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Abstract  

    In this paper, two of the local search algorithms are used (genetic algorithm and particle 

swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize 

a multi-objective function which is denoted as    ∑              
 
    (total completion 

time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method 

is used for comparing the results for (n) jobs starting from (5-18). The results show that the two 

algorithms have found the optimal and near optimal solutions in an appropriate time. 

 

Key word: The Branch and Bound method (BAB), The Local search algorithms, The Genetic 

Algorithm (GA), The Particle swarm optimization (PSO), The Multi-Objective problems. 

 
      1.Introduction 

     In the matter of dealing with scheduling problems, there are given a finite or countable 

infinite set of solutions in which we have to find one solution of them that optimizes (minimizes 

or maximizes) a given specific cost function. The computational complexity theory shapes the 

difference between easiness and hardiness of the problems, where a problem is easy if there is a 

polynomial-time algorithm solves it and obtains an optimal solution. A problem is said to be 

hard (or NP-hard) if there exist no such polynomial-time algorithm to solve it. So, when we deal 

with an NP-hard problem, there are two ways for treating it. The first one is to target an optimal 

solution, while the second is by using a heuristic algorithm. The solutions which are found by the 

heuristic algorithm do not need to be optimal, but they are found with an acceptable time (i.e. the 

heuristic algorithms trade off the optimality versus the computing time). The heuristic algorithms 

can be classified into constructive algorithms and local search algorithms. The constructive 

algorithm generates a solution by a number of steps, where in every step the partial solution 

obtained is extended till we get the complete solution in the last step. On the other hand, the local 

search algorithms are search in the entire solution space for the best solutions, in other words it 

begins with an initial solution and then recursively generate a new solution which is near to the 

current one. While the solutions of many scheduling problems can be represented by sequences, 

permutations and graphs, the local search algorithms can use these representations by defining
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 neighborhood functions with conditions of reordering items locally to get (obtain) a neighboring 

solution [1]. Since the introduction of the local search techniques in the combinatorial 

optimization problems, the specialists have used these techniques for solving the NP-hard 

problems. Using these techniques in scheduling makes an allowance for us to test problems with 

a large number of jobs. Minimizing the total late work on a single machine was treated by Chin-

Chia Wu [2]. where he proposed three genetic algorithms and combined them to get the fourth 

one, his computational results showed that the three (GA) algorithms were getting the stability 

state when n becomes larger. The problem     ∑              was solved by Tariq and 

Doha [3]. by using simulated annealing (SA) and descent method (DM) for (75,…,30000) jobs, 

and they show that the (SA) gives a reasonable results for small n, and the times for both (DM) 

and (SA) algorithms are equal. Tariq and Faez [4]. propose the (PSO) and the (GA) as heuristic 

methods to find approximation solutions for         ∑   ∑     and they found that these local 

search algorithms solve the problem for        jobs with reasonable time. The (PSO) 

algorithm were applied by Hanan [5]. For solving the problem      ∑         
      

   

where she proposed a new style of development steps to achieve good convergence in 

application, and made a comparison between (PSO) and (GA) showed that the results of (PSO) 

are better than (GA) for        jobs. Tariq, and Hafed reach         jobs by using three 

local search techniques; descent method ( DM), simulated annealing (SA) and tabu search (TS) 

in solving the problem      ∑   ∑             , where they showed that the 

performance of the algorithms is evaluated on a large set of test problems and the results which 

are compared showed that (SA) and (TS) algorithms are better than (DM) with preference to 

(SA) algorithm, and showed that the three algorithms find optimal or near optimal solutions in a 

reasonable times [6]. 

        2.Problem Representation 

     A multi-objective problem is considered, and the formal description of this problem is set as 

follows: 

Scheduling   jobs on a single machine which is always available can execute them, where each 

one of these jobs can be executed on that machine at its special time (i.e. only one job can be 

executed at a time), and the machine can do only one job at a time. 

For            we will denote    and     as the processing time and the due date of the     

job respectively. The schedule ( ) will define a completion time       ∑            
   
    for 

every job  . The tardiness                           and the earliness       

                    will show up for every job  . The late work       of job   is the amount 

of the processing time       that is performed after the due date      , where if   (      

                  , if (                                       and if 

(                              [7]. Every job   will be ready to be processed at time zero, 

where no preemption is allowed and our objective is to find a feasible solution that gives the 

minimum value of the multi-objective function   ∑                           
   .  

    Using the standard scheduling problem classification notation, our problem is denoted by 

    ∑                           
    and formulated as; 
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3. Heuristics for the Problem 

        In this section, we will mention the heuristics that are used for the problem (A) where there 

are two simple known heuristics used as an initialization for looking at feasibility of the solutions 

in the entire search space. 

