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Abstract  

     In this paper, Bayesian estimator for the parameter and reliability function of inverse 
Rayleigh distribution (IRD) were obtained Under three types of loss function, namely, square 
error loss function (SELF), Modified Square error loss function (MSELF) and Precautionary 
loss function (PLF), taking into consideration the informative and non- informative prior. The 
performance of such estimators was assessed on the basis of mean square error (MSE) 
criterion by performing a Monte Carlo simulation technique. 
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1. Introduction 
     In reliability studies, most of the life time distributions used are characterized by a 
monotone failure rate, however, one parameter inverse Rayleigh distribution has also been 
used as a failure time distribution. Recently, many researchers interested in studying Inverse 
Rayleigh distribution in various aspects, for example: Mukherjee and Saran (1984) 
demonstrated that for a given parameter 𝜃 the distribution is increasing (or decreasing) failure 

rate according as the distribution variety is less than or more than 1.069543/√𝜃  . [1]. 
Gharraph (1993) 0btained five measures of the parameter of (IRD). Moreover, he estimated 
the parameter by using different methods of estimation [2]. Mukherjee and maiti (1996) 
derived percentile estimator of the parameter 𝜃 and its asymptotic efficiency [3]. Abdel- 
Monem (2003) discussed some estimation and prediction results for (IRD) [4]. EL-Helbawy 
and Abdel-Monem (2005) used Bayesian approach to estimate the parameter of IRD under 
four loss functions [5]. Soleman et-al. (2010) discussed Bayesian and non-Bayesian 
estimation of the parameter of IRD along with Bayesian prediction on the basis of lower
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 2.  Inverse Rayleigh Distribution (IRD)                       

     The continuous random variable t is said to have inverse Rayleigh distribution with scale 

parameter 𝜃 if it has the probability density function  

𝑓 𝑡, 𝜃 exp ,    𝑡 0, 𝜃 0                                                                                             1                         

The corresponding cumulative distribution function is  

𝐹 𝑡, 𝜃 exp
𝜃
𝑡

,    𝑡 0, 𝜃 0                                                                                                2  

Therefore, the reliably function of IRD is given by         

𝑅 𝑡, 𝜃 1 𝐹 𝑡, 𝜃 1  exp ,    𝑡 0, 𝜃 0                                                       (3)       

A variance and higher order moments do not exist for this distribution, moreover, it can be 
shown that IRD is special case of inverse Weibull distribution with parameters 𝜃, 𝛽 when 𝛽
2 [7].       

3. Prior information's  
    A convenient choice of priors is indispensable for Bayesian analysis. Many researchers 
choose priors on the basis of their subjective beliefs and knowledge's. However, if enough 
information about parameter is presented, we should use informative priors; otherwise, it is 
better to employ vague or non-informative priors. In this paper, we consider the general rule 
developed by Jeffrey (1961) to obtain the non –informative prior. He established that the 
single unknown parameter 𝜃 which is regarded as a random variable follows such a 
distribution that is proportional to the square root of Fisher information 𝐼 𝜃 , that is 𝑔 𝜃 ∝

𝐼 𝜃   where 𝑔 𝜃   denotes the prior information. Equivalently, 

  𝑔 𝜃 𝑐 𝐼 𝜃                                                                                                                       (4)                         

   Where C is a constant of proportionality and,                                  

𝐼 𝜃 𝑛𝐸 ,
]                                                                                                            (5)           

It follows that:                                         

𝑔 𝜃 𝑐 𝑛𝐸 ,
                                                                                                      (6)            

4. Posterior density of inverse Rayleigh parameter based on Jeffrey's prior information                           

   From equation (1), we have:                                                                 

 𝑙𝑛𝑓 𝑡, 𝜃   𝑙𝑛2 𝑙𝑛𝜃 3𝑙𝑛𝑡                                          

,
  

It follows that  
,

  =                            
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𝑔 𝜃 √𝑛                                                                                                                            (7)       

   From Bayesian perspective, the posterior density denoted by ℎ 𝜃|𝑡  can be determined by 

combining the prior distribution 𝑔 𝜃  with the likelihood function  𝐿 𝑡  |𝜃 , as follows:              

