

Ibn Al Haitham Journal for Pure and Applied Science

 $Journal\ homepage:\ http://jih.uobaghdad.edu.iq/index.php/j/index$

New Properties of Anti Fuzzy Ideals of Regular Semigroups

Samah H. Asaad

Akram S. Mohammed

Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq.

ahmedibrahimsalh89@gmail.com

akr-tel@tu.edu.iq

Article history: Received 25 March 2019, Accepted 14 April 2019, Publish September 2019.

Doi:10.30526/32.3.2287

Abstract

In this article, we study some properties of anti-fuzzy sub-semigroup, anti fuzzy left (right, two sided) ideal, anti fuzzy ideal, anti fuzzy generalized bi-ideal, anti fuzzy interior ideals and anti fuzzy two sided ideal of regular semigroup. Also, we characterized regular LA-semigroup in terms of their anti fuzzy ideal.

Keywords: Fuzzy ideal, regular, anti fuzzy interior ideal, anti fuzzy ideal.

1. Introduction and Basic Concept

Fuzzy sub-semigroup and fuzzy interior ideal in semigroup was introduced by Hong, et al., in [1]. And the concept of fuzzy ideal and fuzzy bi-ideals in semigroups was studied by Nobuaki Kuroki in (1981)", [2]. The concept of the product of two fuzzy subset and anti product of two fuzzy subset was introduced by Shabir and Nawaz [3]. The concept of characterizations of semigroups by their anti fuzzy ideals was studied by Khan and Asif in [4]. The concept of intra-regular (left almost semigroup denoted by LA-semigroups) characterized by their anti fuzzy ideals by Khan and Faisal in [5]. Many other authors interested studied of fuzzy ideal, for example see [6-9]. Through out of this paper we are denoted of a regular semigroup by \aleph_r .

Definition 1 [1].

A fuzzy subset ζ in a semigroup \aleph is said to be a fuzzy sub-semigroup of \aleph if $\zeta(wz) \ge \min{\{\zeta(w), \zeta(z)\}}$, whenever $w, z \in \aleph$.

Definition 2 [1].

A fuzzy sub-semigroup ζ of a semigroup \aleph is said to be a fuzzy interior ideal of \aleph if $\zeta(swr) \ge \zeta(w)$, whenever s, w, $r \in \aleph$.

Definition 3 [2].

A fuzzy function ζ of a semigroup \aleph is said to be a fuzzy ideal if $\zeta(\text{swr}) \leq \max{\{\zeta(s), \zeta(r)\}} = {\zeta(s) \lor \zeta(r)}$, whenever s, w, $r \in \aleph$.

Definition 4 [2].

A fuzzy sub-semigroup ζ of a semigroup \aleph is said to be a fuzzy bi ideal in \aleph if $\zeta(swr) \ge \min{\{\zeta(s), \zeta(r)\}}$, whenever s, w, $r \in \aleph$.

Definition 5 [3].

Let ζ and φ be any fuzzy subsets of a semigroup \aleph then the product $\zeta \circ \varphi$ is defined by $(\zeta \circ \varphi)(w) = \begin{cases} \bigvee_{w=sr} \{\zeta(s) \land \varphi(r)\}, \exists s, r \in \aleph \ s. t \ w = sr \\ 0; & other wise \end{cases}$

Definition 6 [3].

Let ζ and ϕ be any fuzzy subsets of a semigroup \aleph then the anti product $\zeta * \phi$ is defined by

 $(\zeta * \phi)(w) = \begin{cases} \Lambda_{w=s r} \{ \zeta(s) \lor \phi(r) \}, \exists s, r \in \aleph \ s.t w = s r \\ 1; & other wise \end{cases}$

Definition 7 [4].

A fuzzy subset ζ of a semigroup \aleph is said to be anti fuzzy sub-semigroup of \aleph if $\zeta(sr) \leq \zeta(s) \lor \zeta(r)$, whenever s, $r \in \aleph$.

Definition 8 [4].

A fuzzy subset ζ of a semigroup \aleph is said to be anti fuzzy left (right) ideal of \aleph if $\zeta(sr) \leq \zeta(r), (\zeta(sr) \leq \zeta(s))$, whenever s, $r \in \aleph$.

Definition 9 [4].