3.1. First Heuristic (H1): This heuristic is obtained by applying the shortest processing time 

(SPT) rule (i.e. sorting the jobs in order of              ). 

3.2. Second Heuristic (H2): This heuristic is obtained by applying the earliest due date (EDD) 

rule (i.e. sorting the jobs in order of              ). 

4. (BAB) Method 

      The (BAB) method depends basically on the complete enumeration in the search area. It 

consists of two procedures; branching and bounding. The branching procedure is the dividing of 

a large problem into two or more sub-problems, while the bounding calculates a lower bound on 

the optimal solution's value for every sub-problem [8]. 

4.1 Upper Bounds: As initialization of searching in the search tree by using the (BAB) method, 

the two heuristics in (3.1) and (3.2) are used to play as the upper bounds of our problem in this 

paper. 

4.2. Lower Bound: For deriving a lower bound, the problem     can be decomposed into two 

sub-problems             , where: 

           ∑(                 )

 

   

                 

                                                                  
          

                                                                      

                                                    

         {             }                     

         {             }                    }
 
 
 
 

 
 
 
 

         

For this sub-problem, the lower bound, which was applied by Hussam Abid Ali [9]. is used to 

obtain the first lower bound (   ), where: 

∑ (        )
 
       {∑    ∑     {          }

 
   

 
   }                                                 (1) 
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   Here, the lower bound in the theorem (4.1) below is used for      to get the second lower 

bound (   ). 

Theorem 1[7]. 

   If         {  } and         {  } where         , then we have that; 

     ∑                              
    . 

    Now, the following lemma allows us to use            as the lower bound for the 

problem ( ). 

Lemma 1 [10]. 

   If       and       are the lower bounds of the problems (             respectively, then 

         , is the lower bound of the main problem   . 

4.2.1. (LB) procedure 

    For           where   represents the set of all jobs,   is equal to the set of the scheduled jobs 

and   is the set of the un-scheduled jobs, then the procedure is: 

1.Starting with empty set of the scheduled jobs (i.e.    ), and begin to sort the jobs (one by 

one) until we have |S|    , and the     job will be add to the set   then we solve the last 

sequence by the complete enumerate method (CEM). At every step we calculate the cost 

∑ (           )   . 

2. For the set  , the jobs have been sorted in two rules for calculating the costs for the two sub-

problems                by doing the following steps; 

Step (1): Sorting the jobs in the set   by (SPT) rule, and then calculate ∑               by 

using equation (1). 

Step (2): Re-sorting the jobs in the set   by (EDD) rule, and calculate (∑      ) by using 

theorem (4.1). 

Step (3): Calculate the total cost ∑                  as follows: 

Total cost  ∑                  ∑               ∑                                               (2) 

5. Local Search Methods 

     In a matter of using the local search methods, there is no guarantee of obtaining optimality, 

but using them may give us solutions that are near the optimal. Therefore, the local search 

methods considered as the second choice of solving the NP-hard problems. In this paper, two of 

these methods are applied the genetic algorithm (GA) and the particle swarm optimization 

(PSO). 

5.1. Genetic Algorithm (GA): 

     The genetic algorithm (GA) is an evolutionary search technique used for the scheduling 

problems to obtain a near optimal solution for complex problems [11]. It begins with a randomly 
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generated population of chromosomes (feasible solutions) and replaces (iteratively) this 

population with a new one. The (GA) requires for the problem a good representation, and a 

fitness function that measures the chromosome's quality. Regeneration technique depends on 

selection of ancestors (parents) and reunites them by using the crossover to get successor 

(children), then applying the mutation to change them (locally) for obtaining better results [12]. 

5.1.1. (GA) Operators 

   The (GA) has a number of operators: 

1. Representation: In this paper, a chromosome is represented by a sequence of  jobs where 

every gene refers to a job [13]. 

2. Initialization: The initial population can be obtained by either introducing heuristics or 

random arranging [13]. In our paper, we choose the first way (i.e. introducing heuristics), and we 

take 50 Chromosomes as the size of our initial population as follows: create an initial population 

of (50) chromosomes, choose five chromosomes where three of them are randomly selected 

while the remain two chromosomes by applying the earliest due date (EDD) and the shortest 

processing time (SPT) (i.e. seeding good parents). 

3. Selection: We use the roulette wheel selection method, where we choose the chromosome 

with the lowest fitness value since it has a higher probability of participating in one or more 

children to the new generation. 

4. Fitness function: The fitness function specifies a value reflects the quality (goodness or 

badness) of the chromosome [14]. Here, in this paper, the considered function is; 

   ∑              
 
   . 

