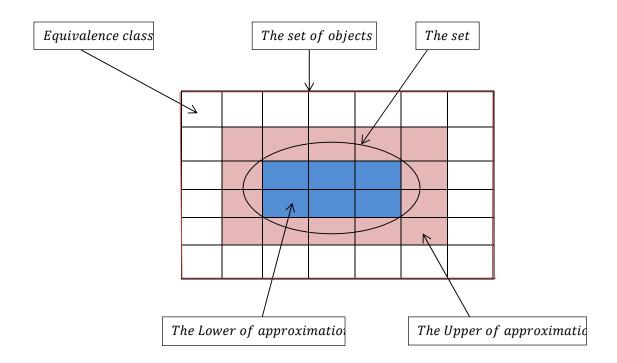
A subset \mathbb{A} of an ideal space (X, T, \dot{f}) is said to be T^* dense if $cl^*(\mathbb{A}) = X$, it is clear that, in a space (X, T, \dot{f}) , if $\dot{f} = \{\emptyset\}$, then $T = T^*(\dot{f}, T)$. If $\mathbb{A} \subseteq X$, int*(\mathbb{A}) (respectively, $cl^*(\mathbb{A})$ will denote the interior (respectively, the closure) of \mathbb{A} in (X, T^*) , so the mapping ()*: $P(X) \to P(X)$, is used to generalize the concept of topology and create a new topology namely $T^* \subseteq T$ such that the shortcut (X, T, \dot{f}) is the ideal topological space [5-7].

By using lower and upper approximation with equivalence relation in 2013 [3,8]. A new space emerged, which is a nano topological space. In this research and by taking advantage of the previous concepts, another type of near nano open set is presented, which is the above space with ideal Ni-pre-g-closed set and will clarify the most important characteristics of these sets.

2. Preliminaries

Definition 2.1. [3, 8]. Let $X \neq \emptyset$, and \hat{R} be an equivalence relation, where $\hat{R} \subseteq X \times X$ and \hat{R} is reflexive, symmetric and transitive on X, $A \subseteq X$.

- 1. The upper approximation of \mathbb{A} for $\hat{\mathbb{R}}$ is symbolizes $\hat{\mathbb{R}}(\mathbb{A})$, which is, $\hat{\mathbb{R}}(\mathbb{A}) = \bigcup_{\mathbf{x} \in X} {\{\hat{\mathbb{R}}(\mathbf{x}) : \hat{\mathbb{R}}(\mathbf{x}) \cap \mathbb{A} \neq \emptyset\}}.$
- 2. The lower approximation of \mathbb{A} for $\hat{\mathbb{R}}$ is symbolizes $\underline{\hat{\mathbb{R}}(\mathbb{A})}$, which is, $\underline{\hat{\mathbb{R}}(\mathbb{A})} = \bigcup_{\mathbf{x} \in X} {\{\hat{\mathbb{R}}(\mathbf{x}): \hat{\mathbb{R}}(\mathbf{x}) \subseteq \mathbb{A}\}}.$
- 3. The boundary of \mathbb{A} for $\hat{\mathbb{R}}$ is symbolizes $\mathbb{B}_{\hat{\mathbb{R}}(\mathbb{A})}$, which is, $\mathbb{B}_{\hat{\mathbb{R}}(\mathbb{A})} = \overline{\hat{\mathbb{R}}(\mathbb{A})} \underline{\hat{\mathbb{R}}(\mathbb{A})}$.



Definition 2.2. [3]. Let $X \neq \emptyset$, \hat{R} be an equivalence relation on X, $T_{\hat{R}(A)} = \{X, \emptyset, \hat{R}(A), \hat{R}(A), \hat{R}(A)\}$ such that $A \subseteq X$. Then $T_{\hat{R}(A)}$ is a topology on X namely nano topology of A and $(X, T_{\hat{R}(A)})$ is namely nano topological space. The elements of $T_{\hat{R}(A)}$ are namely nano-open sets symbolize N-open sets. The complement of an N-open set is namely nano-closed symbolize N-closed. A nano-interior of a sub set A of X symbolizes N-int(A) and nano-closure of a subset A of X symbolizes N-cl(A).

We can find all nano topological spaces $(X, T_{\hat{R}(A)})$, for any $X \neq \emptyset$, $A \subseteq X$ and \hat{R} be an equivalence relation on X, by the following example:

Example 2.3. Let $X = \{x_1, x_2, x_3\}$, $A \subseteq X$, $\hat{R} = \{(x_1, x_1), (x_2, x_2), (x_3, x_3), (x_1, x_2), (x_2, x_1)\}$. Then $\hat{R}_{(x_1)} = \{x_1, x_2\} = \hat{R}_{(x_2)}$, $\hat{R}_{(x_3)} = \{x_3\}$.

Table 1. Nano topological spaces.

