

119

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020

Abstract

 In this paper, two of the local search algorithms are used (genetic algorithm and particle

swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize

a multi-objective function which is denoted as ∑

 (total completion

time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method

is used for comparing the results for (n) jobs starting from (5-18). The results show that the two

algorithms have found the optimal and near optimal solutions in an appropriate time.

Key word: The Branch and Bound method (BAB), The Local search algorithms, The Genetic

Algorithm (GA), The Particle swarm optimization (PSO), The Multi-Objective problems.

 1.Introduction

 In the matter of dealing with scheduling problems, there are given a finite or countable

infinite set of solutions in which we have to find one solution of them that optimizes (minimizes

or maximizes) a given specific cost function. The computational complexity theory shapes the

difference between easiness and hardiness of the problems, where a problem is easy if there is a

polynomial-time algorithm solves it and obtains an optimal solution. A problem is said to be

hard (or NP-hard) if there exist no such polynomial-time algorithm to solve it. So, when we deal

with an NP-hard problem, there are two ways for treating it. The first one is to target an optimal

solution, while the second is by using a heuristic algorithm. The solutions which are found by the

heuristic algorithm do not need to be optimal, but they are found with an acceptable time (i.e. the

heuristic algorithms trade off the optimality versus the computing time). The heuristic algorithms

can be classified into constructive algorithms and local search algorithms. The constructive

algorithm generates a solution by a number of steps, where in every step the partial solution

obtained is extended till we get the complete solution in the last step. On the other hand, the local

search algorithms are search in the entire solution space for the best solutions, in other words it

begins with an initial solution and then recursively generate a new solution which is near to the

current one. While the solutions of many scheduling problems can be represented by sequences,

permutations and graphs, the local search algorithms can use these representations by defining

Alaa Sabah Hameed Hanan Ali Chachan

Doi: 10.30526/33.1.2378

Article history: Received 29 April 2019, Accepted 11 June 2019, Publish January 2020.

alaasabah127@gmail.com

Genetic Algorithm and Particle Swarm Optimization Techniques for

Solving Multi-Objectives on Single Machine Scheduling Problem

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Hanan_altaai@yahoo.com

Department of Mathematics College of Sciences, Al-Mustansireah University, Iraq.

file:///D:/فزياء%20العدد%20الثالث%202019/Moaayed99@gmail.com
alaasabah127@gmail.com
Hanan_altaai@yahoo.com%20

120

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020

 neighborhood functions with conditions of reordering items locally to get (obtain) a neighboring

solution [1]. Since the introduction of the local search techniques in the combinatorial

optimization problems, the specialists have used these techniques for solving the NP-hard

problems. Using these techniques in scheduling makes an allowance for us to test problems with

a large number of jobs. Minimizing the total late work on a single machine was treated by Chin-

Chia Wu [2]. where he proposed three genetic algorithms and combined them to get the fourth

one, his computational results showed that the three (GA) algorithms were getting the stability

state when n becomes larger. The problem ∑ was solved by Tariq and

Doha [3]. by using simulated annealing (SA) and descent method (DM) for (75,…,30000) jobs,

and they show that the (SA) gives a reasonable results for small n, and the times for both (DM)

and (SA) algorithms are equal. Tariq and Faez [4]. propose the (PSO) and the (GA) as heuristic

methods to find approximation solutions for ∑ ∑ and they found that these local

search algorithms solve the problem for jobs with reasonable time. The (PSO)

algorithm were applied by Hanan [5]. For solving the problem ∑

where she proposed a new style of development steps to achieve good convergence in

application, and made a comparison between (PSO) and (GA) showed that the results of (PSO)

are better than (GA) for jobs. Tariq, and Hafed reach jobs by using three

local search techniques; descent method (DM), simulated annealing (SA) and tabu search (TS)

in solving the problem ∑ ∑ , where they showed that the

performance of the algorithms is evaluated on a large set of test problems and the results which

are compared showed that (SA) and (TS) algorithms are better than (DM) with preference to

(SA) algorithm, and showed that the three algorithms find optimal or near optimal solutions in a

reasonable times [6].

 2.Problem Representation

 A multi-objective problem is considered, and the formal description of this problem is set as

follows:

Scheduling jobs on a single machine which is always available can execute them, where each

one of these jobs can be executed on that machine at its special time (i.e. only one job can be

executed at a time), and the machine can do only one job at a time.

