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Abstract  

     This paper deals with the continuous classical optimal control problem for triple partial 

differential equations of parabolic type with initial and boundary conditions; the Galerkin 

method is used to prove the existence and uniqueness theorem of the state vector solution for 

given continuous classical control vector. The proof of the existence theorem of a continuous 

classical optimal control vector associated with the triple linear partial differential equations of 

parabolic type is given. The derivation of the Fréchet derivative for the cost function is obtained. 

At the end, the theorem of the necessary conditions for optimality of this problem is stated and 

is proved. 

 

Keywords: continuous  classical optimal control, triple parabolic partial differential equations, 

Galerkin Method, the necessary conditions for optimality.  
 

1. Introduction 

       Different applications for real life problems take a main place in the optimal control 

problems, for examples in medicine [1]. Robots [2]. Engineering [3]. Economic [4]. And many 

others fields. In the field of mathematics, optimal control problem ( OCP ) usually governing 

either by ordinary differential equations ( ODEs ) or partial differential equations( PDEs ), 

examples for OCP which are governing by parabolic or hyperbolic or elliptic PDEs are studied 

by [5-7]. Respectively, while which are governing by couple of PDEs ( CPDEs ) of parabolic or 

of hyperbolic or of elliptic  type are studied by [8-10]. On the other hand [11-13]. Rre studied 

boundary OCP associated with CPDEs of parabolic, hyperbolic and elliptic; while [14]. Studied 

the OCP for triple PDEs (TPDEs) of elliptic type. These works push us to seek about the OCP 

for TPDEs of parabolic type. This work consists of the study of 
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the continuous classical optimal control problem ( CCOCP ) , starting with the state and prove 

the existence theorem of a unique solution ( state vector solution SVS ) for the triple state 

equations (TSE) of PDEs of parabolic type ( TPPDEs ) by using the Galerkin method (GM) 

when the continuous classical control vector ( CCCV ) is fixed then it deals with the state and 

proof of the existence theorem of a continuous classical optimal control vector (CCOCV) , the 

solution vector of the  triple adjoint equations ( TAPEs ) associated the (TPPDEs) is studied . 

The derivation of the Fréchet derivative (FD) for the cost function is obtained, at the end; the 

theorem of the necessary conditions for optimality (NCO) of this OCP is sated and proved.   

2. Description of the problem  

Let Ω ⊂ 𝑅2
 ,   =(     ),  =[0,T]×Ω , Ĩ= [0,T] ,  =𝜕Ω,       , the CCOCP consists of TSE 

are given by the following TPDEs  : 

                   (   )                                               (1) 

                   (   )       in                                    (2) 

                    (   )       in                                   (3) 

with the following boundary conditions (BCs) and the initial conditions ( ICs)  

  (   )             , on ∑                                                                             (4) 

  (   )            , on ∑                                                           (5) 

  (   )            , on ∑                                     (6) 

  (   )    
 ( ) , on Ω                                                (7) 

  (   )    
 ( ) , on Ω                                                (8) 

  (   )    
 ( ) , on Ω                                                 (9) 

where (  ,  ,  )  is a vector of given function for each (      )     ,  ⃗    (   ,   ,   )   

 (  ( ))
 
 is a CCCV and      (  ,  ,  ) (  ( ) ) ,   is its corresponding  SVS     

The set of admissible CCCV is defined by 

 ⃗⃗⃗ 
 ={ (   ,   ,  )  (  ( ))  ∣(   ,   ,  )    ⃗⃗           ⊂ 𝑅  a.e.  in  Q },  ⃗⃗  is convex. 

The cost function is defined for    by   

   ( ⃗ )   

 
 (‖      ‖  

  ‖      ‖  
  ‖      ‖  

 )   
 

 
(‖  ‖  

 
   ‖  ‖  

  ‖  ‖  
 ) (10)  

     ⃗          ;            ( )   ⃗  {  :  =(  ,  ,  )  (  ( )) ,     on𝜕  }. 

The weak form(wf) of problem (1- 9)  when     (  ( ))
 
 is given by 

〈      〉  (       )  (     )  (     )  (     ) = (        ),                        (11.a) 

(  
    )  (  ( )   ),                             (11.b) 

〈      〉  (       )  (     )  (     )  (     )    (        )                     (11.a) 

(  
    )  (  ( )   ) ,                            (11.b)  

〈      〉  (       )  (     )  (     )  (     )    (        )                     (11.a) 

(  
    )  (  ( )   ),                              (11.b)  

The following assumption is important to study the CCOCV problem (CCOCVP) 

2.1. Assumption (A): The function    (           ) is satisfied the following condition   w.r.t. 

    &    ,   i.e.  |  |    (   ) , where (   )   ,      (   ).  

 

3. The Solution for the wf: 

Theorem 3.1: Existence of a Unique Solution for the wf: With assumption (A), for each 

given CCCV    ⃗  (  ( ))
 
, the wf(11−13 (has a unique solution     (        ) with 

   (  (   ))
 
 and      (             )  (  (    ))
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Proof: Let for each  ,   ⃗                ⊂  ⃗  be the set of continuous and piecewise affine 

functions in     let     ,                       be a basis of      =     ,and let      be an 

approximate solution for the solution      , then by Gm: 

    ∑    ( ) 
      ( )                        (14) 

    ∑    ( ) 
      ( )                        (15) 

    ∑    ( ) 
      ( )                                   (16) 

where    ( ) is unknown function of   ,           ,         .  