A	R(♠)	<u> </u>	$B_{\hat{R}(A)}$	Ţ _{Ŕ (A)}
{Ø}	{Ø}	{Ø}	{Ø}	{ X, Ø}
Х	{X}	{X}	{Ø}	{ X, Ø}
{x ₁ }	$\{\mathbf{x}_1,\mathbf{x}_2\}$	{Ø}	$\{\mathbf{x}_1,\mathbf{x}_2\}$	$\{X, \emptyset, \{x_1, x_2\}\}$
{ x ₂ }	$\{\mathbf{x}_1,\mathbf{x}_2\}$	{Ø}	$\{\mathbf{x}_1,\mathbf{x}_2\}$	$\{X,\emptyset,\{x_1,x_2\}\}$
{ x ₃ }	{ x ₃ }	{ x ₃ }	{Ø}	$\{X,\emptyset,\{x_3\}\}$
{x ₁ ,x ₂ }	$\{\mathbf{x}_1,\mathbf{x}_2\}$	{x ₁ , x ₂ }	{Ø}	$\{X, \emptyset, \{x_1, x_2\}\}$
{x ₁ ,x ₃ }	{X}	{x ₃ }	{x ₁ , x ₂ }	$\{X, \emptyset, \{x_3\}, \{x_1, x_2\}\}$
$\{\mathbf{x}_2,\mathbf{x}_3\}$	{X}	{ x ₃ }	$\{\mathbf{x}_1,\mathbf{x}_2\}$	$\{X, \emptyset, \{x_3\}, \{x_1, x_2\}\}$

Definition 2.4. [3,4]. Let $A \subseteq X$, $(X, T_{\hat{R}(A)})$ be a nano topological space. Then A is a namely nano pre-open set if $A \subseteq \check{N}$ -int(\check{N} -cl(A)), the complements of A is namely nano pre-closed set. The shortcuts \check{N} -pO(X) respectively \check{N} -pC(X) is for the collection of each \check{N} -pre-open(respectively \check{N} -pre-closed)sets. A space $(X, T_{\hat{R}(A)}, \dot{I})$ is namely ideal nano topological space, whenever \dot{I} is an ideal on X.

Definition 4.1. [9]. Let $(X, T_{\hat{R}(A)})$ be a nano topological spaces and $B \subseteq X$. Then a nano-kernal of $B = \bigcap \{I \mid B \subseteq II, II \in T_{\hat{R}(A)}\}$ and symbolizes \check{N} -Ker(B).

From **Table 2.** We can calculate and note all nano pre-open set and nano pre closed set:

For
$$(X, T_{\hat{R}(A)})$$
, where $X = \{x_1, x_2, x_3\}$, $\hat{R} = \{(x_1, x_1), (x_2, x_2), (x_3, x_3), (x_1, x_2), (x_2, x_1)\}$.

,

Table 2. Nano pre-open set.

A	Ţ _{Ŕ (A)}	ŇрО(X)	ŇpC(Ҳ)
{φ}	{ X, Ø}	p(X)	p(X)
Х	{ X, Ø}	p(X)	p(X)
{x ₁ }	$\{X, \emptyset, \{x_1, x_2\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\} $ $\{x_1, x_3\}, \{x_2, x_3\}\}$,{X, \emptyset , {x ₁ }, {x ₂ }, {x ₃ }, {x ₁ , x ₃ } {x ₂ , x ₃ }}
{x ₂ }	$\{X, \emptyset, \{x_1, x_2\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}, \\ \{x_1, x_3\}, \{x_2, x_3\}\}$,{X, \emptyset , {x ₁ }, {x ₂ }, {x ₃ }, {x ₁ , x ₃ } {x ₂ , x ₃ }}
{ x ₃ }	$\{X,\emptyset,\{x_3\}\}$	$\{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}\}$
$\{\mathbf{x}_1,\mathbf{x}_2\}$	$\{X, \emptyset, \{x_1, x_2\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3\}\}$
$\{\mathbf{x}_1,\mathbf{x}_3\}$	$\{ X, \emptyset, \{x_3\}, \{x_1, x_2\} \}$	p(X)	p(X)
$\{\mathbf{x}_2,\mathbf{x}_3\}$	$\{X, \emptyset, \{x_3\}, \{x_1, x_2\}\}$	p(X)	p(X)

3. Nano i-pre-g open set.

In this section and by using the notion of nano ideal topological space and N-pre-open set we will study N-İpg-closed set with some of it is properties.

Definition3.1. In $(X, T_{\hat{R}(A)}, f)$, let $A \subseteq X$. Then A is namely nano f-pre-g-closed set symbolize $\check{N}fpg$ -closed if cl(A)- $II \in f$ whenever A- $II \in f$ and II is a nano pre-open subset of X.

 A^c is namely nano f-pre-g-open set symbolize \check{N} -fpg-open. The collection of all nano fpg-closed sets respectively nano fpg-open sets in $(X, T_{\hat{R}(A)}, \dot{I})$ symbolizes \check{N} -fpgC(X) respectively \check{N} -fpgO(X).