A fuzzy subset ζ of a semigroup \aleph is said to be anti fuzzy ideal of \aleph if it is both anti fuzzy left ideal and anti fuzzy right ideal.

Definition 10 [4].

A fuzzy subset ζ of a semigroup \aleph is said to be anti fuzzy interior ideal of \aleph if $\zeta(swr) \leq \zeta(w)$, whenever s, w, $r \in \aleph$.

Definition 11 [4].

A fuzzy subset ζ of a semigroup \aleph is said to be anti fuzzy generalized bi-ideal of \aleph if $\zeta(swr) \leq \zeta(s) \lor \zeta(r)$, whenever s, w, $r \in \aleph$.

Definition 12 [4].

A fuzzy sub-semigroup ζ is said to be anti fuzzy bi-ideal of \aleph if $\zeta(swr) \leq \zeta(s) \lor \zeta(r)$ whenever s, w, $r \in \aleph$.

Definition 13 [5].

A fuzzy subset ζ of a LA-semigroup \aleph is said to be a fuzzy LA-sub-semigroup if $\zeta(sr) \ge \zeta(s) \land \zeta(r)$, whenever s, $r \in \aleph$.

Definition 14 [5].

A fuzzy subset ζ of a LA-semigroup \aleph is said to be a fuzzy left(right)ideal of \aleph if $\zeta(sr) \ge \zeta(r)$, ($\zeta(sr) \ge \zeta(s)$), whenever s, $r \in \aleph$.

Definition 15 [5].

A fuzzy LA-sub-semigroup ζ of a LA-semigroup \aleph is said to be a fuzzy bi-ideal

if $\zeta((sr)t) \ge \zeta(s) \land \zeta(t)$, whenever s, r, $t \in \aleph$.

Definition 16 [5].

A fuzzy LA-sub-semigroup ζ of a LA-semigroup \aleph is said to be fuzzy interior ideal if $\zeta((sr)t) \ge \zeta(r)$, whenever s, r, t $\in \aleph$.

2. New Properties of Anti Fuzzy Ideals of a Regular Semigroup

In this section we introduce some properties anti fuzzy ideal

Definition 17

 \aleph is said to be a regular semigroup if w=wzw, whenever w, z ∈ \aleph or equivalently w ∈ w \aleph w.

Theorem 18

Every fuzzy interior ideal in \aleph_r is idempotent.

Proof

Suppose that ζ is a fuzzy interior ideal of a semigroup \aleph , then clearly $\zeta \circ \zeta \subseteq \zeta$,

```
Let w \in \aleph then \exists z \in \aleph s.t w = wzw \Longrightarrow
```

```
w=wzw =(wz)w(z)w=(wz)w(z)wzw=((wz)w(z))(wzwzw)
```

 $(\zeta \circ \zeta)_{(w)} = \bigvee_{w = ((wz)w(z))(wzwzw)} \{ \zeta(wz)w(z) \land \zeta(wz)w(zw) \}$

 $\geq \zeta(wz)w(z) \wedge \zeta(wz)w(zw)$

 $\geq \zeta(w) \wedge \zeta(w) = \zeta(w)$

This is implies that $\zeta \circ \zeta \supseteq \zeta$, hence $\zeta \circ \zeta = \zeta$. Then ζ is idempotent.

Theorem 19

Let ζ be a fuzzy subset in \aleph_r then it is an anti fuzzy two sided ideal of \aleph iff it is an anti fuzzy interior ideal of \aleph .

Proof

 \Rightarrow Since ζ be anti fuzzy two sided ideal of \aleph , then obviously, ζ is an anti fuzzy interior ideal of \aleph .

 \Leftarrow Suppose that ζ is an anti fuzzy interior ideal of \aleph . Let w, z $\in \aleph$, by by hypotheses

so \exists s, $r \in \aleph$, s.t w=wsw and z=zrz

 $\zeta(wz) = \zeta((wsw)z) = \zeta((ws)wswz)) = \zeta((ws)w(swz)) \le \zeta(w)$, and

Also $\zeta(wz) = \zeta(w(zrz)) = \zeta(wzrzrz) = \zeta((wzr)z(rz)) \le \zeta(z)$,

Hence, ζ is an anti fuzzy two sided ideal of \aleph .