The wf  (11–13) is approximated by using ( 14−16)  as , 

 〈       〉  (        )  (      )  (      )  (      )  (        ),           (11.a ) 

(   
    )  (  

    ),                            (11.b) 

 〈       〉  (        )  (      )  (      )  (      )   (        ),          (11.a)  

(   
    )  (  

    ),                             (11.b)  

〈       〉  (        )  (      )  (      )  (      )    (        ),           (11.a)  

(   
    )  (  

    ),                             (11.b) 

where    
     

 ( )     (   )    ⊂   ⊂   ( )  is the projection of    
  , thus 

(   
    )  (  

    )                ∣∣    
    

 ∣∣  ∣∣   
    ∣∣  ,         

Substituting (14−16) in (17−19) respectively and then setting         ,        &        

              Then the obtained equations are equivalent to the following linear system (LS) 

of     order  ODEs  with ICs  (which has a unique solution),   i.e. 

   
 ( )     ( )     ( )       ( )            (20.a) 

   ( )    
              (20.b) 

   
 ( )     ( )     ( )      ( )            (21.a ) 

   ( )    
             (21.b )  

   
 ( )     ( )  𝑅  ( )       ( )            (22.a ) 

   ( )    
             (22.b ) 

Where  A  (   )
   

 ,       (    ,    ),B = (   )
   

  ,     = (     ,     ) + (    ,    ),D = 

(   )
   

 ,      (    ,    ) ,  E = (   )
   

  ,       (    ,    ) , F = (   )
   

 ,      (    ,    ),G 

= (   )
   

     = (     ,     ) + (    ,    )   , H = (   )
   

 ,      (    ,    ) , K = (   )
   

, 

    (    ,    ) ,M = (   )
   

 ,      (    ,    ), N = (   )
   

 ,    = (     ,     )+(    ,    ) 

R (   )
   

 ,      (    ,    ), W = (   )
   

 ,      (    ,    ) ,    
   (   

       ),   
   = (     

 ) , 

  = (   )      ,      = (         ,    ) ,   
 ( )   = (   

 ( ))    ,   (t) = (   ( ))    ,   (0) = 

(   ( ))     ,     = 1,2,3,…,n  ,  = 1,2,3.  

To show the norm ‖  
 ⃗⃗⃗⃗ ‖

 
 is bounded  

 Since    
    ( ) , then there exists a sequence *   

 + with    
     , such that    

    
   strongly 

in   ( ) , then from the projection theorem [15]. And (11.b), 

‖   
    

 ‖  ‖  
    ‖            Then ‖   

    
 ‖  ‖  

     
 ‖       

    ⊂     ,    

     
    

  strongly in    ( )   with ‖   
 ‖      , 

by the same way, one can show that ‖   
 ‖      & ‖   

 ‖     ,   then 

‖  
 ⃗⃗⃗⃗ ‖

 
 is bounded in  (  ( ))

 
. 
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The norms‖  ⃗⃗⃗⃗ ( )‖
  .    ( )/ 

and‖  ⃗⃗⃗⃗ ( )‖  are bounded  

Setting       ,        and        in (11 –19) respectively, integrating w.r.t.   from    to 

  , adding the obtained three equations  , one gets 

∫ 〈        〉   ∫ ‖   ‖ 
    

 

 

 

 
 ∫ ,(         )  

 

 
(         )  (         )-           (23) 

Using Lemma (1.2) in [11]. For the     term in the L.H.S. of (23) and since the     term is 

positive, using assumptions (A) for the R.H.S. of (23), it yields 
 

 
∫  

  
‖   ( )‖ 

  

 
   ∫ ∫   |   |    

 

 

 

 
   ∫ ∫ |  ||   |     

 

 

 

 
∫ ∫   |   |     

 

 

 

 
   

                                 ∫ ∫ |  ||   |    
 

 

 

 
   +∫ ∫   |   |     

 

 

 

 
 ∫ ∫ |  ||   |    

 

 

 

 
           

∫  

  
‖   ( )‖ 

  

 
    ‖  ‖ 

  ‖  ‖ 
  ‖  ‖ 

  ‖  ‖ 
  ‖  ‖ 

  ‖  ‖ 
   ∫ ‖   ‖ 

  

 
   

                                      ∫ ‖   ‖ 
  

 
    ∫ ‖   ‖ 

  

 
         

since‖  ‖ 
   ́    ‖  ‖ 

     ,            , ‖   ( )‖ 
   .  

   ‖   ( )‖ 
      ∫ ‖   ‖ 

  

 
          ́   ́   ́             , 

using the Continuous Bellman Gronwall  Inequality ( BGI ) , one gets  

‖   ( )‖ 
          ( ) ,     ,   -     ‖   ( )‖

  .    ( )/
  ( )     ‖   ( )‖    ( ) . 

The norm ‖   ( )‖  (   ) is bounded   

Again for (23) by using Lemma (1.2) in [11].  For the R.H.S.  The same results will be obtained  

(from the above steps )  and since  ‖   ( )‖ 
   is positive, equation  (23)   with    =T ,  becomes 

 ‖   ( )‖ 
  ‖   ( )‖ 

   ∫ ‖   ‖ 
    ‖  ‖ 

  ‖  ‖ 
  ‖  ‖ 

  ‖  ‖ 
  

 

 
‖  ‖ 

   

                                                                    ‖  ‖ 
   ‖   ‖ 

  ,     

which gives   

 ∫ ‖   ‖ 
  

 
      

 ( ) , with    
 ( )   

.    
    

    
              ( )/

 
, thus  ‖   ‖  (   )    ( ). 