From **Table 3.** We can calculate and note that all nano i-pre-g-closed set and it is complement nano i-pre-g-open set from the space(X, $T_{\hat{R}(A)}$, \dot{I}), where $X = \{x_1, x_2, x_3\}$, $\hat{R} = \{(x_1, x_1), (x_2, x_2), (x_3, x_3), (x_1, x_2), (x_2, x_1)\}$, $\dot{I} = \{\emptyset, \{x_1\}\}$.

Table 3. Nano i-pre-g-closed set.

A	Ţ _{Ŕ (A)}	ŇpO(X)	Ň-ſ-pre-g-closedset	Ň-i-pre-g-openset
{Ø}	{ X, Ø}	p(X)	$\{X, \emptyset, \{x_2, x_3\}\}$	$\{X,\emptyset,\{x_1\}\}$
X	{ X, Ø}	p(X)	$\{X, \emptyset, \{x_2, x_3\}\}$	$\{ X, \emptyset, \{x_1\} \}$
{x ₁ }	$\{X, \emptyset, \{x_1, x_2\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\} $ $\{x_1, x_3\}, \{x_2, x_3\}\}$	$\{X, \emptyset, \{x_3\}, \{x_2, x_3\}\}$	$\{ X, \emptyset, \{x_1\}, \{x_1, x_2\} \}$
{x ₂ }	$\{X, \emptyset, \{x_1, x_2\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}\}$	$\{X, \emptyset, \{x_3\}, \{x_2, x_3\}\}$	$\{ X, \emptyset, \{x_1\}, \{x_1, x_2\} \}$
{ x ₃ }	$\{X,\emptyset,\{x_3\}\}$	$\{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3\}\}$	$\{X, \emptyset, \{x_2\}, \{x_1, x_2\}, \{x_2, x_3\}\}$	$\{X, \emptyset, \{x_1\}, \{x_3\}, \{x_1, x_3\}\}$
$\{\mathbf{x}_1,\mathbf{x}_2\}$	$\{X, \emptyset, \{x_1, x_2\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}\}$	$\{X,\emptyset,\{x_3\},\{x_2,x_3\}\}$	{ X, Ø, {x ₁ }, {x ₁ , x ₂
$\{\mathbf{x}_1,\mathbf{x}_3\}$	$\{X, \emptyset, \{x_3\}, \{x_1, x_2\}\}$	p(X)	$\{ X, \emptyset, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_2, x_3\} \}$	$\{X, \emptyset, \{x_1\}, \{x_3\} \\ \{x_1, x_2\}, \{x_1, x_3\}\}$
$\{\mathbf{x}_2,\mathbf{x}_3\}$	$\{X, \emptyset, \{x_3\}, \{x_1, x_2\}\}$	p(X)	$\{X, \emptyset, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_2, x_3\}\}$	$\{X, \emptyset, \{x_1\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}\}$

All nano i-pre-g-closed set and nano i-pre-g-open set from the space(X, $T_{\hat{R}(A)}$, i), where $X = \{x_1, x_2, x_3\}$, $\hat{R} = \{(x_1, x_1), (x_2, x_2), (x_3, x_3), (x_1, x_2), (x_2, x_1)\}$, $\hat{I} = \{\emptyset, \{x_1\}\}$

Remark3.2: For $(X, T_{\hat{R}(A)}, f)$

- i. Every nano closed set is an N-fpg-closed.
- ii. Every nano open set is an N-fpg-open.

Proof (i): let A be any nano closed set in (X, T, i) and U be a nano-pre-open set such that $A-U \in I$, but cl(A) = A, so $cl(A)-U = A-U \in I$. This implies, A is an nano-I-pre-g-closed set. Proof (ii): let U be any nano open set in (X, T, i), then U^c is a nano closed set. This implies that U^c is an nano-I-pre-g-closed set, thus, U is an nano-I-pre-g-open set.

Reverse of Remark3.2 is not correct from **Table 3.** If $A = \{x_3\}$ then $\{x_2, x_3\}$ is N-fpg-closed not nano closed and $\{x_1, x_3\}$ is N-fpg-open not nano open.

4. Nano-f- pre- g- Kernal of Set.

In this section and by using the topics described earlier as nano ideal space and N-fpg-open set, many of the topological properties will be presented.

Definition 4.1. Let $(X, T_{\hat{R}(A)}, \dot{I})$ be a nano ideal topological space and $B \subseteq X$. Then nano \dot{I} -pre-g-kernal of B is symbolized by \dot{N} - \dot{I} pg-Ker $(B) = \cap \{ II: B \subseteq II, II \in \dot{N}$ - \dot{I} pg-O $(X) \}$. It is clear that $B = \dot{N}$ - \dot{I} pg-Ker(B) whenever $B \in \dot{N}$ - \dot{I} pgO(X).