5. Crossover: The 1-point legitimate crossover (LEGX) [15]. Is used. The cut probability is 0.2 

when        and when        we cut at every 1000 jobs. In parent 1 the cut will be at the 

end, while in the parent 2, the cut will be at the beginning, as the following example; 

Parent (1): 6 4 5 2 0 9 8 7 1 3                              Child (1): 6 4 5 2 0 9 8 7 3 1 

Parent (2): 0 2 3 9 4 5 1 7 6 8                              Child (2): 2 0 3 9 4 5 1 7 6 8 

Where we generate the new population by mating each chromosome from step 2 with the whole 

five chromosomes, and every parent chromosome will produce 10 children chromosomes, so the 

resulting new population will consists of 50 new chromosomes. 

6. Mutation: In getting better results, the mutation operator inside the sequence as an intent to 

get an improvement [16]. For our problem, the random swap between jobs is applied. 

7. Termination: The stopping criterion is 600 seconds. 

    

 

 

 

 

Figure 1: The (GA) algorithm. 
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5.2. Particle Swarm Optimization (PSO): 

      The (PSO) is a very simple algorithm and effective optimizer for functions from wide range 

developed by Eberhart [17]. It is based on social simulation models. This algorithm assigns a 

collection (population) of search points (solutions) moving randomly in the search space, and the 

best position found by every individual which is also said to be is saved in memory. Then, this 

experience of the individual is connected with the part or whole of the swarm to change the 

movement direction to the best locations were found till now. The swarming behavior is 

produced by employing main rules which are; the velocity matching and acceleration by the 

distance applying by every individual in the swarm in their searching of food [18]. Where: 

   

                   (             )      (          )               (3) 

                        ,              .                                                    (4) 

Where   is the inertia parameter,         are two arbitrary functions of the (0, 1) range, 

        are two constants, the swarm (or population) is a set of (Y) particles positioned in L-

dimensional space. At every iteration t (where t =1,…,T) , the     particle (i=1,…,Y) has a 

position                where j=1,…, L and a velocity             . The velocity         

is the rate of moving the     particle from       to        . Every position       may be 

(directly or indirectly) represent a solution for a problem. The objective function is denoted as 

        , which is also called the fitness function. In the minimization problem (as in this paper) 

   is better than    (where a, b    ) when            . The     particle pest position is the 

position when the function          takes the minimum value till now and denoted as    

     . The global best position (     ) is denoted as          which is the best position found 

by the entire swarm. [19]. Then the algorithm is: 

5.2.1. (PSO) algorithm [17]. 

Step 1: Initialize the population with 7 particles in which have random positions and velocities. 

Step 2: Evaluate the objective (the fitness) function for each particle in the swarm to get the best 

solution   . 

Step 3: From    we generate the new population of 7 other solutions, as follows: 

   : Swapping two jobs in the sequence of   . 

   : Swapping two jobs (deferent than   ) in   . 

   : Swapping two jobs (deferent than    and   ) in   . 

   : Ordering the first half of    in EDD rule. 

   : Ordering the second half of    in EDD rule. 

   : Ordering the first half of    in SPT rule. 

   : Ordering the second half of    in SPT rule. 

Step 3: Compare the particle's fitness evaluation with its      , if the                     

then set: (                    ) and                     ). 

Step 4:  Compare evaluation with      , if current value        then set   = particle's index. 

Step 5:  Update the velocity by (3) and the position by (4). 

Step 6:  Go back to step 2. 
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       6. Experimental Results 

6.1. The Problems Instances: 

     The performance of the (BAB) procedure is compared on 5 problem instances, the sizes of 

these examples are n = [5, 18]. The problem instances were generated randomly, and for each job 

  where          , the processing time    was uniformly generated in [1, 10]. While the due 

date    was uniformly generated in the interval [                           ] as 

it has been showed in the literature [20]. Where   ∑   
 
    and the two parameters (TP and 

RDD) are said to be the tardiness factor and related range of due dates respectively, and have the 

following values: 

                               and             

6.2. Computational Results 

   In this subsection, the computational results is given in tables, each table of them gives the 

results. In Table 1. we put the comparison among BAB, GA and PSO for n = [5, 18]. The Table 

2.  is contained the values and times by averages for n = [50, 20000]. For each n there is 5 

problems examples are tested. The symbols which used in the tables are: 

n: The number of jobs, 

BAB: The branch and bound method, 

GA: The genetic algorithm,   

PSO: The particle swarm optimization, 

      :  The average of the value, 

      : The average of the execution time of the problem (by second). 

Best: The best (value & time) average. 

No. : The number of (*) and the number of (#). 

Note: The symbol (*) refers to the minimum value's average, and the symbol (#) refers to the 

minimum time's average of each (n). 