The solution convergence 

Let { ⃗  }
   

 
be a sequence of subspaces of   ⃗ ,  s.t.              ⃗⃗  ⃗ there exists a sequence {   } with  

      ⃗   ,   n  and         strongly in  ⃗            strongly in (  ( ))
 
, since for  each      , 

with     ⃗  ⊂  ⃗  ,  ( 17 19)   has a unique solution  (    ,    ,    ) , hence  corresponding  to  the 

sequence of subspaces { ⃗  }
   

 
, there exist a sequence of (approximation) problems like 

(17 19) now, by  substituting         (           ), in these equations for            , 

one has                          

〈        〉  (         )  (       )  (       )  (       )   (         )           (24.a) 

(   
     )  (  

     )                                                                                                            (24.b) 

〈        〉  (         )  (       )  (       )  (       )   (         )       (25.a) 
(   

     )  (  
     )),                                                                                                         (25.b) 

〈        〉  (         )  (       )  (       )  (       )   (         )         (26.a) 

(   
     )  (  

     )                                                                                                             (26.b)  

 which has a sequence of solutions *   +   
 ,              (           )   but from the above 

steps we have  ‖   ‖  ( ) and‖   ‖  (   )  are  bounded , then by Alaoglu’s theorem (AT), there  

exists a subsequence of  *   +    ,say again *   +    s.t.           weakly  in (  ( ))
 
 and  
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         weakly  in .  (   )/
 

 , multiplying both sides of (24.a ) , ( 25.a)    (26.a)  by   ( )  

  ,   - respectively, s.t.    ( )   ,       ,3, then integrating both sides w.r.t.    on,   - , 
then  integrating by parts the     terms in the L.H.S. of each one obtained equation,  one gets  

 ∫ (       )  
 ( )   ∫ ,

 

 
(         )  (       )-  ( )   

 

 
 ∫ (       )  ( )  

 

 
 

   ∫ (       )  
 

 
( )   ∫ (          )  ( )  

 

 
(   

     )  ( )                                          (  ) 

 ∫ (       )  
 ( )   ∫ ,

 

 
(         )  (       )-  ( )   

 

 
 ∫ (       )  ( )  

 

 
 

   ∫ (       )  
 

 
( )   ∫ (          )  ( )   

 

 
(   

     )  ( )                                    (  ) 

 ∫ (       )  
 ( )   ∫ ,

 

 
(         )  (       )-  ( )   

 

 
 ∫ (       )  ( )  

 

 
 

   ∫ (       )  
 

 
( )   ∫ (          )  ( )  

 

 
(   

     )  ( )                                        (  ) 

Since 
                      ( )

                              
}  {

     
      

                ( ) 

                           (   ) 
 

since        weakly    in    ( ) , also    
      

                   ( )         ,3. Then  

∫ (       )  
 ( )   ∫ ,

 

 
(         )  (       )-  ( )   

 

 
 ∫ (       )  ( )  

 

 
 

∫ (       )  
 

 
( )   ∫ (     )  

 ( )   ∫ ,
 

 
(       )  (     )-  ( )   

 

 
                            

                                               ∫ (     )  ( )  
 

 
 ∫ (     )  

 

 
( )                                    (30.a) 

∫ (       )  
 ( )   ∫ ,

 

 
(         )  (       )-  ( )   

 

 
 ∫ (       )  ( )  

 

 
 

∫ (       )  
 

 
( )    ∫ (     )  

 ( )   ∫ ,
 

 
(       )  (     )-  ( )   

 

 
 

                                                ∫ (     )  ( )  
 

 
 ∫ (     )  

 

 
( )                                         (31.a) 

∫ (       )  
 ( )   ∫ ,

 

 
(         )  (       )-  ( )   

 

 
 ∫ (       )  ( )  

 

 
 

∫ (       )  
 

 
( )   ∫ (     )  

 ( )   ∫ ,
 

 
(       )  (     )-  ( )   

 

 
     

                                               ∫ (     )  ( )  
 

 
 ∫ (     )  

 

 
( )                                       (32.a) 

(   
     )  ( )  (  

    )  ( )                                                                                                   (30.b) 

(   
     )  ( )  (  

    )  ( )                                                                                                   (31.b) 

(   
     )  ( )  (  

    )  ( )                                                                                                   (32.b) 

since                        ( ) , then 

∫ (         )  ( )   ∫ (        )
 

 

 

 
  ( )                                                                  (30.c) 

∫ (         )  ( )   ∫ (        )
 

 

 

 
  ( )                                                                 (31.c) 

∫ (         )  ( )   ∫ (        )
 

 

 

 
  ( )                                                                (32.c) 

which means  (30 32)  converge to ( 33–35) respectively , with  

 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
 ∫ (     )  ( )  

 

 
 

   ∫ (     )  
 

 
( )   = ∫ (        )

 

 
  ( )   (  

    )  ( )                                           (33) 

 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
 ∫ (     )  ( )  

 

 
 

   ∫ (     )  
 

 
( )   ∫ (        )

 

 
  ( )   (  

    )  ( )                                             (34) 
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 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
 ∫ (     )  ( )  

 

 
 

   ∫ (     )  
 

 
( )   ∫ (        )  ( )   (  

    )  ( )
 

 
                                          (35) 

Case1: Choose      ,   -, i.e.    ( )     ( )    ,          ,3. Substituting in (33 35), 

using integration by parts for the     terms in L.H.S. of each one of the obtained equations, to get  

∫ 〈      〉
 

 
  ( )   ∫ ,

 

 
(       )  (     )-  ( )   ∫ (     )  ( )

 

 
     