Example 20

Let $\aleph = \{s, r, t, v\}$ be a set with operation as follows:

•	S	r	t	v
S	S	S	S	S
r	S	S	S	S
S	S	S	r	S
v	S	S	r	r

Then we can easily see that $(\aleph, .)$ is not a regular semigroup.

Define the fuzzy subset ζ of \aleph as

 $\zeta(s) = 0.3$, $\zeta(r) = 0.9$, $\zeta(t) = 0.5$, $\zeta(v) = 0.7$.

Then clearly, ζ is anti fuzzy interior ideal of \aleph but it is not an anti fuzzy two sided ideal of \aleph , since {s, r} is not a two sided ideal of \aleph .

Proposition 21

In regular semigroup ℵ, then

i- Every anti fuzzy right ideal is idempotent.

ii- Every anti fuzzy interior ideal is idempotent.

Proof

i- Suppose that ζ is an anti fuzzy right ideal of semigroup \aleph , then clearly $\zeta \subseteq \zeta * \zeta$. Since \aleph is a regular so whenever $w \in \aleph$, $\exists z \in \aleph$, s.t w=wzw, so

 $\begin{aligned} (\zeta * \zeta)_{(w)} = & \Lambda_{w=wzw=wzwzw} \{ \zeta(wz) \lor \zeta(wzw) \} \\ = & \Lambda_{w=(wz)(wzw)} \{ \zeta(wz) \lor \zeta(wt) \} \text{ where } t = zw \\ \leq & \zeta(wz) \lor \zeta(wt) \leq \zeta(w) \lor \zeta(w) = \zeta(w) \end{aligned}$ This implies that $\zeta * \zeta \subseteq \zeta$.

Hence $\zeta * \zeta = \zeta$.

ii- Suppose that ζ is an anti fuzzy interior ideal of semigroup \aleph , then clearly $\zeta \subseteq \zeta * \zeta$. Since \aleph is a regular so whenever $w \in \aleph$, $\exists z \in \aleph$, s.t w=wzw, so w=wzw=wzwzw=((wz)w(z)) ((wz)w (z w))

 $(\zeta * \zeta)_{(w)} = \Lambda_{w=((wz)w(z))((wz)w(zw))} \{\zeta(wz)w(z)) \lor \zeta((wz)w(zw))\}$

 $\leq \zeta(wz)w(z)) \lor \zeta((wz)w(zw)) \leq \zeta(w) \lor \zeta(w) = \zeta(w).$

This implies that $\zeta * \zeta \subseteq \zeta$. Hence $\zeta * \zeta = \zeta$.

Proposition 22 [3].

Let ζ be an anti fuzzy right ideal and μ an anti fuzzy left ideal of a semigroup \aleph .

Then $\zeta * \mu \supseteq \zeta \cup \mu$.

It is clear that from Proposition 22. $\zeta * \mu \supseteq \zeta \cup \mu$, but the converse needs not at all be true. Consider the following example,

Example 23

Consider the semigroup $\aleph = \{s, r, t, v\}$ with the operation as follows:

	S	r	t	v
S	S	S	S	S
r	S	S	S	S
t	S	S	r	S
v	S	S	r	r

The ideals of \aleph are {s}, {s, r}, {s, r, t} and {s, r, t, v} Let us define two fuzzy subsets ζ and μ of \aleph as follows

 $\zeta(s)=0.5, \zeta(r)=0.6, \zeta(t)=0.7, \zeta(v)=0.8.$

 $\mu(s)=0.6, \ \mu(r)=0.7, \ \mu(t)=0.8, \ \mu(v)=0.9.$

Then ζ and μ are an anti fuzzy ideal of \aleph , and we note that:

 $(\zeta * \mu)_{(r)} = \Lambda_{r = xy} \{\zeta(x) \lor \mu(y)\} = \Lambda \{0.8, 0.8, 0.9\} = 0.8 \ge (\zeta \cup \mu)_{(r)} = 0.7.$

To consider the converse of proposition 22, we need to strengthen the condition of semigroup \aleph .

Theorem 24

If ζ , μ are any anti fuzzy two sided ideals of \aleph_r , then $\zeta * \mu = \zeta \cup \mu$.