ℎ 𝜃|𝑡    =
|

|
                                                                                                               (8)         

   Let 𝑡 = (𝑡 , 𝑡 , … … 𝑡  be a random sample drawn from inverse Rayleigh distribution, then 
the likelihood function is:      

𝐿 𝑡|𝜃 = ∏ 𝑓 𝑡 , 𝜃      

  2 𝜃 ∏ 𝑒𝑥𝑝 𝜃 ∑                                                                                               (9)        

   Let ℎ 𝜃|𝑡  denote the posterior density based on Jeffrey's prior distribution 𝑔 𝜃   for 
inverse Rayleigh parameter 𝜃, then by substituting equations (7) and (9) into equation (8) with 
simplification, we get:                  

ℎ 𝜃|𝑡                 

Where 𝑇 ∑          

It follows that       

ℎ 𝜃|𝑡                                                                                                              (10)      

  The posterior density function in equation (10) is recognized as the density of gamma 
distribution, that is:      

𝜃|𝑡~ gamma 𝑛,         

Hence, 𝐸 𝜃|𝑡                                                                                                                  (11) 

5. Posterior density of inverse Rayleigh parameter based on exponential prior 
distribution   

   Assuming that the inverse Rayleigh parameter 𝜃 follows exponential prior distribution with 
parameter, that is:  

𝑔 𝜃 𝜆𝑒  , λ 0, 𝜃 0                                                                                                (12) 

Where 𝑔 𝜃   denotes the exponential prior distribution of the inverse Rayleigh parameter 𝜃.              

   By substituting equations (9) and (12) into equation (8) with simplification, we get:        

ℎ 𝜃|𝑡                                                                                                              (13)            



   

131 
  

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020 

Where ℎ 𝜃|𝑡   denotes the posterior density based on exponential prior distribution and 𝑝
𝑇 𝜆  .      

From equation (13), it can be easily noted that 𝜃|𝑡 distributed as gamma with parameter 

𝑛 1,  . It follows that:        

𝐸 𝜃|𝑡                                                                                                                           (14)       

6. Types of loss functions    
       From Bayesian viewpoint, [8]. The essential step in the estimation and prediction 
problems represented by choosing the loss function. In fact, there is no specific analytical 
procedure to determine the suitable loss function to be employed. In most of studies 
concerning Bayesian estimation problem, the researchers consider the underlying loss 
function to be squared error loss function (SELF) which is symmetric in nature. However, in 
many cases, using the squared error loss function is not appropriate, especially in those cases 
where the losses are not symmetric. Accordingly, in order to make the statistical inferences 
more practical and applicable, we often need to choose an asymmetric loss function.                                        
   In this paper, we consider both symmetric and asymmetric loss functions for better 
realization of Bayesian analysis. In particular, the following loss functions have been 

considered assuming that 𝜃 is an estimate of 𝜃, and L θ, θ  symbolizes the loss function.      

i) The Squared error loss function (SELF) is defined as:   

𝐿 𝜃, 𝜃 𝜃 𝜃                                                                                                                 (15)        

ii) Modified Squared error loss function (MSELF) is defined as:     

𝐿 𝜃, 𝜃 𝜃 𝜃 𝜃     r=1, 2, 3                                                                                          (16)      

Iii\) Precautionary loss function (PLF) is defined as:    

  𝐿 𝜃, 𝜃
 

                                                                                                                  (17)     

7.  Bayesian Estimation 
The Bayes estimator of the parameter 𝜃  is the value of 𝜃 that minimizes the posterior 

expectation known as the risk function and denotes  𝑅 𝜃, 𝜃 ,  that is:  

𝑅 𝜃, 𝜃   𝐸 𝐿 𝜃, 𝜃 𝐿 𝜃, 𝜃 ℎ 𝜃|𝑡 𝑑𝜃                                                                      (18)     

Where  ℎ 𝜃|𝑡   is the posterior density of 𝜃|𝑡 

8. Bayes estimator of the parameter 𝜽 of IRD under SELF  
In general, if SELF is chosen, then according to equation (18), we have:   