∫ (     )  ( )
 

 
   ∫ (        )  ( )   

 

 
                                  (36) 

∫ 〈      〉  
 

 
(t)dt ∫ ,

 

 
(       )  (     )-  ( )   ∫ (     )  ( )

 

 
    

∫ (     )
 

 
  (t)     ∫ (        )  ( )   

 

 
                                                                          (37) 

∫ 〈      〉
 

 
  ( )   ∫ ,

 

 
(       )  (     )-  ( )   ∫ (     )  ( )

 

 
     

∫ (     )  ( )
 

 
   ∫ (        )  ( )   

 

 
                                  (38) 

i.e. (   ,     )  is solution of the wf (11 13).     

case 2 : Choose       ,   - s.t.      ( )     &    ( )   ,           using integration by 

parts  for the      term in the L.H.S. of (36) , one gets 

   ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   ∫ (     )  ( )

 

 
    

 

 

      ∫ (     )  ( )
 

 
   ∫ (        )  ( )   

 

 
 (  ( )   )  ( )                                    (39) 

subtracting (33) from (39) , one obtains that  

(  
    )  ( ) = (  ( )   )  ( ) ,   ( )   ,    ,   -   (  

    )  (  ( )   ) 

i.e. the IC (11.b) holds . By the same above way one can show that 

(  
    )  (  ( )   ) & (  

    )  (  ( )   ) that means the ICs (12.b)&(13.b)  are hold.  

The strongly convergence for     :  

Substituting          ,        and        in (17.a),(18.a)&(19.a) respectively, adding the 

three obtained equations together , and then integrating the obtained equation from 0 to T, on the  

other hand substituting        ,      &       in  (11.a),(12.a)&(13.a) respectively, 

adding them and then integrating the three obtained equations from 0 to T , to get  

 ∫ 〈        〉   ∫  (       )   
 

 
∫ ,(         )  (         )  

 

 

 

 
 (         )-    (40)                                                            

and 

 ∫ 〈      〉    ∫  (      )   
 

 
∫ ,(        )  (        )  (        )-  

 

 

 

 
            (41)   

using Lemma (1.2) in [11]. For the     terms in the L.H.S. of (40) and (41), they become 

  
 
‖   ( )‖ 

   

 
‖   ( )‖ 

  ∫  (       )   
 

 
∫ ,(  

 

 
+  ,    )   (    +    ,    )   

                                                                              (    +    ,    )]dt                                       (42) 
 

 
‖  ( )‖ 

   

 
‖  ( )‖ 

  ∫  (     )   
 

 
∫ ,(  

 

 
+  ,   )   (    +    ,   )   

                                                                       (    +    ,   )]dt                                                (43) 

Since 

    
 
‖   ( )    ( )‖ 

   

 
‖   ( )    ( )‖ 

  ∫  (             )
 

 
                        (44) 

where  

     

 
‖   ( )‖ 

   

 
‖   ( )‖ 

  ∫  (   ( )    ( ))  
 

 
 

     

 
(   ( )   ( ))   

 
(   ( )   ( ))  ∫  (   ( )   ( ))

 

 
     

     

 
(  ( )    ( )    ( ))   

 
(  ( )    ( )    ( ))  ∫  (  ( )    ( )    ( ))  
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since  

    
     ( )        ( )   strongly in (  ( ))

 
                                                                (44.a)                                                           

   ( )    ( )                         strongly in(  ( ))
 
                                        (44.b)  

Then 

(  ( )    ( )    ( ))   (  ( )    ( )    ( ))                                                           (44.c) 

‖   ( )    ( )‖ 
           and   ‖   ( )    ( )‖ 

                                                        (44.d) 

Since 

        weakly in (  (   ))
 
,then ∫  (  ( )    ( )    ( ))                          

 

 
             (44.e)  

also since         weakly in (  ( ))
 
 , then 

∫ ,(         )  (         )  (         )-
 

 
   ∫ ,

 

 
(        )  (        )    

                                                                                                       (        )-                 (44.f ) 

i.e. when       in both sides of  (44), one has the following  results : 

(1)The first two terms in the L.H.S. of  (44)  are tending to zero (from (44.d)), 

 (2)  Eq.       
    

 
(  )

∫ ,
 

 
(         )  (         )  (         )-   

    
  

(    )
 

∫ ,
 

 
(        )  (        )  (        )-    

(3) Eq.       L.H.S. of (43) ∫ ,
 

 
(        )  (        )  (        )-    

 (4)  The      two   terms   in   Eq.     are tending to zero from (44.c), and the last one term  

also tend to zero from (44.e), from these results  (44) gives when       

∫ ‖      ‖ 
  

 
   ∫  (             )    

 

 
              strongly in  (  (   ))

 
. 