Proof

Let ζ and μ be any anti fuzzy two sided ideals of \aleph , then obviously $\zeta * \mu \supseteq \zeta \cup \mu$. since \aleph is a regular so whenever element $w \in \aleph, \exists z \in \aleph, s.t w=wzw, so$ $(\zeta * \mu)_{(w)} = \Lambda_{w=wzw=wzwzw} \{\zeta(wz) \lor \mu(wzw)\}$ $\leq \zeta(wz) \lor \mu(wzw) \leq \zeta(w) \lor \mu(w) = (\zeta \cup \mu)(w)$

Then $(\zeta * \mu) \subseteq \zeta \cup \mu$. Hence, $\zeta * \mu = \zeta \cup \mu$.

Example 25

Let $\aleph = \{s, r, t\}$ be a semigroup with the following table:

	S	r	t
S	S	r	t
r	r	r	t
t	t	t	t

Define a fuzzy subset ζ of \aleph by $\zeta(s)=0.6$, $\zeta(r)=0.5$, $\zeta(t)=0.4$. By routine calculation, we can check that ζ is an anti fuzzy ideal, anti fuzzy interior ideal and anti fuzzy bi-ideal of \aleph_r . Now, we give other fuzzy characterizations of a regular semigroup.

Proposition 26

A fuzzy subset ζ of \aleph_r , then ζ is anti fuzzy bi-ideal of \aleph iff it is an anti fuzzy generalized bi-ideal of \aleph .

Proof

 \Rightarrow Suppose that ζ be any anti fuzzy bi-ideal of \aleph , the obviously, ζ is an anti fuzzy generalized bi-ideal of \aleph .

 \Leftarrow Suppose that ζ be any anti fuzzy generalized bi-ideal of \aleph , since \aleph is a regular of a semigroup, so whenever $w \in \aleph$, $\exists z \in \aleph$ s.t w=w z w.

we have

 $\zeta(wr) = \zeta(wzwr) = \zeta(w t r) \le \zeta(w) \lor \zeta(r)$ where t = zw.

Therefore, ζ is an anti fuzzy sub-semigroup of \aleph .

Hence, ζ is an anti fuzzy generalized bi-ideal of \aleph .

Theorem 27

For anti fuzzy generalized bi-ideal ζ and anti fuzzy right ideal μ of \aleph_r , then $\zeta * \mu \subseteq \zeta \cup \mu$. **Proof**

Let ζ and μ are any anti fuzzy generalized bi-ideal and anti fuzzy right ideal of \aleph , respectively, then whenever $w \in \aleph$, $\exists z \in \aleph$ s.t w=wzw.

Then $(\zeta * \mu)_{(w)} = \Lambda_{w = bc} \{ \zeta(b) \lor \mu(c) \}$ $\leq \zeta(wzw) \lor \mu(zw) \leq \zeta(w) \lor \mu(w) = (\zeta \lor \mu)(w)$ And so we have $\zeta * \mu \subseteq \zeta \cup \mu$.

Theorem 28

If ζ and μ are any anti fuzzy interior ideals of \aleph_r , then $(\zeta * \mu) \cup (\mu * \zeta) \subseteq \zeta \lor \mu$. **Proof**

Let ζ , μ be any anti fuzzy interior ideals of \aleph , and $w \in \aleph$. Then since \aleph is regular semigroup then, $\exists z \in \aleph$ s.t w = wzw = ((wz)w(z)) (w(zw)) = ((wz)w(z)) ((wz)w(zw)). Hence $(\zeta * \mu)_{(w)} = \Lambda_{w = bc} \{\zeta(b) \lor \mu(c)\}$

 $\leq \zeta((wz)w(z)) \lor \mu((wz)w(zw)) \leq \zeta(w) \lor \mu(w) = (\zeta \lor \mu)(w)$ And so we have $\zeta * \mu \subseteq \zeta \cup \mu$. Similarly, we have $(\mu * \zeta) \subseteq \zeta \cup \mu$ Therefore $(\zeta * \mu) \cup (\mu * \zeta) \subseteq \zeta \cup \mu$.

Theorem 29

For every anti fuzzy left ideal α , every anti fuzzy generalized bi-ideal μ , and every anti fuzzy interior ideal ζ of \aleph_r , then $\mu * \alpha * \zeta \subseteq \mu \cup \alpha \cup \zeta$.