For we will denote and as the processing time and the due date of the

job respectively. The schedule () will define a completion time ∑

 for

every job . The tardiness and the earliness

 will show up for every job . The late work of job is the amount

of the processing time that is performed after the due date , where if (

 , if (and if

([7]. Every job will be ready to be processed at time zero,

where no preemption is allowed and our objective is to find a feasible solution that gives the

minimum value of the multi-objective function ∑
 .

 Using the standard scheduling problem classification notation, our problem is denoted by

 ∑
 and formulated as;

121

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020

 ∑

 { }

 { }

 {

 }

}

3. Heuristics for the Problem

 In this section, we will mention the heuristics that are used for the problem (A) where there

are two simple known heuristics used as an initialization for looking at feasibility of the solutions

in the entire search space.

3.1. First Heuristic (H1): This heuristic is obtained by applying the shortest processing time

(SPT) rule (i.e. sorting the jobs in order of).

3.2. Second Heuristic (H2): This heuristic is obtained by applying the earliest due date (EDD)

rule (i.e. sorting the jobs in order of).

4. (BAB) Method

 The (BAB) method depends basically on the complete enumeration in the search area. It

consists of two procedures; branching and bounding. The branching procedure is the dividing of

a large problem into two or more sub-problems, while the bounding calculates a lower bound on

the optimal solution's value for every sub-problem [8].

4.1 Upper Bounds: As initialization of searching in the search tree by using the (BAB) method,

the two heuristics in (3.1) and (3.2) are used to play as the upper bounds of our problem in this

paper.

4.2. Lower Bound: For deriving a lower bound, the problem can be decomposed into two

sub-problems , where:

 ∑()

 { }

 { } }

For this sub-problem, the lower bound, which was applied by Hussam Abid Ali [9]. is used to

obtain the first lower bound (), where:

∑ ()

 {∑ ∑ { }

 } (1)

122

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020

 ∑

 { }

 { } }

 Here, the lower bound in the theorem (4.1) below is used for to get the second lower

bound ().

Theorem 1[7].

 If { } and { } where , then we have that;

 ∑
 .

 Now, the following lemma allows us to use as the lower bound for the

problem ().

Lemma 1 [10].

 If and are the lower bounds of the problems (respectively, then

 , is the lower bound of the main problem .

4.2.1. (LB) procedure

 For where represents the set of all jobs, is equal to the set of the scheduled jobs

and is the set of the un-scheduled jobs, then the procedure is:

1.Starting with empty set of the scheduled jobs (i.e.), and begin to sort the jobs (one by

one) until we have |S| , and the job will be add to the set then we solve the last

sequence by the complete enumerate method (CEM). At every step we calculate the cost

∑ () .

2. For the set , the jobs have been sorted in two rules for calculating the costs for the two sub-

problems by doing the following steps;

Step (1): Sorting the jobs in the set by (SPT) rule, and then calculate ∑ by

using equation (1).

Step (2): Re-sorting the jobs in the set by (EDD) rule, and calculate (∑) by using

theorem (4.1).

Step (3): Calculate the total cost ∑ as follows:

Total cost ∑ ∑ ∑ (2)

5. Local Search Methods

 In a matter of using the local search methods, there is no guarantee of obtaining optimality,

but using them may give us solutions that are near the optimal. Therefore, the local search

methods considered as the second choice of solving the NP-hard problems. In this paper, two of

these methods are applied the genetic algorithm (GA) and the particle swarm optimization

(PSO).

5.1. Genetic Algorithm (GA):

 The genetic algorithm (GA) is an evolutionary search technique used for the scheduling

problems to obtain a near optimal solution for complex problems [11]. It begins with a randomly

123

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020

generated population of chromosomes (feasible solutions) and replaces (iteratively) this

population with a new one. The (GA) requires for the problem a good representation, and a

fitness function that measures the chromosome's quality. Regeneration technique depends on

selection of ancestors (parents) and reunites them by using the crossover to get successor

(children), then applying the mutation to change them (locally) for obtaining better results [12].

5.1.1. (GA) Operators

 The (GA) has a number of operators:

1. Representation: In this paper, a chromosome is represented by a sequence of jobs where

every gene refers to a job [13].

2. Initialization: The initial population can be obtained by either introducing heuristics or

random arranging [13]. In our paper, we choose the first way (i.e. introducing heuristics), and we

take 50 Chromosomes as the size of our initial population as follows: create an initial population

of (50) chromosomes, choose five chromosomes where three of them are randomly selected

while the remain two chromosomes by applying the earliest due date (EDD) and the shortest

processing time (SPT) (i.e. seeding good parents).