Uniqueness of the solution: Let   ⃗ ,  ̅  are  two solutions of the wf ( 11–13), i.e.      and    ̅   are 

satisfied (11.a),  or 

 〈      〉    (     )  (     )  (     )  (        )     ,           
〈 ̅     〉    ( ̅    )  ( ̅    )  ( ̅    )  (        )      ,               

Subtracting the    equation from the     one and substituting        ̅ in the obtained 

equation, one gets that  

〈(    ̅ )       ̅ 〉    (    ̅      ̅ )  (    ̅      ̅ )  (    ̅      ̅ )     

                                                                           (45) 

By the similar manner, one gets 

 〈(    ̅ )       ̅ 〉    (    ̅      ̅ )  (    ̅      ̅ )  (    ̅      ̅ )    

                                              (46) 

〈(    ̅ )       ̅ 〉    (    ̅      ̅ )  (    ̅      ̅ )  (    ̅      ̅ )     

                                                            (47) 

Adding (45 47), using Lemma(1.2) in [11]. In the     term of the obtained equation , to get   

 

 
  

  
‖    ̅ ‖

 

 
 ‖    ̅ ‖

 

 
                          (48) 

since the      term of the L.H.S. of (48) is positive,  integrating both  sides of  (48 ) w.r.t.    

from   to   , one gets 

∫  

  
 ‖    ̅ ‖

 

  

 
      ‖(    ̅ )( )‖

 

 
      ‖    ̅ ‖

 

 
        ,             

integrating both sides of (48) from   to  , using the given ICs and the above result, one has 
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∫  ‖    ̅ ‖
 

  

 
       ‖    ̅ ‖

  (   )
        ̅  . 

4. Existence of a CCOCP  

Theorem 4.1: In addition to assumptions (A), assume that    and         are the SVS 

corresponding to the CVS   ⃗   and   ⃗    ⃗      respectively with   ⃗  and    ⃗  are bounded in 

(  ( ))   then 

‖     ‖
  .    ( )/

  ‖  ⃗ ‖     ,       

‖   ‖  ( )   ‖  ⃗ ‖               ,        

‖   ‖  (   )    ‖  ⃗ ‖            ,         

Proof : let   ⃗  (        )  (  ( ))  then  by  Theorem 3.1 there exists     (      
    

   
       

) which is satisfied (11 13) and also let  ̅  (  ̅   ̅   ̅ )be the solution of 

(11 13) corresponds to the cv  ⃗̅  ( ̅   ̅   ̅ )  (  ( ))    i.e.  
〈 ̅     〉  (  ̅     )  ( ̅    )  ( ̅    )  ( ̅    )  (    ̅    )                                                  (49.a) 

( ̅ ( )    )  (  
    )                     (49.b) 

〈 ̅     〉  (  ̅     )  ( ̅    )  ( ̅    )  ( ̅    )  (    ̅    )           (50.a)         

( ̅ ( )    )  (  
    )                      (50.b) 

〈 ̅     〉  (  ̅     )  ( ̅    )  ( ̅    )  ( ̅    )  (    ̅    )     (51.a)      

( ̅ ( )    )  (  
    )                        (51.b) 

subtracting (11.a&b) from (49.a&b) , (12.a&b) from (50.a&b) ,and (13.a&b) from (51.a&b) and 

setting        ̅             ̅    ,      ̅     ,     ̅           ̅      and 

     ̅     in  the obtained equations , they give  

〈       〉  (        )  (      )  (      )   (      )  (      )                          (52.a)     

(   ( )   )                          (52.b)         

 〈       〉  (        )  (      )  (      )  (      )  (      )                         (53.a)       

(   ( )   )                          (53.b) 

〈       〉  (        )  (      )  (      )  (      )  (      )                          (54.a)      

(   ( )   )                          (54.b) 

substituting           ,          &           in  (52.a&b) , (53.a&b)     and   (54.a&b)  

respectively, adding the obtained equations, using Lemma (1.2) in [11]. They give 

    

 
 
 

  
‖   ‖ 

  ‖   ‖ 
  (       )  (       )  (       )                  (55) 

since the     term of (55) is positive , integrating w.r.t.     From      to   , and then using the 

Cauchy Schwartz  inequality ( CSI ), it becomes  

∫
 

  

 

 
‖   ‖ 

 dt   2 ∫ ∫ |   ||   |     
 

 

 

 
2∫ ∫ |   ||   |     

 

 

 

 
 ∫ ∫ |   ||   |     

 

 

 

 
 

                        ∫ ‖  ⃗ ‖ 
  

 
   ∫ ‖   ‖ 

  

 
  ,    ,   -, 

by the  BGI  , once get   

‖   ( )‖ 
    ‖  ⃗ ‖ 

   ‖   ( )‖   ‖  ⃗ ‖  , where                                ,   - 

  ‖   ‖
  .    ( )/

  ‖  ⃗ ‖                         

since  ‖   ‖
  ( )
        ‖  ⃗ ‖ 

       ,  then   

 ‖   ‖  ( )    ‖  ⃗ ‖     ,   ̅            

Using a similar way which is used in above steps, gives  

∫  

  

 

 
‖   ‖ 

   ∫ ‖   ‖
 

  

 
   ‖  ⃗ ‖ 

  ∫ ‖   ‖ 
  

 
        ̅ ‖  ⃗ ‖ 
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    ‖   ‖
  (   )
   ̅ 

 ‖  ⃗ ‖ 
             where  ̅ 

  (   ̅ )     

 ‖   ‖  (   )    ‖  ⃗ ‖   . 

Theorem 4.2: With assumptions (A), the operator   ⃗     ⃗⃗     is continuous from  (   ( ))  in 

to  (  
(    ( )))

  or in  to  (  (   ))  or  in to (  ( )) . 

Proof: Let     ⃗     ⃗̅     ⃗   and      ̅         , where  ̅           are the correspond SVS to the 

CVS  ⃗̅   and   ⃗   using  the first  result  in Theorem 4.1  , one has 

‖ ̅       ‖
  .    ( )/

  ‖ ⃗̅     ⃗ ‖
 

 ,   If     ⃗̅ 
  ( )
→    ⃗   then    ̅ 

  .    ( )/
→                 i.e.    The operator  

 ⃗     ⃗⃗    is Lipschitz  continuous (LC) from  (   ( ))  in to(  
(    ( )))

   By a similar way this 

operator is also LC from (   ( ))  into (   ( )) and into (  (   ))  . 