Proof

Let α , μ and ζ be any anti fuzzy left ideal, any anti fuzzy generalized bi-ideal and anti fuzzy interior ideal of \aleph_r , respectively, whenever $w \in \aleph$, $\exists z \in \aleph$. Because \aleph is a regular, s.t w=wzw=wzwzw=(wzw) (zw)zw=((wzw) [(zw) ((z)w(zw)]). Then we have:

 $\begin{aligned} (\mu * \alpha * \zeta)_{(w)} = & \Lambda_{w = ((wzw)[(zw))((z)w(zw)))} \{\mu((wzw)) \lor (\alpha * \zeta)((zw)((z)w(zw)))\} \\ & \leq \mu(w) \lor \{\Lambda_{((zw)(z)w(zw))}\{\alpha(zw) \lor \zeta((z)w(zw)))\} \\ & \leq \mu(w) \lor \alpha(w) \lor \zeta(w) \\ & = (\mu \lor \alpha \lor \zeta)(w) \end{aligned}$

And so we have $\mu * \alpha * \zeta \subseteq \mu \cup \alpha \cup \zeta$.

Now, we characterized regular (left almost-semigroup for short LA-semigroup) by the properties of their fuzzy left (right, two sided) ideal.

Let N be a gropoid. Then

- 1. \aleph is called LA-semigroup if (wr) j=(jr) w; whenever w, r, $j \in \aleph$.
- 2. Medial law of a LA-semigroup means (wr) (jv) = (wj) (rv); whenever w, r, j, $v \in \aleph$.
- 3. In additional if **x** has a left identity(necessary unique) the paramedical law mean
- 4. (wr) (jv)=(vr) (jw); whenever w, r, j, $v \in \aleph$.
- 5. An LA-semigroup with right identity becomes a commutative semigroup with identity. if an LA-semigroup contains left identity, the following law holds w (r j) = r (w j); whenever w, r, $j \in \aleph$.

Proposition 30

A fuzzy subset ζ of \aleph_r is a fuzzy right ideal iff it is a fuzzy left ideal.

Proof

⇒ Suppose that ζ is a fuzzy right ideal of \aleph , since \aleph is a regular so whenever $w \in \aleph$, $\exists z \in \aleph$, s.t w=wzw, so by using (1)

$$\zeta(wb) = \zeta((wzw) b)$$

$$= \zeta((wzw)(zw)b))$$

$$= \zeta(b (zw)(wzw))$$

$$\geq \zeta(b(zw)) \geq \zeta(b)$$

$$\Leftrightarrow \text{Suppose that } \zeta \text{ is a fuzzy left ideal of } \aleph_r \text{, then using (1)}$$

$$\zeta(wr) = \zeta((wzw)r) = \zeta((wzw)(zw)r)$$

$$= \zeta((r(zw)(wzw)) \geq \zeta(wzw)$$

$$= \zeta((wz)w) \geq \zeta((w)w) \geq \zeta(w^2) \geq \zeta(w).$$

Theorem 31

Every fuzzy two sided ideal of a regular LA-semigroup \aleph , with left identity is idempotent.

Proof

Suppose that ζ is a fuzzy two sided ideal of \aleph , then clearly $\zeta \circ \zeta \subseteq \zeta \circ \aleph \subseteq \zeta$. Since \aleph is a regular so whenever $w \in \aleph$, $\exists z \in \aleph$, s.t w=wzw so by using (1) w=wzw=w(zw)(zw)=(zwzw)w, $(\zeta \circ \zeta)_{(w)}=\bigvee_{w=(zwzw)w} \zeta(zwzw) \wedge \zeta(w)$ $\geq \zeta(zwzw) \wedge \zeta(w)$ $\geq \zeta(w) \wedge \zeta(w)=\zeta(w)$. And this implies that $\zeta \circ \zeta \supseteq \zeta$, hence $\zeta \circ \zeta = \zeta$.

Theorem 32

For a fuzzy subset ζ of a regular LA-semigroup \aleph , with left identity then ζ is a fuzzy two sided ideal of \aleph iff it is a fuzzy interior ideal of \aleph .