𝑅 𝜃, 𝜃   𝜃 𝜃 ℎ 𝜃|𝑡 𝑑𝜃     

 𝜃 ℎ 𝜃|𝑡 𝑑𝜃 2𝜃 𝜃ℎ 𝜃|𝑡 𝑑𝜃 𝜃 ℎ 𝜃|𝑡 𝑑𝜃    

It follows that:     
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𝑅 𝜃, 𝜃  𝜃 2𝜃𝐸 𝜃|𝑡 𝐸 𝜃 |𝑡        

   By differentiating  𝑅 𝜃, 𝜃   with respect to  𝜃  and setting the resultant derivative equal to 

zero, we get:   

2𝜃 2𝐸 𝜃|𝑡 0     

By Solving for  𝜃 , we obtain the Bayes estimator of 𝜃 under SELF denoted by 

 𝜃 𝐸 𝜃|𝑡                                                                                                                          (19)     

From equation (11) and on the basis of non-informative prior, the Bayes estimator of inverse 

Rayleigh parameter 𝜃  denoted as  𝜃  is given by.  

𝜃                                                                                                                                 (20)    

 Where 𝜃  denotes the Bayes estimate of  𝜃 based on Jeffrey's prior information.  If the 

inverse Rayleigh parameter follows the exponential prior distribution, then by equation (14), 
we conclude that   

 𝜃                                                                                                                            (21)   

Where 𝜃  denotes the Bayes estimate of  𝜃 based on exponential prior distribution.    

9. Bayes estimator of the Inverse Rayleigh parameter  𝜽 under MSELF   

By substituting 𝐿 𝜃, 𝜃  given in equation (16) into equation (18), we get     

𝑅 𝜃, 𝜃   𝜃 𝜃 𝜃 ℎ 𝜃|𝑡 𝑑𝜃           

By evaluating the integral, we get     

𝑅 𝜃, 𝜃  𝜃 𝐸 𝜃 |𝑡 2𝜃𝐸 𝜃 |𝑡 𝐸 𝜃 |𝑡        

By differentiating  𝑅 𝜃, 𝜃   with respect to θ , then equating the resultant derivative to zero 

and solving for 𝜃, we get the Bayes estimator of 𝜃 under Modified squared error loss function 

denoted by 𝜃   as follows.  

 𝜃
|

|
    r=1,2,                                                                                                        (22)     

If k is positive integer, it is well known that       

𝐸 𝜃 |𝑡 𝜃 ℎ 𝜃|𝑡 𝑑𝜃                                                                                                   (23)       

On the basis of Jeffrey's prior information and by substituting ℎ 𝜃|𝑡  by  ℎ 𝜃|𝑡   given in 

equation (10), then evaluating the integral in (23); it can easily be shown   

𝐸 𝜃 |𝑡                                                                                                                    (24)    
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  Therefore, the Bayes estimator given in equation (22) can be simplified to be:     

𝜃                                                                                                                         (25)    

If   r=1  we get  

 𝜃                                                                                                                       (26)    

 If   r=2  we get                                                                                       

𝜃                                                                                                                         (27)    

  If   r=3   then we obtain,  

 𝜃                                                                                                                            (28)      

On the basis of exponential prior distribution and by replacing ℎ 𝜃|𝑡  in equation (23) by  

ℎ 𝜃|𝑡   given in equation (13), we get:   

𝐸 𝜃 |𝑡     ,    k=1,2                                                                                             (29)     

Where 𝑝 𝑇 𝜆     

Therefore, the Bayes estimator given in equation (22) can be simplified to be:    

𝜃                                                                                                                      (30)      

  

For  r=1 we get:   

𝜃                                                                                                                              (31)   

For  r=2 we get:  

𝜃                                                                                                                              (32) 

For  r=3 we get:   

𝜃                                                                                                                              (33) 

10. Bayes estimator of the Inverse Rayleigh parameter  𝜽 under precautionary loss 
function    

By substituting  𝐿 𝜃, 𝜃   presented in equation (17) into equation (18), we get:     

𝑅 𝜃, 𝜃   ℎ 𝜃|𝑡 𝑑𝜃         

By evaluating the integral, we get:    
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𝑅 𝜃, 𝜃   = 𝐸 𝜃 |𝑡 2𝐸 𝜃|𝑡 𝜃    