Lemma 4.1 [10]: The norm       
  is weakly lower semi continuous (W.L.S.C. ). 

Lemma (4.2) : The cost function which is given by (  ) is W.L.S.C. 

Proof: From Lemma (3.1)  ‖ ⃗  ‖  ( ) , is W.L.S.C.  when   ⃗    ⃗     weakly in  (   ( ))   then  

          weakly in  (   ( ))   by Theorem 4.1 then ‖ ⃗⃗   ⃗⃗  ‖                
‖ ⃗⃗    ⃗⃗  ‖     

 Then      ‖ ⃗   ⃗ 
 
‖   is W.L.S.C., hence     ( ⃗ ) is W.L.S.C.  

Lemma 4.3 [13]: The norm ‖  ‖ 
  is strictly convex. 

Theorem 4.3: Consider the cost function (  ) , if     ( ⃗ )  is coercive, then there exists CCOC . 

Proof: Since   ( ⃗ )    and   ( ⃗ ) is coercive, then there exists a minimizing sequence* ⃗  +  

*(             )+   ⃗⃗⃗ 
    ,        such that   

          ( ⃗  )      ⃗⃗̅    ⃗⃗⃗  
  ( ⃗̅ ) , and  ‖ ⃗  ‖    , then by AT there exists a subsequence of 

* ⃗  + , for simplicity  say  again  * ⃗  +   s.t.    ⃗    ⃗   weakly in (  ( ))
 
, as      . From 

Theorem 3.1 we got that for each control  ⃗   there exists a unique solution          ⃗⃗  
  then 

corresponding to the sequence of  control   * ⃗  +   there exists  a sequence of solutions   *   +   

such that the   norms ‖   ‖
  .    ( )/

 , ‖   ‖  ( ) & ‖   ‖  (   )  are bounded ,then by AT there 

exists a subsequence of *   + , for simplicity  say again *   + , such that  

               weakly in (  .    ( )/)
 

,          weakly in (  ( ))
 
,    and  

             weakly in .  (   )/
 

 , to show the norm   ‖    ‖
 .  (    )/

   is bounded  , let    

(2.19.a),(2.20.a)&(2.21.a) be rewritten as  

〈       〉   (        )  (      )  (      )  (      )  (         )  

〈       〉   (        )  (      )  (      )  (      )  (         ) 

〈       〉   (        )  (      )  (      )  (      )  (         ) . 

by adding the above equations and integrating both sides of the obtained equation from     to  , 

taking  the  absolute value then using the CSI , and finally using assumptions (A) , it yields 

|∫ 〈       〉  
 

 
|  |∫ ,

 

 
 (        )  (      )  (      )  (      )    (         )   

                            (        ) – (      )  (      ) (       )  (         )  (        )  

                            (      )  (      )  (      )  (         ) ]dt|  , gives 

|∫ 〈       〉  
 

 
|  S‖    ‖ ‖   ‖  ‖   ‖ ‖  ‖  ‖   ‖ ‖  ‖  ‖   ‖ ‖  ‖   

                                 ‖    ‖ ‖   ‖  ‖   ‖ ‖  ‖  ‖   ‖ ‖  ‖  ‖   ‖ ‖  ‖   

                                 ‖    ‖ ‖   ‖  ‖   ‖ ‖  ‖  ‖   ‖ ‖  ‖  ‖   ‖ ‖  ‖    
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                                 ‖  ‖ ‖  ‖   ‖  ‖ ‖  ‖   ‖  ‖ ‖  ‖   ‖   ‖ ‖  ‖    

                                 ‖   ‖ ‖  ‖  ‖   ‖ ‖  ‖   . 

Since for each i = 1,2,3  the following inequalities are satisfied 

‖    ‖  ‖    ‖  , ‖  ‖  ‖  ‖  , 
 

 ‖   ‖
 

 ‖ ⃗  ‖  , ‖ ⃗  ‖    , ‖   ‖  ‖   ‖    

‖   ‖  ‖   ‖  , ‖    ‖   ‖   ‖  (   ) , ‖  ‖    
 , ‖   ‖  ‖   ‖  (   ) , ‖  ‖  

‖  ‖  (   ), ‖   ‖  ‖  ‖  (   ) ,  then  

 |∫ 〈       〉  
 

 
|  ,  ‖   ‖  (   )   ‖   ‖  (   )   (  

    
    

     )-‖  ‖  (   ) 

Or 

  |∫ 〈       〉  
 

 
|  .    ( )    ( )/ ‖  ‖  (   )   ,    

where    ‖   ‖  (   )    ( )     and     ( )    
    

    
              

      
|∫ 〈 ⃗     ⃗ 〉  

 
 |

‖ ⃗ ‖
  (   )

   ( )   ,     with    ( )      ( )    ( )    ‖    ‖  (    )    ( )  

since      is solution of the SEs  (1   ) , then 

〈       〉  (        )  (      )  (      )  (      ) = (         )                         (56) 

〈       〉  (        )  (      )  (      )  (      ) =(         )                     (57) 

〈       〉   (        )  (      ) (      )  (      ) =(         )                   (58) 

let       ,   -, s.t.    ( )    ,        ,3, rewriting the     terms in the L.H.S. of (56–58) 

multiplying their both sides by   ( ) ,   ( ) &   ( ) respectively , integrating both sides w.r.t. 

   from     to   ,and integration by parts for the      terms in the L.H.S. of each obtained 

equation, one gets that 

 ∫ (      )  
 ( )   

