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Abstract 

      In this paper the Galerkin method is used to prove the existence and uniqueness theorem 

for the solution of the state vector of the triple linear elliptic partial differential equations for 

fixed continuous classical optimal control vector. Also, the existence theorem of a continuous 

classical optimal control vector related with the triple linear equations of elliptic types is 

proved. The existence of a unique solution for the triple adjoint equations related with the 

considered triple of the state equations is studied. The Fréchet derivative of the cost function 

is derived. Finally the theorem of necessary conditions for optimality of the considered 

problem is proved.                                                                                                                         

Keyword: Triple linear equations of elliptic type, optimal control (vector) of continuous 

classical type.                                                                                                                                 

1. Introduction 

     Optimal control problems are a fundamental tool in many fields of applied mathematics 

and taken an important role in many aspects of life, for example in an electric power [1]. In 

robotics [2].  In biology [3]. In economic [4]. In medicine as [5]. In heat condition [6].  And in 

many others aspects. This importance encouraged researchers to study problems for the 

optimal control related with nonlinear ordinary differential equations   [7]. Or related with 

different types of nonlinear partial differential equation as hyperbolic, parabolic, elliptic [8-

10]. Or related with couple of nonlinear hyperbolic, parabolic and elliptic partial differential 

equation [11-13]. While many others researchers studied the Numann boundary optimal 

control problems related with couple of nonlinear hyperbolic, parabolic and elliptic partial 

differential equation [14-16]. This article deals with; the existence theorem for a unique 

solution (continuous state vector (CSV)) for the triple linear elliptic partial differential 

equations (TLEPDEqs) is sated, studied and proved by using the Galerkin Method (GM) for 

fixed continuous classical optimal control vector (CCOCV). The existence theorem for a 

continuous classical optimal control vector (CCOCV) related with the TLEPDEqs is state and 

proved. The existence for the unique solution of the triple adjoint equations (TAEqs) which 

corresponds to the TLEPDEqs is studied. The Fréchet derivative (FD) of the cost function is 
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derived; finally the theorem for necessary conditions of optimality (NCO) is stated and 

proved. 

2. Problem Description  
     Let Λ be a bounded and open connected subset in    with Lipschitz 

boundary ∂Λ. Consider the CCOCV of the TLEPDEqs 

                                                                                         (1)                                                                               

                                                                                         (2)                                                                              

                                                                                         (3)                                                                               

with the Dirchlet boundary condition   

            ,  in ∂Λ                                                                           (4)                                                                                      

where      ∑
 

   
(   

   

   
) 

   ,           ,         (   )   
 ( )           ,        

(        )  (  (     )   (     )   (     ))  

( ( ̅))
 
                    (                        the system (1-4)), (        )  

(  (     )   (     )   (     ))  ( 
 ( ))

 
is the classical  control vector and 

(        )  (  (     )   (     )   (     ))  ( 
 ( ))  is a vector of a given 

function , for all (     )     .  

The Set of Admissible Control is  ⃗⃗  (  ( ))
 
,  such that   

 ⃗⃗  {(        )  ( 
 ( ))

 
|(        )            ⃗⃗   

         }  

where          is convex set.  

The Cost Functional is  
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‖      ‖ 

   

 
 

 
 ‖  ‖ 

  
 

 
‖  ‖ 

  
 

 
‖  ‖ 

      ⃗   ⃗⃗                                                                                            ( )  

Where α  is a positive real number,   ⃗⃗  is the solution vector of (1 -4) 

corresponding to the continuous classical control vector (CCV)   ⃗   and (           ) 

is a vector of desired date.  

The CCOCV Problem is  to minimize   ( ⃗ )  (5) subject to  ⃗⃗  (        )   ⃗⃗ .  

Let   ⃗⃗⃗             
 ( )    

 ( )    
 ( ).We denote by (   )  and  ‖ ‖   

the inner product and the norm in   
 ( ),  by ( ⃗⃗⃗   ⃗⃗⃗ ) ,  ‖ ⃗⃗⃗ ‖  the inner product and 

the norm in   ( ) by ( ⃗⃗⃗   ⃗⃗⃗ )  (     )  (     )  (     )  and ‖ ⃗⃗⃗ ‖  

‖  ‖  ‖  ‖  ‖  ‖  the inner product and the norm in  ⃗⃗⃗  and   ⃗⃗ ⃗⃗  ⃗ (the dual 

of  ⃗⃗⃗ ).  