3. Selection: We use the roulette wheel selection method, where we choose the chromosome

with the lowest fitness value since it has a higher probability of participating in one or more

children to the new generation.

4. Fitness function: The fitness function specifies a value reflects the quality (goodness or

badness) of the chromosome [14]. Here, in this paper, the considered function is;

 ∑

 .

5. Crossover: The 1-point legitimate crossover (LEGX) [15]. Is used. The cut probability is 0.2

when and when we cut at every 1000 jobs. In parent 1 the cut will be at the

end, while in the parent 2, the cut will be at the beginning, as the following example;

Parent (1): 6 4 5 2 0 9 8 7 1 3 Child (1): 6 4 5 2 0 9 8 7 3 1

Parent (2): 0 2 3 9 4 5 1 7 6 8 Child (2): 2 0 3 9 4 5 1 7 6 8

Where we generate the new population by mating each chromosome from step 2 with the whole

five chromosomes, and every parent chromosome will produce 10 children chromosomes, so the

resulting new population will consists of 50 new chromosomes.

6. Mutation: In getting better results, the mutation operator inside the sequence as an intent to

get an improvement [16]. For our problem, the random swap between jobs is applied.

7. Termination: The stopping criterion is 600 seconds.

Figure 1: The (GA) algorithm.

Initialization

Selection

Crossover

New

population

Save best

solutions

Mutation

124

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020

5.2. Particle Swarm Optimization (PSO):

 The (PSO) is a very simple algorithm and effective optimizer for functions from wide range

developed by Eberhart [17]. It is based on social simulation models. This algorithm assigns a

collection (population) of search points (solutions) moving randomly in the search space, and the

best position found by every individual which is also said to be is saved in memory. Then, this

experience of the individual is connected with the part or whole of the swarm to change the

movement direction to the best locations were found till now. The swarming behavior is

produced by employing main rules which are; the velocity matching and acceleration by the

distance applying by every individual in the swarm in their searching of food [18]. Where:

 () () (3)

 , . (4)

Where is the inertia parameter, are two arbitrary functions of the (0, 1) range,

 are two constants, the swarm (or population) is a set of (Y) particles positioned in L-

dimensional space. At every iteration t (where t =1,…,T) , the particle (i=1,…,Y) has a

position where j=1,…, L and a velocity . The velocity

is the rate of moving the particle from to . Every position may be

(directly or indirectly) represent a solution for a problem. The objective function is denoted as

 , which is also called the fitness function. In the minimization problem (as in this paper)

 is better than (where a, b) when . The particle pest position is the

position when the function takes the minimum value till now and denoted as

 . The global best position () is denoted as which is the best position found

by the entire swarm. [19]. Then the algorithm is:

5.2.1. (PSO) algorithm [17].

Step 1: Initialize the population with 7 particles in which have random positions and velocities.

Step 2: Evaluate the objective (the fitness) function for each particle in the swarm to get the best

solution .

Step 3: From we generate the new population of 7 other solutions, as follows:

 : Swapping two jobs in the sequence of .

 : Swapping two jobs (deferent than) in .

 : Swapping two jobs (deferent than and) in .

 : Ordering the first half of in EDD rule.

 : Ordering the second half of in EDD rule.

 : Ordering the first half of in SPT rule.

 : Ordering the second half of in SPT rule.

Step 3: Compare the particle's fitness evaluation with its , if the

then set: () and).

Step 4: Compare evaluation with , if current value then set = particle's index.

Step 5: Update the velocity by (3) and the position by (4).

Step 6: Go back to step 2.

125

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020

 6. Experimental Results

6.1. The Problems Instances:

 The performance of the (BAB) procedure is compared on 5 problem instances, the sizes of

these examples are n = [5, 18]. The problem instances were generated randomly, and for each job

 where , the processing time was uniformly generated in [1, 10]. While the due

date was uniformly generated in the interval [] as

it has been showed in the literature [20]. Where ∑

 and the two parameters (TP and

RDD) are said to be the tardiness factor and related range of due dates respectively, and have the

following values:

 and

6.2. Computational Results

 In this subsection, the computational results is given in tables, each table of them gives the

results. In Table 1. we put the comparison among BAB, GA and PSO for n = [5, 18]. The Table

2. is contained the values and times by averages for n = [50, 20000]. For each n there is 5

problems examples are tested. The symbols which used in the tables are:

n: The number of jobs,

BAB: The branch and bound method,

GA: The genetic algorithm,

PSO: The particle swarm optimization,

 : The average of the value,

 : The average of the execution time of the problem (by second).