 

 
∫ ,(        )  

 

 
 (      )-  ( )   ∫ (      )  ( )   

 

 
              

    ∫ (      )
 

 
  ( )   ∫ (         )

 

 
  ( )   (   ( )   )   ( )                                (59) 

 ∫ (      )  
 ( )   ∫ ,

 

 
(        )  (      )-  ( )   

 

 
 ∫ (      )

 

 
  ( )   

    ∫ (      )
 

 
  ( )   ∫ (         )  ( )   

 

 
(   ( )   )  ( )                                 (60) 

 ∫ (      )  
 ( )   ∫ ,

 

 
(        )  (      )-  ( )   

 

 
 ∫ (      )

 

 
  ( )    

    ∫ (      )
 

 
  ( )   ∫ (         )  ( )   

 

 
(   ( )   )  ( )                                 (61) 

since            weakly  in (  ( ))
 
 and            weakly  in .  (   )/

 

, then the  following 

convergences are hold  

 ∫ (      )  
 ( )   ∫ ,

 

 
(        )  (      )-  ( )   

 

 
 ∫ (      )

 

 
  ( )   

   ∫ (      )
 

 
  ( )      

 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
∫ (     )

 

 
  ( )    

   ∫ (     )
 

 
  ( )                                                    (62)  

 ∫ (      )  
 ( )   ∫ ,

 

 
(        )  (      )-  ( )   

 

 
 ∫ (      )

 

 
  ( )   

    ∫ (      )
 

 
  ( )      

 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
∫ (     )

 

 
  ( )    

   ∫ (     )
 

 
  ( )                                                    (63) 
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 ∫ (      )  
 ( )   ∫ ,

 

 
(        )  (      )-  ( )   

 

 
 ∫ (      )

 

 
  ( )   

   ∫ (      )  ( )      
 

 
 

 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
∫ (     )

 

 
  ( )   

   ∫ (     )
 

 
  ( )                                                 (64) 

since (   ( )     ( )     ( ) ) bounded in(  ( ) ) and from the  projection theorem  one has  

(   
    )  ( )  (  

    )  ( )                                                                    (65) 

(   
    )  ( )  (  

    )  ( )                                  (66) 

(   
    )  ( )  (  

    )  ( )                                   (67) 

and since  ⃗    ⃗   weakly in (  ( ) )  ,  then  

∫ (         )  ( )   ∫ (        )
 

 

 

 
  ( )                                   (68) 

∫ (         )  ( )   ∫ (        )
 

 

 

 
  ( )                                                                 (69) 

∫ (         )  ( )   ∫ (        )
 

 

 

 
  ( )                                  (70) 

finally using(62  64) ,( 65 67), ( 68 70) in  (59 61)  respectively, one gets 

 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
∫ (     )

 

 
  ( )   

   ∫ (     )
 

 
  ( )   ∫ (        )  ( )  

 

 
   (  

    )  ( )                                          (71)                                                                                                   

 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
  ∫ (     )

 

 
  ( )   

   ∫ (     )
 

 
  ( )   ∫  

 

 
(        )  ( )   (  

    )  ( )                                              (72) 

 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
 ∫ (     )

 

 
  ( )   

   ∫ (     )
 

 
  ( )   ∫ (        )

 

 
  ( )   (  

    )  ( )                                           (73) 

Case 1: We choose     ,   - , i.e.   ( )    ( )    ,          .now using integration 

by parts for the     terms in the L.H.S. of (71 73), one gets that 

∫ 〈      〉  ( )   ∫ ,
 

 
(       )  

 

 
(     )-  ( )   ∫ (     )

 

 
  ( )   

∫ (     )
 

 
  ( )     ∫ (        )  ( )   

 

 
               ,   -                            (74) 

∫ 〈      〉  ( )   ∫ ,
 

 
(       )  

 

 
(     )-  ( )   ∫ (     )

 

 
  ( )    

∫ (     )
 

 
  ( )   ∫ (        )  ( )   

 

 
              ,   -                              (75) 

∫ 〈      〉  ( )   ∫ ,
 

 
(       )  

 

 
(     )-  ( )   ∫ (     )

 

 
  ( )    

∫ (     )
 

 
  ( )   ∫ (        )  ( )   

 

 
             ,   -                               (76) 

 Then 

〈      〉  (       )  (     )  (     )  (     )  (        ) ,        , a.e. on       
〈      〉   (       )  (     ) (     )  (     ) = (        )       ,         , a.e. on   
〈      〉   (       )  (     ) (     ) (      ) = (        )        ,                  
i.e. (  ,   ,  ) satisfies the wf of the SEs  

Case 2 : we choose      ,   - , s.t.   ( )    ,   ( )    ,           using integration by 

parts for the     terms in the L.H.S. of (74 76),one has 

  ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
∫ (     )

 

 
  ( )   

     ∫ (     )
 

 
  ( )   ∫ (        )  ( )  

 

 
 (  ( )   )  ( )                                    (77)                                                                                        
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 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
 ∫ (     )

 

 
  ( )   

    ∫ (     )
 

 
  ( )   ∫  

 

 
(        )  ( )   (  ( )   )  ( )                                   (78)  

 ∫ (     )  
 ( )   ∫ ,

 

 
(       )  (     )-  ( )   

 

 
∫ (     )

 

 
  ( )   

       ∫ (     )
 

 
  ( )   ∫ (        )

 

 
  ( )     (  ( )   )  ( )                               (79) 

by subtracting(77 79) from  (71 73) respectively, one obtain  

(  
    )   ( ) =(  ( )   )   ( )                 ,   - 

    
    ( )    

 ( ) , 

by the same way show that     
    ( )    

 ( )       and     
    ( )    

 ( ) 

   (  ,   ,   ) is a solution of the wf of the SE ,since   ( ⃗ ) is W.L.S.C. from Lemma4.1 and 

since    ⃗    ⃗̅  weakly  in (  ( ))
 
,  then 

  ( ⃗ )            ⃗⃗    ⃗⃗⃗  
  ( ⃗  )           ( ⃗  )       ( ⃗̅ )    

        ( ⃗ )      ⃗⃗̅   ⃗⃗⃗  
  ( ⃗̅ )      ⃗⃗̅   ⃗⃗⃗  

  ( ⃗̅ ) .   