 3. Weak Formulation of  the TLEPDEqs 

       The weak form (WF) of problem (1-4) are obtained by multiplying both sides of 

Equations (1-3) by      ,      and       respectively,  integrating the 

obtained Equations and finally using the generalize  Green's theorem for the 

1
s t

 term in the Left hand side (L.H.S) of the three obtained equations , to get  

  (     )  (     )  (     )  (     )  (     )  (     )                            (6)                                      

  (     )  (     )  (     )  (     )  (     )  (     )                           (7)                                     
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  (     )  (     )  (     )  (     )  (     )  (     )                           (8)                                      

where   (     )  ∬ ∑    
 
     

   

   
 
   

   

 

 
         , (     )  ∬      

 

 
          

  =(         ),                                  

blending to gather Equations (6), (7) and (8), once get  

 (    ⃗⃗⃗ )   ̆( ⃗⃗⃗ )                                                                                        (9) 

where  (    ⃗⃗⃗ )    (     )  (     )  (     )  (     )    (     )  (     )    

(     ) 

                         (     )    (     )  (     )  (     )  (     ) 

and for fixed   ⃗ ,  

  ̆( ⃗⃗⃗ )  (     )  (     )  (     )  (     )  (     )  (     ) 

The following hypotheses are useful to study the existence of unique solution for the WF  (9) .  

Hypotheses:  

a)   (    ⃗⃗⃗ ) is coercive,  i .e.   (     )   ‖ ‖ 
 
,      

b)  | (    ⃗⃗⃗ )|    ‖  ‖ 
‖ ⃗⃗⃗ ‖ ,      .  

c)     ̆( ⃗⃗⃗ )      ⃗⃗⃗   ,    ⃗⃗⃗   ⃗⃗⃗ ,       .  

 

The GM is used here to find the solution of (9), This is  doing through 

choosing a finite subspace   ⃗⃗ ⃗⃗      ⃗⃗ ⃗⃗  (  ⃗⃗⃗                     contains the 

continuous and piecewise affine functions in Λ), hence the problem reduces 

to find an approximate solution of the following an approximation problem  

 (  ⃗⃗  ⃗  ⃗⃗⃗ )   ̆( ⃗⃗⃗ ),            ⃗⃗⃗   ⃗⃗⃗                                                                   (10)                                                                            

Theorem 3.1: 

For every fixed control vector  ⃗  (  ( ))  ,  the WF (10) has a unique 

approximation solution       ⃗⃗⃗  .  

Proof: Let { ⃗⃗    ⃗⃗      ⃗⃗  
 
} be a finite basis of  ⃗⃗⃗    and let  

       (     )  ∑    ⃗⃗  (     )
 
    (∑      

 
    ∑      

 
    ∑      )

 
                   (11)                        

Where   ⃗⃗   ((  
         

 
)      (         )      

 

 
(          )   ),  

 for         ,              ,      ,            

     [((   ) )      ]   [
 (   )

 
] ,  and    with           are unknown 

constants.  

By using      ∑    ⃗⃗  
 
         ⃗⃗⃗   ⃗⃗  ,  in (10), to get  

  (∑    ⃗⃗    ⃗⃗  
 
   )   ̆( ⃗⃗  ),                                                                   (12)                                                    

which can be rewritten as a  linear algebraic system, i .e.   

                                                                                                  (13)                         

From hypothesis (a), easily once   obtained the uniqueness of the solution of problem (13), 

which gives also the uniqueness of the solution of problem (10). 
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Theorem 3.2 (                 ),  -  For each  ⃗⃗⃗   ⃗⃗⃗  there exists a sequence 

{ ⃗⃗  } with  ⃗⃗    ⃗⃗⃗   for each n, such that   ⃗⃗  
       
→  ⃗⃗⃗  strongly in   ⃗⃗⃗ .  