Remark 4.2. If $B \subseteq X$ of a space $(X, T_{\hat{R}(A)}, \dot{f})$. Then nano \dot{f} -pre-g-kernal(B) \subseteq nano kernal(B).

Proof: Let $x \notin \check{N}Ker(B)$, $x \in X$ then $x \notin \bigcap \{ IJ : B \subseteq IJ, B \text{ and } IJ \in T_{\hat{R}(A)} \}$, then $\exists IJ \in T_{\hat{R}(A)}$, $B \subseteq IJ$, $x \notin IJ$. Since every \check{N} -open set in $(X, T_{\hat{R}(A)})$ is \check{N} -fpg \check{G} open in $(X, T_{\hat{R}(A)})$, then $\exists IJ \in \check{N}$ -fpg $\check{G}(X)$, $B \subseteq IJ$; $x \notin IJ$, then $x \notin \bigcap \{IJ : B \subseteq IJ$, and $IJ \in \check{N}$ -fpg-O(X). Thus $x \notin \check{N}$ -fpg-Ker(B).

From **Table 3.** let $A = \{x_1\}$, $T_{\hat{R}(A)} = \{X, \emptyset, \{x_1, x_2\}\}$, \check{N} - \check{I} pg- $O(X) = \{X, \emptyset, \{x_1\}, \{x_1, x_2\}\}$, if $B = \{x_1\}$, then \check{N} - $\ker(B) = \bigcap \{ I : B \subseteq I \text{ and } I \in T_{\hat{R}(A)} \} = \{x_1, x_2\}$, but \check{N} - \check{I} -pre-g- $\ker(B) = \bigcap \{I : B \subseteq I \text{ and } I \in \check{N}$ - \check{I} pg- $O(X) = \{x_1\}$, So \check{N} - $\ker(B) \not\subseteq \check{N}$ - \check{I} pg- $O(X) = \{x_1\}$, So \check{N} - $\ker(B) \not\subseteq \check{N}$ - \check{I} pg- $O(X) = \{x_1\}$, So \check{N} - $\ker(B) \not\subseteq \check{N}$ - \check{I} pg- $O(X) = \{x_1\}$, So \check{N} - $\ker(B) \not\subseteq \check{N}$ - \check{I} pg- $O(X) = \{x_1\}$, So \check{N} - $\ker(B) \not\subseteq \check{N}$ - \check{I} pg- $O(X) = \{x_1\}$, So \check{N} - $\ker(B) \not\subseteq \check{N}$ - \check{I} pg- $O(X) = \{x_1\}$, So \check{N} - $\ker(B)$

Definition 4.4. For any $B \subseteq X$ of $(X, T_{\hat{R}(A)}, f)$. B is namely nano fpg δ - set if $B = \check{N}$ fpg-Ker(B).

Theorem4.5. The union of any two nano-fpg-closed sets is an nano-fpg-closed set.

Proof: Let \mathbb{A} and \mathbb{B} are two nano-fpg-closed set in (X, T, i) and \mathbb{I} is a nano-pre-open subsets of X, where $(\mathbb{A} \cup \mathbb{B}) - \mathbb{I} \in \hat{I}$, then $\mathbb{A} - \mathbb{I} \in \hat{I}$ and $\mathbb{B} - \mathbb{I} \in \hat{I}$, so nano $cl(\mathbb{A}) - \mathbb{I} \in \hat{I}$ and nano $cl(\mathbb{B}) - \mathbb{I} \in \hat{I}$, therefore, (nano $cl(\mathbb{A}) - \mathbb{I} \cup (\text{nano } cl(\mathbb{B}) - \mathbb{I}) \in \hat{I}$, so nano $cl(\mathbb{A} \cup \mathbb{B}) - \mathbb{I} \in \hat{I}$. So nano $cl(\mathbb{A} \cup \mathbb{B}) - \mathbb{I} \in \hat{I}$.

Corollary 4.6. The intersection of any two nano-i pg-open sets is a nano-i pg-open set.

Proof: Let \mathbb{A} and \mathbb{B} be two nano-f-pre-g-open sets in (X,T,i), so \mathbb{A}^c , \mathbb{B}^c are nano-f-pre-g-closed sets, therefore, $\mathbb{A}^c \cup \mathbb{B}^c$ is an ano-f-pre-g-closed set by Theorem 4.5, Hence $(\mathbb{A} \cap \mathbb{B})^c$ is a nano-f-pre-g- open set.

Remark 4.7. If X is a finite set then $B = \check{N}ipg\text{-Ker}(B)$ iff $B \in \check{N}\text{-}ipgO(X)$. The prove of Remark 4.7 by using definition 4.4 and corollary 4.6. **Definition 4.8.** For any $B \subseteq X$ of a space $(X, T_{\hat{R}(A)}, \dot{f})$, the set B is namel

nano $fpg\mu$ -closed if $B = M \cap W$, where M is nano $fpg\delta$ -set and W is a nano fpg-closedset.