Then   ⃗  is a CCOC.      

5. The NCO:  

In order to state the NCs for CCOC, the FD of the cost function (10) is derived and the theorem 

for the NCO is proved. 

Theorem 5.1: Consider   ( ⃗ ) is given by (10) and the TAEs  of the STE (1-9) are given by 

                  (      )                               (80) 

                  (      )                     (81) 

                  (      )                              (82) 

  ( )                              (83) 

  ( )                             (84)   

  ( )                            (85) 

Then (        )   ⃗⃗⃗ 
   and the FD of     is given by  (  

 ( ⃗ )   ⃗ )  (     ⃗    ⃗ ) 

proof: The wf of (80–85) for                      is  given by  

 〈      〉  (       )  (     )  (     )  (     )  (         )                             (86) 

 〈      〉   (       )  (     )   (     )   (      ) = (         )                                (87) 

 〈      〉   (       )   (     )   (     )  (      ) = (         )                                (88) 

The existence of a unique solution of (86 88) can be proved by the same manner which is 

used in the proof of Theorem                                                in  

(52.a) ,( 53.a) and (54.a) respectively, these equations become , 

〈       〉  (        )  (      )  (      )  (      )  (      )                  (89) 

 〈       〉  (        )  (      )  (      )  (      )  (      )                 (90) 

〈       〉  (        )  (      )  (      )  (      )  (      )                 (91) 

also, substituting               and        in (86 88) respectively, to get  

 〈       〉  (        )  (      )  (      )  (      )  (          )                (92) 

 〈       〉  (        )  (      )  (      )  (      )  (          )               (93) 

 〈       〉  (        )  (      )  (      )  (      )  (          )               (94) 

Integrating both sides of equations (89  94) w.r.t. t from 0 to T, using integration by parts for 

the    terms of the L.H.S. of each of the obtained equations from (92–94), then subtracting each 

one of the obtained equations from it's corresponding equation of (89–91), add all three result 

get 
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〈(      )    〉  ( (      )    )  (         )  (         )         
(         )  (            )                     (95)                

〈(      )    〉  ( (      )    )  (         )  (         )         
(         )  (            )                     (96) 

〈(      )    〉  ( (      )    )  (         )  (         )         
(         )  (            )                     (97) 

which means the CV (       ,        ,       ) gives the solution (        ,    
            ) of ( 95 97). 

Now, from the cost function, we have  

  ( ⃗    ⃗ )    ( ⃗ ) = (   ,   )  (   ,   )  (   ,   )  (   ,    )  (   ,    )    

                                      (   ,    )   
 
‖   ‖ 

     
 
‖  ⃗ ‖ 

   ,         

 Or  

  ( ⃗    ⃗ )    ( ⃗ ) = (     ⃗    ⃗ )   
 
‖   ‖ 

     
 
‖  ⃗ ‖ 

                                                       

from the first results of Theorem 4.1, we have  
 

 
‖   ‖ 

    (  ⃗ )‖  ⃗ ‖     and   
 
‖  ⃗ ‖ 

    (  ⃗ )‖  ⃗ ‖   

with     (  ⃗ )   

 
   ‖  ⃗ ‖    where     (  ⃗ )    (  ⃗ )     , as ‖  ⃗ ‖      

Then  

    ( ⃗    ⃗ )    ( ⃗ )  (     ⃗    ⃗ )   (  ⃗ )‖  ⃗ ‖   

with  (  ⃗ )    (  ⃗ )    (  ⃗ )  where  (  ⃗ )      as ‖  ⃗ ‖      

using the definition of  FD of     ,one has  

(  
 ( ⃗ )   ⃗ )  (     ⃗    ⃗ )     

Theorem 5.2:  

The CCOC of the above problem is   
 ( ⃗ )       ⃗      with       ⃗⃗    and        ⃗⃗  . 

Proof :  If  ⃗  is an CCOC of the problem, then  

  ( ⃗̅ )      ⃗⃗   ⃗⃗⃗  
  ( ⃗ )  ,    ⃗  (  ( ))

 
, 

 i.e.   
 ( ⃗̅ )         ⃗̅           The  NCO  is  

(     ⃗̅     ⃗ )        ⃗   ⃗⃗   ⃗̅  (     ⃗̅    ⃗⃗ )  (     ̅ ⃗⃗⃗    ⃗̅ ),      ⃗⃗  (  ( ))
 
  

 

6. Conclusions  
         The GM is employed to prove the existence and unique theorem for a SVS of the TSPDEs 

of parabolic type for fixed CCCV. The existence of a CCOCV governing with the considered 

TLPDEs of parabolic type is proved. The existence and uniqueness solution of the TAEs 

associated with the TSPDEs. The derivation of the Fréchet derivative for the cost function is 

obtained. The theorem of the NCO is stated and proved. 
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