Now from the WF (10) and theorem(3.2),once get that there exists  a sequence 

of WF 

 (  ⃗⃗  ⃗  ⃗⃗  )   ̆( ⃗⃗  ) ,      ⃗⃗    ⃗⃗⃗                                                               (14)   

                                                                 

which has a sequence of solutions {   }   

 
 and the sequence   ⃗⃗  

       
→  ⃗⃗⃗  strongly 

in   ⃗⃗⃗ .  

Theorem 3.3:  

The sequence of solutions {   }   

 
converges strongly to the solution      ( ).  

Proof: Since for each n,      is a solution of (14),  then from hypotheses (a&c),  

 ‖   ‖     ,    ,  with       

Then by using Alaoglu theorem, there exists a subsequence of {   } (for 

simplicity say again  {   }), such that        weakly in  ⃗⃗⃗ .  To prove, that  the 

sequence {   }   

 
of solution of (14) converges to a vector which is the solution 

of problem (9).  

First,  from hypothesis (b), the above weakly convergences  and since   ⃗    ⃗⃗  

strongly in   ⃗⃗⃗ ,  then  

| (     ⃗  )   (     ⃗⃗ )|  | (     ⃗    ⃗⃗ )|  | (        ⃗⃗ )| 

                                ‖   ‖ ‖ ⃗
 
   ⃗⃗ ‖     ‖ 

 
    ‖ 

‖ ⃗⃗ ‖ 
          
→    

Which means 

 (     ⃗  )
               
→      (     ⃗⃗ )  

 Second,  from theorem (3.2)   ⃗    ⃗⃗  weakly in  ⃗⃗⃗ ,  then       ̆( ⃗  )   ̆( ⃗⃗ ) 

to prove    
        
→     strongly in  ⃗⃗⃗ ,  from hypothesis (1-a), one has 

  ‖      ‖ 

 
  (             )   (         )   (      )   (       )   (         )  

  ̌(      )= ̌(  )   ̌(   )
           
→     

Which complete the proof of {   } converges strongly to    with respect to‖ ‖ .  

The uniqueness of solution is obtained easily through using hypothesis (a) .  

4. Existence of a CCOCV:  

Lemma 4.1: The operator       ⃗  from  ⃗⃗  to (  ( ))  is Lipschitz continuous 

(LC), i .e.    ⃗⃗⃗⃗     ̆    ⃗⃗⃗⃗    ,  for  ̆     

Proof: Let   ⃗⃗  ⃗  (     
 
   

 
 ) be a given control  vector  of the WF(6-8) and 

  ⃗⃗  (  
 
   

 
   

 
) be the  corresponding state vector solution, we get new 

equations for   ⃗⃗⃗   and   ⃗⃗ ,  then by subtracting these new equations from their 

corresponding Equations (6 -8) and then substituting δ  =      ,  δ       
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  ,  δ  =        δ         ,     =       and δ          in the obtained 

equations, to get  

  (      )  (      )  (      )  (      )  (      )                                (15)                                          

  (      )  (      )  (      )  (      )  (      )                                (16)                                          

  (      )  (      )  (      )  (      )  (      )                                (17)                                          

Next blending together  the equations which obtained by substituting    

   ,         and         in (15-17)) respectively,  to give  

  (       )  (       )    (       )  (       )    (       )  (       ) 

 (       )  (       )  (       )                                                            (18)                                     

After using Cauch-Schwarz inequality (C-S-I) and applying hypothesis (1 -

a),once has  

 ‖  ⃗⃗⃗⃗ ‖
 

 
 ‖   ‖ ‖   ‖  ‖   ‖ ‖   ‖  ‖   ‖ ‖   ‖                                 (19)                               

Since ‖   ‖  ‖  ⃗⃗⃗⃗ ‖   ‖  
⃗⃗⃗⃗ ‖

 
 and ‖   ‖  ‖  ⃗⃗⃗⃗ ‖ ,           ,  then (19) 

becomes 

 ‖   ‖
 
  ̆‖  ⃗⃗⃗⃗ ‖

 
,  with  ̆  

  

 
 

So       ⃗   is LC on (  ( )) .                    