From **Table 4.** We can calculate and note that N-fpg-Ker(B) for a subset of X where $A = \{x_1, x_2\}$, $T_{\hat{R}(A)} = \{X, \emptyset, \{x_1, x_2\}\}$, N-f-pre-g-open $= \{X, \emptyset, \{x_1\}, \{x_1, x_2\}\}$ and N-f-pre-g-closed $\{X, \emptyset, \{x_3\}, \{x_2, x_3\}\}$

Table 4. Nano f-pre-g-kernal.

В	Ň- Ker (B) set	Ň-ípg-Ker(B)set	
{Ø}	{Ø}	{Ø}	
Х	Х	X	
{x ₁ }	$\{\mathbf{x}_1,\mathbf{x}_2\}$	{x ₁ }	
{x ₂ }	{x ₁ , x ₂ }	$\{x_1, x_2\}$	
{x ₃ }	х	X	
$\{\mathbf{x}_1,\mathbf{x}_2\}$	$\{\mathbf{x}_1,\mathbf{x}_2\}$	$\{\mathbf{x}_1,\mathbf{x}_2\}$	
$\{x_1, x_3\}$	Х	Х	
$\{\mathbf{x}_2,\mathbf{x}_3\}$	Х	X	

From **Table 4.** The sets X, \emptyset , $\{x_1\}$ and $\{x_1, x_2\}$ are \check{N} -fpg δ -sets. And X, \emptyset , $\{x_1\}$, $\{x_2\}$, $\{x_3\}$, $\{x_1, x_2\}$, $\{x_2, x_3\}$ are \check{N} -fpg μ -closed sets but $\{x_1, x_3\}$ is not \check{N} -fpg μ -closed since $\nexists M$ and W such that M is a \check{N} -fpg δ -sets and W is a \check{N} -fpg-closed and $\{x_1, x_3\} = M \cap W$.

Remark 4.9. For any space $(X, T_{\hat{R}(A)}, \dot{I})$:

- i. Every nano fpg-closed set is nano fpg μ-closed.
- ii. Every nano fpg-open set is nano fpgµ-closed.
- iii. Every nano İpg δ -set is nano İpg- μ closed.

Proof:

- (i): (\Rightarrow) Let B be an N-fpgclosed set. Since X = N-fpg-Ker(X) and $B = X \cap B$ such that X is N-fpg-set and B is N-fpg-closed set, hence B is nano fpg- μ closed.
- (ii): (\Rightarrow) Let B is nano fpg-open set. Then B = nano fpg-Ker(B) by Remark 4.7, X finite. Then B is an N-fpg δ -set, so B is N-fpg μ -closed, by (part i).
- (iii): (\Rightarrow) Let B = Ň-ſpgKer(B). But B = B \cap X and X is Ň-ſpg-closed. So B is a Ň-ſpg-uclosed.

Example 4.10. From Table 3. And Table 4.

(i) where
$$\mathbb{A} = \{x_1, x_3\}$$
, $T_{\hat{R}(\mathbb{A})} = \{X, \emptyset, \{x_3\}, \{x_1, x_2\}\}$, \check{N} - \dot{p} g-O(X) = $\{X, \emptyset, \{x_1\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}\}$ and \check{N} - \dot{p} g-C(X) = $\{X, \emptyset, \{x_3\}, \{x_1, x_2\}, \{x_2, x_3\}, \{x_2\}\}$, where

 $B = \{x_1\}$, then $\{x_1\}$ is \check{N} -fpg- μ closed. And since $\{x_1\}$ is \check{N} -fpg- δ -set but it is not \check{N} -fpg-closed set.

(ii) If $\mathbb{A} = \{x_1, x_2\}$, $T_{\hat{R}(\mathbb{A})} = \{X, \emptyset, \{x_1, x_2\}\}$, \check{N} - $\dot{f}pg$ - $O(X) = \{X, \emptyset, \{x_1\}, \{x_1, x_2\}\}$ and \check{N} - $\dot{f}pg$ - $C(X) = \{X, \emptyset, \{x_3\}, \{x_2, x_3\}\}$, where $\mathbb{B} = \{x_3\}$ then \mathbb{B} is \check{N} - $\dot{f}pg$ - μ closed since $\{x_3\} = \{x_3\} \cap X$ such that $\{x_3\} \in \check{N}$ - $\dot{f}pg$ -C(X) and X is a \check{N} - $\dot{f}pg\delta$ -set but it is not \check{N} - $\dot{f}pg$ -open set and it is not \check{N} - $\dot{f}pg\delta$ -set.

Proposition 4.11: For $(X, T_{\hat{R}(A)}, \dot{I})$ if X is a finite set and $B \subseteq X$; B is an \check{N} -fpg- μ closed set, then $B = \check{N}$ -fpg- μ closed set, where $B = \check{N}$ -fpg- μ closed set.