Proof

 \Rightarrow Suppose that ζ be a fuzzy two sided ideal of \aleph , then obviously, ζ is a fuzzy interior ideal of \aleph .

 \Leftarrow Suppose that ζ be a fuzzy interior ideal of \aleph , and w, r $\in \aleph$, then since \aleph is a regular of ALsemigroup, so $\exists z, y \in \aleph$ s.t w=wzw, r=ryr, then

 $\zeta(wr) = \zeta((w \ z \ w)r) \quad using (1)$ $= \zeta(r(z \ w))(w \ z \ w)) using (2)$ $= \zeta(rw)((zw)(zw)) = \zeta(rw)t) \text{ where } t = ((z \ w)(z \ w))$ $\geq \zeta(w),$ Also $\zeta(wr) = \zeta(w(ryr)) = \zeta(w(ryry)r)) using (4)$ $= \zeta((ryry)(wr)) = \zeta((ry)r(ywr)) = \zeta(jrt)$ Where j = ry and $t = y \ w r$ and $\geq \zeta(r),$

Hence, ζ is a fuzzy two sided ideal.

2. Conclusion

From the research / the evidence we conclude that

- 1. Let ζ be a fuzzy subset in \aleph_r then it is an anti fuzzy two sided ideal of \aleph iff is an anti fuzzy interior ideal of \aleph .
- 2. In a regular semigroup \aleph , then the following are satisfy the following
 - i) Every anti fuzzy right ideal is idempotent.
 - ii) Every anti fuzzy interior ideal is idempotent.
- 3. If ζ , μ are an anti fuzzy two sided ideals of \aleph_r , then $\zeta * \mu = \zeta \cup \mu$.
- 4. For anti fuzzy generalized bi-ideal ζ and anti fuzzy right ideal μ of \aleph_r ,
- 5. Then $\zeta * \mu \leq \zeta \lor \mu$.
- 6. For every anti fuzzy left ideal α , every anti fuzzy generalized bi-ideal μ , and every anti fuzzy interior ideal ζ of \aleph_r , then $\mu * \alpha * \zeta \subseteq \mu \cup \alpha \cup \zeta$.
- 7. For a fuzzy subset ζ of a regular LA-semigroup \aleph , with left identity then ζ is a fuzzy two sided ideal of \aleph iff it is a fuzzy interior ideal of \aleph .

References

- 1. Hong, S.M.; Jun, Y.B.; Meng, J. IN Fuzzy interior ideals in semigroups. *Indain J. Pure appl. Math.***1995**, *26*, *9*, 859-863.
- 2. Nobuaki, K. on fuzzy ideal and fuzzy bi-ideals in semigroups. *Fuzzy sets and systems*. **1981**, *5*, 203-215.
- 3. Shabir, M.; Nawaz, Y. Semigroups characterized by the properties of their anti fuzzy ideals, *Journal of Advanced Research in pure Mathematics*.**2009**, *1*, *3*, 42-59.
- 4. Khan, M.; Asif, T. characterizations of semigroups by their anti fuzzy ideals. *Journal of Mathematics Research*.2010, 2, 3, 134-143.
- 5. Khan, M.; Asif, T. Faisal. Intra-regular left almost semigroups characterized by their anti fuzzy ideals. *Journal of Mathematics Research*.**2010**, *2*, *4*, 100-110.
- 6. Wafaa, H.H.; Hatem, Y.K. T-Abso T-Abso Quasi Primary Fuzzy Submodules. *Ibn Al-Haitham Journal for Pure and Applied Science*.**2019**, *32*, *1*, 110-131.
- 7. Maisun, A.H. Semiessential Fuzzy Ideals and Semiuniform Fuzzy Rings. *Ibn Al-Haitham Journal for Pure and Applied Science*.2009, 22, 4, 257-265.
- 8. Tawfiq, L.N.M.; Qa'aed, M.M. on Fuzzy Groups and Group Homomorphism, *Ibn al-Haitham Journal for Pure and Applied Science*.**2012**, *25*, *2*, 340-346.
- 9. Tawfiq, L.N.M. Some Results on Solvable Fuzzy Subgroup of a Group. *Journal of Al-Qadisiyah for Pure Science*.2011, *16*, *4*, 17-29.