   Differentiating  𝑅 𝜃, 𝜃   with respect to 𝜃 and setting the derivative equal to zero then 

solving for 𝜃, we get the Bayes estimator of 𝜃 under precautionary loss function denoted as 

𝜃 , that is:  

𝜃 𝐸 𝜃 |𝑡                                                                                                                        (34)      

     On the basis of Jeffrey's prior information, the Bayes estimator of the inverse Rayleigh 

parameter 𝜃  can be obtained by assuming that k=2 in equation (24) to get  𝐸 𝜃 |𝑡 , then 

substituting it into equation (34), so we obtain,    

𝜃                                                                                                                        (35)     

   On the same manner, by putting k=2  in equation (29), then substituting) it into equation 
(34), we get the Bayes estimator of inverse Rayleigh parameter 𝜃 under precautionary loss 

function and exponential prior distribution , denoted as   𝜃   and given by:  

𝜃                                                                                                                  (36)    

11. Bayes estimator of the reliability function R(t) of IRD under SELF  
Let us assume that k is any positive integer, then,     
𝐸 𝑅 𝑡 |𝑡 = 𝑅 𝑡 ℎ 𝜃|𝑡 𝑑𝜃     

For IRD and according to equation (3), we have,    

𝐸 𝑅 𝑡 |𝑡 = 1 𝑒 ℎ 𝜃|𝑡 𝑑𝜃                                                                                   (37) 

   For Jeffrey's prior information, we substitute from ℎ 𝜃|𝑡  in equation (37) by ℎ 𝜃|𝑡  given 

in equation (10), then in order to evaluate the integral in equation (37), we develop the 
following formula:   

  1 𝑒 ∑ 1 𝑒                                                                                 (38)     

The integral in equation (37) should be reduced to:    

𝐸 𝑅 𝑡 |𝑡  ∑ 1 𝑒  ℎ  (𝜃|𝑡 𝑑𝜃     

   This implies that:  

𝐸 𝑅 𝑡 |𝑡  ∑ 1                                                                             (39)   

where T=∑       

   For exponential prior distribution, it can be shown in the same manner that:   
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𝐸 𝑅 𝑡 |𝑡  ∑ 1 𝑒  ℎ  (𝜃|𝑡 𝑑𝜃 ,   

which implies that:    

 𝐸 𝑅 𝑡 |𝑡  ∑ 1                                                                         (40) 

 where p=T+λ   

Under SELF and according to equation (19), we conclude that:   

𝑅 𝑡 𝐸 𝑅 𝑡 |𝑡   

For Jeffrey's prior information, putting k=1 in equation (39), we get:  

𝑅 𝑡 1                                                                                                         (41)      

For exponential prior distribution, putting k=1 in equation (40), we get:  

𝑅 𝑡 1                                                                                                     (42)      

12.  Bayes estimator of the reliability function R(t) of IRD under MSELF   
   From equation (22) it is clear that the estimator of the reliability function R(t) under   
MSELF is given by:   

𝑅 𝑡
|

|
  ,  r=1,2,…     

For IRD, with Jeffry's prior information and r=1 then,  

𝑅 𝑡
|

|
    .   

 By putting k=2, k=1 in equation (39) we obtain 𝐸 𝑅 𝑡 |𝑡 , 𝐸 𝑅 𝑡 |𝑡   respectively. This 

implies that:  

𝑅 𝑡                                                                                       (43)   

  

For r=2, it follows that:     

𝑅 𝑡
|

|
  , putting k=3 in equation (39) we obtain    

𝐸 𝑅 𝑡 |𝑡  . Hence,  

𝑅 𝑡                                                                             (44)    

For r=3 it follows that:      
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 𝑅 𝑡
|

|
   , putting k=4 in equation (39), we get   

 𝐸 𝑅 𝑡 |𝑡  , and hence    

 𝑅 𝑡                                                             (45) 

   Similarly, for exponential prior distribution and according to equations (22) and (40), it can 
be shown that the Bayes estimators of the reliability function R(t) under MSELF for 
r=1,2,3   are given in respective    

  𝑅 𝑡                                                                                    (46)    

𝑅 𝑡                                                                   (47)    

𝑅 𝑡                                                 (48)   