Proof: since B is Ň-fpg- μ closed, then $B=M\cap W$ such that M is Ň-fpg δ -set and W is a Ň-fpg-closed set this implies that $B\subseteq M=\check{N}$ -fpg-ker(M) and $B\subseteq \check{N}$ -fpg-ker(B) which is the smallest Ň-fpg-open set containing B. So Ň-fpg-ker(B) \subseteq Ň-fpg-ker(M) and $B=M\cap W$ there for $B=\check{N}$ -fpg-ker(B) \cap W, since $B\subseteq \check{N}$ -fpg-ker(B) and $M\subseteq \check{N}$ -fpg-ker(M).

5. The Application in Ň-Ípg-closed set. Example 5.1.

Tonsillitis is a common disease in children and adults. People get inflammation that causes them difficulty in eating and sometimes unable to chew food. Also, you may experience a high temperature with a change in the body with diarrhea and joint pain if the inflammation is very strong. Treatment lasts one to two weeks. To detect the most common symptoms of tonsillitis, we can take advantage of the concept of nano ipg-open set according to the following table, which shows the most common symptoms that may be associated with tonsillitis.

The following table gives information about four patient people $\{x_1, x_2, x_3, x_4\}$, we will refer to the symbol Y if the symptoms are clear to the person and indicate the symbol Y if the symptoms do not appear:

patient person	Temperature (T)	Emaciation (N)	Diarrhea (D)	Inability to swallow(I)	Joint pin (J)	Tonsillitis (S)
Х1	High	¥	¥	¥	¥	¥
*2	Very High	¥	₩	¥	₩	¥
Х3	High	¥	N	N	N	N
X ₄	Normal	¥	N	₦	N	₩