Best: The best (value & time) average.

No. : The number of (*) and the number of (#).

Note: The symbol (*) refers to the minimum value's average, and the symbol (#) refers to the

minimum time's average of each (n).

6.3. The Tables of Results

 In Table 1. the results of applying (BAB, GA and PSO) are showed for n= [5, 18]. Jobs. For

each n there are 5 different examples are tested. These results showed that the value averages for

n={5,6,7,8,9,10,11,12,15} of using (BAB and GA) are equal, while the averages of using (PSO)

are bigger with small differences. The execution time's average results showed the priority of

(GA) among them (i. e. the (GA) is faster than the others).

Table 1: comparison among BAB, GA and PSO.

N BAB GA PSO Best

5 124.2* 0.0777 124.2* 0.0367# 124.2* 0.0949 124.2 0.0367

6 145* 0.0877 145* 0.0422# 145* 0.0975 145 0.0422

7 184.4* 0.1559 184.4* 0.0430# 184.4* 0.0900 184.4 0.0430

8 343* 0.1998 343* 0.0421# 343* 0.1145 343 0.0421

9 327.6* 0.2573 327.6* 0.0608# 328.8 0.1205 327.6 0.0608

10 432* 0.9539 432* 0.0464# 433.8 0.0979 432 0.0464

11 469.6* 1.8399 469.6* 0.0415# 469.8 0.0903 469.6 0.0415

126

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020

12 658.6* 2.6089 658.6* 0.0530# 659.6 0.0894 658.6 0.0530

13 905* 11.4598 907.8 0.0370# 910.2 0.0896 905 0.0370

14 773.2* 26.6837 773.6 0.0541# 774.4 0.1144 773.2 0.0541

15 905* 109.5314 905* 0.0456# 909.6 0.1090 905 0.0456

16 1053.4* 884.5501 1053.8 0.0383# 1059.4 0.1078 1053.4 0.0383

17 1147.8* 796.4961 1153.4 0.0470# 1153.4 0.1008 1147.8 0.0470

18 1298.2* 1.2675 1300.6 0.0528# 1306.4 0.1100 1298.2 0.0528

No. 14(*) 0(#) 9(*) 14(#) 4(*) 0(#)

 In Table 2. For each (n) there are (5) problems examples for testing. The Table 2. Begins

with n = 50(50)100, 100(100)1000, 1000(1000)5000, 5000(5000)20000. The results showed that

value's averages of (GA) are better than the (PSO's) averages except when (n=600) jobs. The

execution time's average results showed that the (PSO) is faster than (GA) in all problems which

are tested.

Table 2. the averages of the (values & times) of (GA) and (PSO).

N GA P.SO Best

50 8.7386* 0.2869 8.8758 0.0931# 8.7386 0.0931

100 3.2820* 0.5605 3.3680 0.1092# 3.2820 0.1092

200 1.2328* 1.5239 1.3286 0.1832# 1.2328 0.1832

300 3.0913* 3.0638 3.1601 0.2609# 3.0913 0.2609

400 560652* 5.0216 5.7567 0.3218# 560652 0.3218

500 7.8883* 7.6416 8.4154 0.4022# 7.8883 0.4022

600 2.2137 10.7515 1.2308* 0.4589# 1.2308 0.4589

700 1.5772* 14.3291 1.6959 0.5702# 1.5772 0.5702

800 1.9744* 18.4993 2.1872 0.6434# 1.9744 0.6434

900 2.8095* 23.3777 2.8550 0.6884# 2.8095 0.6884

1000 3.2910* 31.1993 3.4474 0.7588# 3.2910 0.7588

2000 1.2931* 111.7079 1.3696 1.5034# 1.2931 1.5034

3000 3.0102* 264.6768 3.1087 2.4566# 3.0102 2.4566

4000 5.1718* 537.8838 5.5883 4.0436# 5.1718 4.0436

5000 8.5145* 603.6106 8.8628 3.6652# 8.5145 3.6652

127

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020

10000 3.4796* 617.5982 352058926 7.5153# 3.4796 7.5153

15000 7.8295* 632.2623 7.8615 11.4529# 7.8295 11.4529

20000 1.3522* 628.5472 1.3655 15.4144# 1.3522 15.4144

No. 17(*) 0(#) 1(*) 18(#)

7. Conclusions

 In solving the problem A, two local search methods (GA and PSO) are used, The results

showed that the two methods have a good efficiency in finding the optimal or near optimal

solutions comparing with the (BAB) method which is used, where (GA) showed that it has

reached the optimal solutions many times as well as the (BAB), and the (PSO) showed the

advantage in the execution times, where it is faster than (GA) in solving the problems.