13. Bayes estimator of the reliability function R(t) of IRD under precautionary loss 
function    
   From equation (34), it is clear that the estimator of the reliability function R(t) under 
precautionary loss function is given by:  

𝑅 𝑡 𝐸 𝑅 𝑡 |𝑡   

For Jeffrey's prior information, putting k=2 in equation (39), we get: 

𝑅 𝑡 1 2                                                                                 (49)   

   On the basis of exponential prior distribution, putting k=2 in equation (40), we get:    

𝑅 𝑡 1 2                                                                         (50)       

14. Simulation Study  
      In our simulation study, L=2000 sample of size n=10, 50, 100 and 200 were generated in 
order to represent, small, moderate, large and very large sample sizes from inverse Rayleigh 
distribution with two values of the scale parameter (𝛳 0.5 , 𝛳 1.5  (.The) scale parameter 
λ of exponential prior was chosen to be (λ=0.5, λ=1) and assumed the values of r in modified 
square error loss function to be r=1, r=2 and r=3(. The) criterion mean square error (MSE) 
was employed to compare the performance of different methods of estimation of the scale 
parameter and reliability function of IRD where  

𝑀𝑆𝐸 𝜃 ∑ 𝜃 𝜃                                                                                                   (51) 
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𝑀𝑆𝐸 𝑅 𝑡 ∑ 𝑅 𝑡 𝑅 𝑡                                                                                    (52)   

  The results are presented in the following tables. 

Table1. (MSE) for parameter 𝜃 by using Jeffrey's prior information at 𝜃 0.5. 

n 
Estimator 

10 50 100 200 

Sq 0.0043 0.0001081 0.000026174 0.000006512 
MS    r=1 0.0061 0.0001186 0.000027468 0.000006676 
MS    r=2 0.0086 0.0001334 0.000029277 0.000006903 
MS    r=3 0.0119 0.0001524 0.000031602 0.000007193 
Pr 0.0215 0.0049 0.0025 0.0012 
Best Sq Sq Sq Sq 

 

 

 Table 2. (MSE) values of the Reliability function estimators by using Jeffrey's prior information at 𝜃 0.5. 

n 
Estimator 

10 50 100 200 

Sq 0.000295 0.0000099 0.0000024714 0.0000006220 
MS   r=1 0.000353 0.0000103 0.0000025315 0.0000006297 
MS  r=2 0.000436 0.0000111 0.0000026240 0.0000006416 
MS  r=3 0.000541 0.0000120 0.0000027483 0.0000006575 
Pr 0.000319 0.0000101 0.0000024973 0.0000006253 
Best Sq Sq Sq Sq 

 

 

Table 3. (MSE) for parameter 𝜃 by using Exponential prior information at 𝜃 0.5. 

N 
Estimator 

10 50 100 200 

Sq λ 0.5 0.0051 0.0001143 0.000026952 0.000006612 
λ 1 0.0043 0.0001103 0.000026474 0.000006552 

MS  
r=1 

λ 0.5 0.0073 0.0001278 0.000028621 0.000006822 
λ 1 0.0061 0.0001226 0.000028004 0.000006746 

JMS  
r=2 

 λ 0.5 0.0100 0.0001455 0.000030803 0.000007096 
λ 1 0.0085 0.0001391 0.000030045 0.000007003 

MS  
r=3 

λ 0.5 0.0135 0.0001674 0.000033498 0.000007433 
λ 1 0.0115 0.0001597 0.000032596 0.000007323 

Pr λ 0.5 0.0061 0.0001205 0.00002772 0.000006709 
λ 1 0.0051 0.0001159 0.000027173 0.000006641 

Best  Sq Sq Sq Sq 
 

 

 

 

 

 



   

138 
  

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020 

  Table 4. (MSE) values of the Reliability function estimators by using Exponential prior information at 𝜃 0.5. 

 n 
Estimator 

10 50 100 200 

Sq λ 0.5 0.000332 0.0000102 0.0000025179 0.0000006281 
λ 1 0.000290 0.0000099 0.0000024824 0.0000006235 

MS  
r=1 

λ 0.5 0.0031 0.0000364 0.0000058603 0.000001052 
λ 1 0.0030 0.0000354 0.0000057318 0.000001035 