Table 5. Information of Tonsillitis.

```
Let X = \{x_1, x_2, x_3, x_4\} be the set of patient person with tonsillitis, let A = \{x_2, x_4\} and \hat{R} be
the equivalence relation on X, Such that \hat{R} = \{(x_i, x_i) : x_i, x_i \text{ have the same appear } \}
 symptoms). Then the set of equivalence classes corresponding to R is given by X / \hat{R} =
\{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}\}, T_{\hat{R}(A)} = \{X, \emptyset, \{x_2, x_4\}\}, \dot{I} = \{\emptyset, \{x_1\}\}. \dot{N}pO(X) = \{X, \emptyset, \{x_2\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_
\{x_1, x_2\}, \{x_1, x_4\}, \{x_2, x_3\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_4\}, \{x_1, x_3, x_4\}, \{x_2, x_3, x_4\}\}
, NifpgC(X) = \{ X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\} \}, NifpgO(X) = \{ X, \emptyset, \{x_1\}, \{x_2, x_4\}, \{x_1, x_2, x_4\} \}
If we delete (Temperature(T)), then we get X/\hat{R} - (T) = \{\{x_3, x_4\}, \{x_1\}, \{x_2\}\}. Hence
        T_{\hat{R}(A)-(T)} = \{X, \emptyset, \{x_2\}, \{x_3, x_4\}, \{x_2, x_3, x_4\}\}. \ \check{N}pO(X) = \{X, \emptyset, \{x_2\}, \{x_3\}, \{x_4\}, \{x_1, x_3\}, \{x_2, x_3\}\}.
\{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_2, x_4\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_4\}, \}. \check{N}ipgC(X) = \{X, \emptyset, \{x_1, x_2\}, \{x_1\}, \{x_2\}, \{x_2\}, \{x_1\}, \{x_2\}, \{x_1\}, \{x_2\}, \{x_2\}, \{x_1\}, \{x_2\}, \{x_2\}, \{x_1\}, \{x_2\}, \{x_2\}, \{x_1\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_1\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_1\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\}, \{x_2\},
 \big\{ x_3, x_4 \big\}, \big\{ x_1, x_3, x_4 \big\}, \big\{ x_2, x_3, x_4 \big\} \big\}. \ \check{N}\dot{f}pgO(X) = \big\{ X, \emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}, \{x_3, x_4\}, \{x_1, x_3, x_4\} \big\}, \big\{ x_1, x_2, x_3, x_4 \big\}, \big\{ x_1, x_2, x_3, x_4 \big\}, \big\{ x_1, x_2, x_3, x_4 \big\}, \big\{ x_1, x_2, x_3, x_4 \big\}, \big\{ x_1, x_2, x_3, x_4 \big\}, \big\{ x_2, x_3, x_4 \big\}, \big\{ x_3, x_4 \big\}, \big\{ x_1, x_2, x_3, x_4 \big\}, \big\{ x_2, x_3, x_4 \big\}, \big\{ x_3, x_4 \big\}, \big\{ x_3, x_4 \big\}, \big\{ x_3, x_4 \big\}, \big\{ x_3, x_4 \big\}, \big\{ x_4, x_3, x_4 \big\}, \big\{ x_4, x_3, x_4 \big\}, \big\{ x_4, x_3, x_4 \big\}, \big\{ x_4, x_3, x_4 \big\}, \big\{ x_4, x_3, x_4 \big\}, \big\{ x_4, x_4, x_4 \big\}, \big\{ x_4, x_4, x_4 \big\}, \big\{ x_4, x_4, x_4 \big\}, \big\{ x_4, x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_4, x_4 \big\}, \big\{ x_
,\{x_{2},x_{3},x_{4}\}\}.
    If we delete (Joint pain (J)), then we get X_1/\hat{R} - \{J\} = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}\}. Hence
  T_{\hat{R}(A)-(I)} = \{X, \emptyset, \{x_2, x_4\}\} = T_{\hat{R}(A)}, \tilde{N}pO(X) = \{X, \emptyset, \{x_2\}, \{x_4\}, \{x_1, x_2\}, \{x_1, x_4\}, \{x_2, x_3\}\}
\{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_4\}, \{x_1, x_3, x_4\}, \{x_2, x_3, x_4\}\}, \check{N}ipgC(X) = \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3\},
\{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_1\}, \{x_2, x_4\}, \{x_1, x_2, x_4\}\}.
If we delete (Diarrhea (D)), then we get X/\hat{R} - D = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}\} and
hence T_{\hat{R}(A)-(D)} = \{ X, \emptyset, \{x_2, x_4\} \} = T_{\hat{R}(A)}
                                                                                                      =\{X_1, \emptyset, \{x_2\}, \{x_4\}, \{x_1, x_2\}, \{x_1, x_4\}, \{x_2, x_3\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_4\}
\{x_1, x_3, x_4\}, \{x_2, x_3, x_4\}\}, \check{N}ipgC(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}, \check{N}ipgO(X) = \{X, \emptyset, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\}, \{x_3\},
\{X, \emptyset, \{x_1\}, \{x_2, x_4\}, \{x_1, x_2, x_4\}\}
If we delete (Inability to swallow (I)), then we get X / (\hat{R} - (I)) = \{\{x_1\}, \{x_2\}, \{x_3\}\}. Hence
    T_{\hat{R}(A)-(I)} = \left\{ X, \emptyset, \{x_4\}, \{x_2, x_3\}, \{x_2, x_3, x_4\} \right\}, NpO(X) = \{X, \emptyset, \{x_2\}, \{x_3\}, \{x_4\}, \{x_2, x_3\}, \{x_4\}, \{x_2, x_3\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\},
 \{x_2, x_4\}, \{x_3, x_4\}, \{x_2, x_3, x_4\}, \{x_1, x_2, x_4\}, \{x_1, x_3, x_4\}\}.
     \dot{N}ipgC(X) = \{ X, \emptyset, \{x_1, x_2, x_3\}, \{x_1, x_4\}, \{x_1\}, \{x_4\}, \{x_2, x_3\}, \{x_2, x_3, x_4\} \}.
\check{N}ipgO(X) = \{X, \emptyset, \{x_1\}, \{x_4\}, \{x_2, x_3\}, \{x_1, x_2, x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_4\}\}.
If we delete the attribute Emaciation (N), then we get, X / (R - \{N\}) = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}\}\}
hence T_{\hat{R}(A)-(I)}\{X,\emptyset,\{x_2,x_4\}\} = T_{\hat{R}(A)}. NpO(X) = \{X,\emptyset,\{x_2\},\{x_4\},\{x_1,x_2\},\{x_1,x_4\},\{x_2,x_3\}\}
\{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_4\}, \{x_1, x_3, x_4\}, \{x_2, x_3, x_4\}\}, \check{N}ipgC(X) =
 \{ X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\} \}, \check{N}ipgO(X) = \{ X, \emptyset, \{x_1\}, \{x_2, x_4\}, \{x_1, x_2, x_4\} \}. 
 Therefore, from table above we get a core(\hat{R}) = \{T, I\}, we investigate that, (temperature(T))
 and (Inability to swallow(I)) are the sufficient and necessary to say that a patient have
                                                                                                                                            since \check{N}ipgO(X) = \{X, \emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}, \{x_3, x_4\}, \{x_1, x_3, x_4\}, \{x_2, x_3, x_4\}, \{x_4, x_5, x_4\}, \{x_4, x_5, x_4\}, \{x_4, x_5, x_4\}, \{x_5, x_5, x_4\}, \{x_5, x_5, x_4\}, \{x_5, x_5, x_4\}, \{x_5, x_5, x_4\}, \{x_5, x_5, x_4\}, \{x_5, x_5, x_4\}, \{x_5, x_5, x_4\}, \{x_5, x_5, x_4\}, \{x_5, x_5, x_4\}, \{x_5, x_5, x_5, x_4\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x_5, x_5\}, \{x
tonsillitis(S),
where T_{\hat{R}(A)-(T)} = \{X, \emptyset, \{x_2\}, \{x_3, x_4\}, \{x_2, x_3, x_4\}\} and NfpgO(X) = \{X, \emptyset, \{x_1\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_4\}, \{x_5, x_4\}, \{x_4\}, , x_3\}, \{x_1, x_2, x_3\}, \{x_2, x_3, x_4\}, \{x_1, x_3\}\}. Where,
  T_{\hat{R}(A)-(I)} = \{ X, \emptyset, \{x_4\}, \{x_2, x_3\}, \{x_2, x_3, x_4\} \}.
```

Table 6. explains the difference for the nano ipgO(X) according to difference equivalent classes.