Lemma 4.2[14]: The norm ‖ ‖  is weakly lower semicontinuous  (W.L.S.).  

Lemma 4.3: The cost function in (5) is  W.L.S. .  .  

Proof:  the proof easily obtained through applying lemma (4.2), the weakly 

converge of    
        
→    in   ( ) and lemma (4.1).  

Lemma 4.4[14]:  The norm ‖ ‖ 
  is strictly convex.  

Remark 4.1:  The cost function   (  ) is strictly convex by using Lemma (4.4).  

Theorem 4.1: If   (  ) is coercive and  ⃗  is convex, then there ex ists CCOCV 

for the problem (5).  

Proof:  ⃗⃗  is  convex since  ⃗   is  convex with   (  )   ,  and   (  ) is  coercive 

then there exist  a minimization  sequence  *   +   ⃗⃗     such that  

    
 
    (   )     

 ⃗⃗   ⃗⃗ 
   ( ⃗ )  

Therefore   

‖   ‖       ,                                                                                    (20)                                          

Then, the sequence *   + has a subsequence for simplicity say again *   +  such 

that     
         
→     weakly in  (  ( )) ,  (by using the Aloglu theorem). But theorem 

3.1,  tell us that the sequence of problems  (9) has the sequence of 

solutions{   }.  To prove{   }   ,  is bounded in  ⃗⃗⃗ ,  the hypotheses (a and c), and 

the C-S-I,  are used to get that :  
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  ‖   ‖ 

 
  (       )   ̆(   )                                                                      (21)                                                     

≤‖  ‖ ‖   ‖  ‖   ‖ ‖   ‖  ‖  ‖ ‖   ‖ +‖   ‖ ‖   ‖  ‖  ‖ ‖   ‖  

‖   ‖ ‖   ‖  ≤  ‖   ‖    ‖   ‖    ‖   ‖    ‖   ‖    ‖   ‖    ‖   ‖   

≤ ϖ‖   ‖  

Where        (        )       (     )       (     )            (     )  

then ‖   ‖   ,for each n, with   
 

 
        

By Alaoglu theorem there exists a subsequence of {   } (for simplicity say 

again {   }) such that    
    
    weakly in  ⃗⃗    

Since for each n,     satisfies the weak form (9),then  

 (     ⃗⃗⃗ )   ̆ ( ⃗⃗⃗ )  (     )  (      )  (     )  (      )  (     )  (      )       (22)  

To show that  (22) converges to  

 (    ⃗⃗⃗ )   ̆( ⃗⃗⃗ )                                                                                       (23)                                       

First ,  since   ,     
          
→               

 ( ).  Then by using the C-S-I and 

hypothesis (b),  once gets:  

|  (      )  (      )  (      )  (      )    (      )  (      )  (      )

 (      ) 

   (      )  (      )  (      )  (      )    (     )  (     )  (     )

 (     ) 

   (     )  (     )  (     )  (     )    (     )  (     )  (     )  (     )| 

   ‖      ‖ ‖  ‖  ‖      ‖ ‖  ‖  ‖      ‖ ‖  ‖  ‖      ‖ ‖  ‖  

   ‖      ‖ ‖  ‖  ‖      ‖ ‖  ‖  ‖      ‖ ‖  ‖  ‖      ‖ ‖  ‖  

   ‖      ‖ ‖  ‖  ‖      ‖ ‖  ‖  ‖      ‖ ‖  ‖  ‖      ‖ ‖  ‖ 
              
→      

Second ,  the right hand side (R.H.S)of (22) converges to the R..H.S of (23),  

since    
      
→              (  ( )) ,  which gives (22) converges to (23).   

But   (  ) is W.L.S.,  with                  ( 
 ( ))

 
,  then 

    (  )     
 
  
  
  (   )      

 ⃗⃗   ⃗⃗ 
  ( ⃗ ),  which gives  

     (  )    
 ⃗⃗   ⃗⃗ 
  ( ⃗ ) 

i .e.,     is a ccocv. One can easily applies remark 4.1, to get the uniqueness of 

   .  