MS  
r=2 

λ 0.5 0.000508 0.0000119 0.0000027277 0.0000006549 
λ 1 0.000443 0.0000114 0.0000026716 0.0000006479 

MS  
r=3 
 

λ 0.5 0.000625 0.0000130 0.0000028797 0.0000006745 

λ 1 0.000548 0.0000125 0.0000028134 0.0000006661 

Pr
  

λ 0.5 0.2320 0.0470 0.0235 0.0118 

λ 1 0.2328 0.0470 0.0235 0.0118 
Best  Sq Sq Sq Sq 

 

Table 5. (MSE) for parameter 𝜃 by using Jeffrey's prior information at 𝜃 1.5. 

 n 
Estimator 

10 50 100 200 

Sq 0.0391 0.00097346 0.00023555 0.00005861 
MS   r=1 0.0553 0.0011 0.00024721 0.000060085 
MS   r=2 0.778 0.0012 0.00026350 0.000062128 

MS   r=3 0.1067 0.0014 0.00028442 0.000064741 
Pr 0.1444 0.0422 0.0218 0.0111 
Best Sq Sq Sq Sq

 

Table 6. (MSE) values of the Reliability function estimators by using   prior information at 𝜃 1.5. 

 n 
Estimator 

10 50 100 200 

Sq 0.000640 0.000024186 0.000006000951 0.0000015384 
MS   r=1 0.000699 0.000024643 0.0000061533 0.0000015461 
MS   r=2 0.000804 0.000025556 0.0000062697 0.0000015611 
MS   r=3 0.000945 0.0000120 0.0000064431 0.0000015834 
Pr 0.000662 0.000024355 0.0000061167 0.0000015413 
Best Sq Sq Sq Sq 

 

Table 7. (MSE) for parameter 𝜃 by using Exponential prior information at 𝜃 1.5. 

 n 
Estimator 

10 50 100 200 

Sq λ 0.5 0.0328 0.00096071 0.0002343 0.00005847 
λ 1 0.0211 0.0008813 0.00022438 0.00005720 

MS  r=1 λ 0.5 0.0463 0.0011 0.00024684 0.00006007 
λ 1 0.0285 0.0009501 0.00023329 0.00005836 

MS  r=2 λ 0.5 0.0650 0.0012 0.00026395 0.00006223 

λ 1 0.0403 0.0011 0.0002467 0.00006008 

MS  r=3 λ 0.5 0.0889 0,0014 0.0002856 0.00006496 
λ 1 0.0564 0.0012 0.0002646 0.00006237 

Pr λ 0.5 0.388 0.0010 0.00023998 0.00005920 
λ 1 0.0242 0.0009110 0.00022826 0.00005771 

Best  Sq Sq Sq Sq 
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Table 8. (MSE) values of the Reliability function estimators by using Exponential prior information at 𝜃 1.5. 

 N 
Estimator 

10 50 100 200 

Sq λ 0.5 0.000553 0.000023591 0.0000060208 0.000001529 

λ 1 0.000456 0.00002269 0.0000059033 0.000001513 
MS  r=1 λ 0.5 0.0022 0.00003918 0.0000080152 0.000001783 

λ 1 0.0019 0.00003548 0.0000075334 0.000001721 
MS  r=2 
 

λ 0.5 0.000717 0.000025211 0.0000062315 0.000001556 

λ 1 0.000516 0.00002336 0.0000059928 0.000001525 

MS  r=3 λ 0.5 0.000849 0.000036657 0.0000064211 0.000001581 

λ 1 0.000601 0.00002433 0.0000061224 0.000001542 

Pr λ 0.5 0.15170 0.0306 0.0153 0.0077 

λ 1 0.15430 0.0307 0.0153 0.0077 

Best  Sq Sq Sq Sq 

 
15. Simulation Results and Conclusions                           
     From our simulation study, we conclude that the performance of the Bayes estimators 
under square error loss function are the best compared to other estimators in all cases that are 
included in our study, followed by the estimators under Precautionary loss function in the in 
the cases presented in Table 2, 3,6.  The estimators under modified square error loss function 
when (r=1) presented in Table 1, 5, 7.   
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