6.3. The Tables of Results 

       In Table 1. the results of applying (BAB, GA and PSO) are showed for n= [5, 18]. Jobs. For 

each n there are 5 different examples are tested. These results showed that  the value averages for 

n={5,6,7,8,9,10,11,12,15} of using (BAB and GA) are equal, while the averages of using (PSO) 

are bigger with small differences. The execution time's average results showed the priority of 

(GA) among them (i. e. the (GA) is faster than the others). 

 

Table 1: comparison among BAB, GA and PSO. 

N BAB GA PSO Best 

                                                        

5 124.2* 0.0777 124.2* 0.0367# 124.2* 0.0949 124.2 0.0367 

6 145* 0.0877 145* 0.0422# 145* 0.0975 145 0.0422 

7 184.4* 0.1559 184.4* 0.0430# 184.4* 0.0900 184.4 0.0430 

8 343* 0.1998 343* 0.0421# 343* 0.1145 343 0.0421 

9 327.6* 0.2573 327.6* 0.0608# 328.8 0.1205 327.6 0.0608 

10 432* 0.9539 432* 0.0464# 433.8 0.0979 432 0.0464 

11 469.6* 1.8399 469.6* 0.0415# 469.8 0.0903 469.6 0.0415 
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12 658.6* 2.6089 658.6* 0.0530# 659.6 0.0894 658.6 0.0530 

13 905* 11.4598 907.8 0.0370# 910.2 0.0896 905 0.0370 

14 773.2* 26.6837 773.6 0.0541# 774.4 0.1144 773.2 0.0541 

15 905* 109.5314 905* 0.0456# 909.6 0.1090 905 0.0456 

16 1053.4* 884.5501 1053.8 0.0383# 1059.4 0.1078 1053.4 0.0383 

17 1147.8* 796.4961 1153.4 0.0470# 1153.4 0.1008 1147.8 0.0470 

18 1298.2* 1.2675 1300.6 0.0528# 1306.4 0.1100 1298.2 0.0528 

No. 14(*) 0(#) 9(*) 14(#) 4(*) 0(#)   

 

    In Table 2. For each (n) there are (5) problems examples for testing. The Table 2.  Begins 

with n = 50(50)100, 100(100)1000, 1000(1000)5000, 5000(5000)20000. The results showed that 

value's averages of (GA) are better than the (PSO's) averages except when (n=600) jobs. The 

execution time's average results showed that the (PSO) is faster than (GA) in all problems which 

are tested. 

Table 2. the averages of the (values & times) of (GA) and (PSO). 

N GA P.SO Best 

                                          

50 8.7386* 0.2869 8.8758 0.0931# 8.7386 0.0931 

100 3.2820* 0.5605 3.3680 0.1092# 3.2820 0.1092 

200 1.2328* 1.5239 1.3286 0.1832# 1.2328 0.1832 

300 3.0913* 3.0638 3.1601 0.2609# 3.0913 0.2609 

400 560652* 5.0216 5.7567 0.3218# 560652 0.3218 

500 7.8883* 7.6416 8.4154 0.4022# 7.8883 0.4022 

600 2.2137 10.7515 1.2308* 0.4589# 1.2308 0.4589 

700 1.5772* 14.3291 1.6959 0.5702# 1.5772 0.5702 

800 1.9744* 18.4993 2.1872 0.6434# 1.9744 0.6434 

900 2.8095* 23.3777 2.8550 0.6884# 2.8095 0.6884 

1000 3.2910* 31.1993 3.4474 0.7588# 3.2910 0.7588 

2000 1.2931* 111.7079 1.3696 1.5034# 1.2931 1.5034 

3000 3.0102* 264.6768 3.1087 2.4566# 3.0102 2.4566 

4000 5.1718* 537.8838 5.5883 4.0436# 5.1718 4.0436 

5000 8.5145* 603.6106 8.8628 3.6652# 8.5145 3.6652 
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10000 3.4796* 617.5982 352058926 7.5153# 3.4796 7.5153 

15000 7.8295* 632.2623 7.8615 11.4529# 7.8295 11.4529 

20000 1.3522* 628.5472 1.3655 15.4144# 1.3522 15.4144 

No. 17(*) 0(#) 1(*) 18(#)   
 

7. Conclusions 

    In solving the problem A, two local search methods (GA and PSO) are used, The results 

showed that the two methods have a good efficiency in finding the optimal or near optimal 

solutions comparing with the (BAB) method which is used, where (GA) showed that it has 

reached the optimal solutions many   times as well as the (BAB), and the (PSO) showed the 

advantage in the execution times, where it is    faster than (GA) in solving the problems.  
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