5. The Necessary Conditions for Optimality  

Theorem 5.1:  Consider the cost function (5), and the TAEqs  (        ) 

equations of the state Equations (1-4) are given by :  

                                                                                       (24)                                

                                                                                       (25)                                 

                                                                                      (26)                                
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                                                                                             (27)                                 

Then the Fréchet derivative of    is 

(   (  )   ⃗⃗⃗⃗ )  (         ⃗⃗⃗⃗ ) 

Proof: Writing the TAEqs (19-22) by their WF, then adding them and  then 

substi tuting  ⃗⃗    ⃗⃗⃗⃗  in the resulting equation to get the following WF (the 

proof of the existences of a unique solution    for this WF is simpler than the 

proof of theorem (3.1)):   

  (      )  (      )  (      )  (      )    (      )  (      )  (      )  (      ) 

   (      )  (      )  (      )  (      )  (          )  (          )  (   

       )  (28)  

Now, substituting the solutions     and       in (6) separately,  then 

subtracting the obtained 1
s t

 equation from the 2
n d

 one, finally setting    

    to obtain  

  (      )  (      )  (      )  (      )  (      )                                     (29)                     

Same steps can be used in Equation (7)for the solutions    and        with 

      ,  (in Equation (8) for the solution   and        with      ),  to get 

respectively 

  (      )  (      )  (      )  (     )  (      )                                     (30)                       

  (      )  (      )  (      )  (      )  (      )                                    (31)                       

Blending together the above triple equations, then subtracting the obtained equation from 

(28), to get 

(      )  (      )  (      )  (          )  (          )  (          )                     (32)  

                     

      

Now, (5) , once get 

  (     ⃗⃗⃗⃗ )     (  )

 (          )  (          )  (          )  (      )  (      ) 

                                                (      )  
 

 
‖  ⃗⃗⃗⃗ ‖

 

 
 
 

 
‖  ⃗⃗⃗⃗ ‖

 

 
                                    (33)                                         

From (32)and (33),  once get  

  (     ⃗⃗⃗⃗ )     (  )  (         ⃗⃗⃗⃗ )  
 

 
‖  ⃗⃗⃗⃗ ‖

 

 
 
 

 
‖  ⃗⃗⃗⃗ ‖

 

 
                                    (34)                                         

from lemma (4.1), once obtain                             

 
 

 
‖  ⃗⃗⃗⃗ ‖

 

 
 
 

 
‖  ⃗⃗⃗⃗ ‖

 

 
  (  ⃗⃗⃗⃗ )    ⃗⃗⃗⃗   

                                                                             (35)     

                                                                                    

where  (  ⃗⃗⃗⃗ )    (  ⃗⃗⃗⃗ )    (  ⃗⃗⃗⃗ )
            
→      as    ⃗⃗⃗⃗   

 
                
→      

Then from the definition of FD of  ,  and (34-35), once get  

(  
 (  )   ⃗⃗⃗⃗ )  (         ⃗⃗⃗⃗  )                                                                                       

Theorem 5.2 : The CCOCV of (1- 4) is: 

  (  )           with       ⃗  and       ⃗ . 

Proof: If    is CCOCV of (1-4),  then 

  (  )      
 ⃗⃗   ⃗⃗ 

  ( ⃗ ),   ⃗  ( 
 ( )) ,   
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i .e.,    
 (  )        

 ⃗ 

 
    

  ⃗⃗⃗⃗   ⃗      

Thus NCO is  

 (          )  (        ⃗  ),     ⃗  ( 
 ( )) .     

 

6. Conclusion: 

     The existence and uniqueness theorem for the solution (CSV) of the 

TLEPDEqs is stated and proved successfully by using the GM when the 

CCCV is given. Also, the existence theorem of a CCOCV governing by the 

TLEPDEqs is proved. The existence and uniqueness s olution of the TAEqs 

related with the triple of the state equations is sated and studied.The 

derivation of the FD is given. Finally the NCO of this problem is proved.               
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