References

1. Michiels, W.; Aarts, E.; Korst, J. Theoretical Aspects of Local Search. ISBN-13 978-3-

540-35853-4. Springer. Berlin, Heidelberg. New York.2000.

2. Wu, C.; Yin, Y.; Wu, W.; Chen, H.; Cheng, S. Using a branch-and-bound and a genetic

algorithm for a single-machine total late work scheduling problem. Soft Computing - A

Fusion of Foundations, Methodologies and Applications.2016, 20, 4, 1329–1339.

3. Abdul-Razaq, T.S.; Abbas, D.A. A Function of Two or Three Cost Criteria to Be

Optimized. Al- Mustansiriyah Journal Science.2013, 24, 2, 113-132.

4. Abdul-Razaq, T.S.; Ali, F.H. Algorithms for Scheduling a Single Machine to Minimize

Total Completion Time and Total Tardiness. Basrah Journal of Science.2016, 34, 2, 113-

132.

5. Chachan, H. A. Solving Machine Scheduling Problem Using Particle Swarm Optimization

Method. The Iraqi magazine for managerial sciences.2012, 8, 33, 197-213.

6. Abdul-Razaq, T.S.; Motair, H.M. Solving Composite Multi objective Single Machine

Scheduling Problem Using Branch and Bound and Local Search Algorithms. Al-

Mustansiriyah Journal of Science.2017, 28, 3, 200-208.

7. Potts, C.N.; Van Wassenhove, L.N. Single Machine Scheduling to Minimize Total Late

Work. Operations Research.1992, 40, 3, 586-595.

8. Blazewicz, J.; Ecker, K.H.; Pesch, E.; Schmidt, G.; Weglarz, J. Handbook on Scheduling:

From Theory to Applications. Springer. Berlin. Heidelberg. New York, 2007.

9. Mohammed, H. A. Genetic and Local Search Algorithms as Robust and Simple

Optimization Tools. M. Sc. thesis. University of Al-Mustansiriyah, College of Science,

Department of Mathematics, 2005.

https://booksc.xyz/journal/22430
https://booksc.xyz/journal/22430

128

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 33 (1) 2020

10. Ramadhan, A.M. Single machine scheduling using branch and bound techniques. M. Sc.

thesis. University of Al-Mustansiriyah, College of Science, Department of Mathematics,

1998.

11. Chen, Z.; Tsai, C.; Eberle, W.; Lin, W.; Ke, S. Instance selection by genetic-based

biological algorithm. Soft Computing.2014, 19, 5, 1269–1282.

12. Essafi, I.; Mati, Y.; Dauzere-Peres, S. A genetic local search algorithm for minimizing

total weighted tardiness in the job-shop scheduling problem. Computers & Operations

Research.2008, 35, 8, 2599 – 2616.

13. Etiler, O.; Toklu, B.; Atak, M.; Wilson, J. A genetic algorithm for flow shop scheduling

problems. Journal of the Operational Research Society.2004, 55, 830–835.

14. Iyer, S.K.; Saxena, B. Improved genetic algorithm for the permutation flowshop

scheduling problem. Computers & Operations Research.2004, 31, 593–606.

15. Reeves, C. R. A genetic algorithm for flow shop sequencing. Computers and Operations

Research.1995, 22, 1, 5-13.

16. Nordstorm, A.; Tufekci, S. A Genetic Algorithm for the Talent Scheduling Problem.

Computers and Operations Research.1994, 21, 8, 927-940.

17. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of

the 6th Symposium on Micro Machine and Human Science, Nagoya, Japan.1995, 39-43.

18. Konstantinos, E.P.; Michael, N.V. Particle Swarm Optimization and Intelligence:

Advances and Applications. Information science reference, Hershey, New York,2010.

19. Pongchairerks, P. Particle swarm optimization algorithm applied to scheduling problems.

ScienceAsia.2009, 35, 89–94.

20. Arroyo, C.; Elias, J.; Ottoni, R.; Oliveira, A. Multi-Objective Variable Neighborhood

Search Algorithms for a Single Machine Scheduling Problem with Distinct Due Windows.

Electronic Notes in Theoretical Computer Science.2011, 28, 15–19.