 Table 6. Effective symptoms.

Equivalent cla	Nano topolog	Nano i̇́pgC(X)	Nano fpgO(X)
X/\hat{R} = {{ x ₁ }, {x ₂ }, {x ₃	$T_{\hat{R}(A)} = \{ X, \emptyset, \{x_2, x_4\} \}$	$\{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2, x_4\}, \{x_1, x_2, x_4\}\}$
$X_1/\hat{R} - (T)$ = {{x ₃ , x ₄ }, {x ₁ }, {	$T_{\hat{R}(A)-(T)} = \{X, \emptyset, \{x_2\}, \{x_3, x_4\}\}$ $\{x_2, x_3, x_4\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}, \{x_3, x_4\}, \\ \{x_1, x_3, x_4\}, \{x_2, x_3, x_4\}\}$	$\{X,\emptyset,\{x_1\},\{x_2\},\{x_1,x_2\},\{x_3,x_4\},\\ \{x_2,x_3,x_4\},\{x_1,x_3,x_4\}\}$
$X_{1}/\hat{R} - (J)$ = $\{\{x_{1}\}, \{x_{2}\}, \{x_{3}\}\}$	$ \begin{array}{c} T_{\hat{R}(A)-(J)} \\ = \\ \{X, \emptyset, \{x_2, x_4\}\} = \end{array} $	$\{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}$	{ X, Ø, {x ₁ }, {x ₂ , x ₄ },{x ₁ , x ₂ , x ₄ }}
$X_1/\hat{R} - (I)$ = $\{\{x_1\}, \{x_4\}, \{x_2, x_3\}, \{x_4\}, \{x_$	$T_{\hat{R}(A)-(I)} = \{X, \emptyset, \{x_4\}, \{x_2, x_3\} \\ \{x_2, x_3, x_4\}\}$		
$X_1/\hat{R} - (D)$ = $\{\{x_1\}, \{x_2\}, \{x_3\}\}$	$T_{\hat{R}(A)-(D)} = \{X, \emptyset, \{x_2, x_4\}\} = \{X, \emptyset, \{x_2, x_4\}\}$	$\{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2, x_4\}, \{x_1, x_2, x_4\}\}$
$X_1/\hat{R} - (N)$ = $\{\{x_1\}, \{x_2\}, \{x_3\}\}$	$T_{\hat{R}(A)-(N)} = \{X, \emptyset, \{x_2, x_4\}\} =$	$\{X, \emptyset, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3, x_4\}\}$	$\{X, \emptyset, \{x_1\}, \{x_2, x_4\}, \{x_1, x_2, x_4\}\}$

References

- 1. Kuratowski, K.; Topology New York: Academic Press. 1966, I.
- 2. Vaidyanathaswamy, V. the Localization theory in set topology. proc. *Indian Acad. Sci.***1945**, *20*, 51-61.
- 3. Thivagar, M.L.; Richard, C.On nano forms of weakly open sets. *International Journal of Mathematics and Statistics Invention.***2013**, *1*, 31-37.
- 4. Parimala, M.; Jafari, S.; On some new notions in nano ideal topological spaces. *International Balkan Journal of Mathematics*.**2018**, *I*, 85-93.
- 5. ALhawez, Z.T. on generalized b*-Closed set In Topological Spaces. *Ibn Al-Haithatham Journal for Pure and Applied Science*.**2015**, 28, 3, 204-213.
- 6. Nasef, A.A.; Radwan, A.E.; Esmaeel, R.B. Some properties of α-open sets with respect to an ideal. *Int J Pure Appl Math.***2015**, *102*, *4*, 613-630.
- 7. Abd El- Monsef, M.E.; Nasef, A.A.; Radwan, A.E.; Esmaeel, R.B. On α- open sets with respect to an ideal. *Journal of Advances studies in Topology.***2014**, *5*, *3*, 1-9.
- 8. Pawlak, Z. Rough sets. *International journal of computer and Information Sciences*. **1982**, *11*, 341-356.
- 9. Thivagar, M.L.; Jafari, S.; Devi, V.S. On new class of contra continuity in nano topology. *Italian Journal of Pure and Applied Mathematics*.**2017**, *41*, 1-12.