Ibn Al-Haitham. J. for Pure & Appl. Sci.

Vol. 28 (2) 2015

2-Regular Modules

Nuhad S. AL-Mothafar

Dept. of Mathematic/ College of Science/ University of Baghdad, Iraq Ghaleb A. Humod Dept. of Mathematic/ College of Education for Pure Science (Ibn Al-Haitham)/ University of Baghdad

Received in: 28 April 2015 , Accepted in: 7 June 2015

Abstract

In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given.

Key Words: 2-pure submodules, 2-regular modules, pure submodules, regular modules.

Introduction

Throughout this paper, R denotes a commutative ring with identity and every R-module is a unitary. It is well-known that the pure submodules were given by several authors. For example [1] and [2].

Definition (0.1): [1]

Let M be an R-module. A submodule N of M is called pure if the sequence $0 \longrightarrow E \otimes N \longrightarrow E \otimes M$ is exact for every R-module E.

Proposition (0.2): [1]

Let N be a submodule of M. The following statements are equivalent:

- (1) N is a pure submodule of M.
- (2) For each $\sum_{i=1}^{n} r_{ji}m_i \in \mathbb{N}$, $r_{ji} \in \mathbb{R}$, $m_i \in \mathbb{M}$, j = 1, 2, ..., k, there exists $x_i \in \mathbb{N}$, i = 1, 2, ..., n such

that
$$\sum_{i=1}^{n} r_{ji} m_i = \sum_{i=1}^{n} r_{ji} x_i$$
 for each j.

(3)

Proposition (0.3): [2]

Let N be an R-submodule of M. Consider the following statements:

- (1) N is a pure submodule of M.
- (2) $N \cap IM = IN$ for each ideal I of R.
- (3) $N \cap IM = IN$ for each finitely generated ideal I of R.
- (4) $N \cap (r)M = (r)N$ for each principal ideal (r) of R.
- (5) $N \cap rM = rN$ for each $r \in R$.

Then $(1) \Rightarrow (2) \Leftrightarrow (3) \Rightarrow (4) \Leftrightarrow (5)$. And if M is flat then $(1) \Leftrightarrow (2)$.

Notice that: Anderson was called the submodule N of M pure if it satisfies (2), see [3].

Recall that an R-module M is called regular module if every submodule of M is pure [2]. M is called a Von Neumman regular module if every cyclic submodule of M is a direct summand of M, [4].

This paper is structured in three sections. In section one we give a comprehensive study of 2-pure submodules. Some results are analogous to the properties of pure submodules. In section two, we study the concept of 2-regular modules. It is clear that every regular module is 2-regular, but the converse is not true (see Remarks and Examples (2.2)(1)). Section three is concerned with the direct sum of 2-regular modules. It is shown under certain condition, the direct sum of 2-regular modules is 2-regular (see corollary 3.3). Also we show that the 2-regular property of a module is inherited by its submodules (see Corollary 3.7). Other results are given in this section.

0- 2-Pure Submodules

In this section we introduce the concept of 2-pure submodules. We investigate the basic properties of this type of submodules, some of these properties are analogous to the properties of pure submodules.

Definition (1.1):

Let M be an R-module. A submodule N of M is called a **2-pure submodule** of M if for each ideal I of R, $I^2M \cap N = I^2N$.

Remarks and Examples (1.2):

(1) It is clear that every pure submodule is a 2-pure, but not the converse. For example: the submodule of the module Z₄ as Z-module is 2-pure submodule since if I= 2Z is an $\{\overline{0},\overline{2}\}$

185 | Mathematics

 $\text{ideal of } Z, \text{ then } I^2 Z_4 \cap \underbrace{\{\overline{0}, \overline{2}\}}_{\{\overline{0}, \overline{2}\}} = \underbrace{\{\overline{0}\}}_{\{\overline{0}, \overline{2}\}} \text{. On the other hand } I^2 \underbrace{\{\overline{0}, \overline{2}\}}_{\{\overline{0}, \overline{2}\}} = \underbrace{\{\overline{0}\}}_{\{\overline{0}, \overline{2}\}} \text{.}$ By the similar simple calculation one can easily to show that $I^2Z_4 \cap = I^2 = I^2$ for $\{\overline{0},\overline{2}\}$ $\overline{0},\overline{2}\}$ is a 2-pure submodule $\{\overline{0},\overline{2}\}$ every ideal I = nZ of Z where n is any positive integer. Thus of Z₄ but is not pure since if I = 2Z, then IZ₄ \cap $\{\overline{0},\overline{2}\}$ = 2Z₄ \cap $\{\overline{0},\overline{2}\}$ = $\{\overline{0},\overline{2}\}$ and I - ²

$$\{\overline{0},\overline{2}\}^{-2}\{\overline{0},\overline{2}\}=\{\overline{0}\}$$

- (2) In any R-module M, the submodules M and {0} are always 2-pure submodules in M.
- (3) In the module Z as Z-module, the only 2-pure submodules are $\{0\}$ and Z. To see this, for every submodule nZ of Z, $n^2 = n^2 1 \in \langle n \rangle^2 Z \cap nZ$, but $n^2 \notin n^2(nZ) = n^3 Z$.
- (4) Every nonzero cyclic submodule of the module Q as Z-module is a non 2-pure submodule.

Proof:

Let N be a cyclic submodule of Q as Z-module, generated by an element \underline{a} where a and

b are two nonzero elements in Z. If we take an ideal $\langle n \rangle$ of Z where n is greater than one, then $< n^2 > a = n^2 a$

$$\frac{1}{b} < \frac{1}{b}$$

Also, Q = $\langle n^2 \rangle \cdot Q$, because for any element $\frac{c}{d} \in Q$ we have $\frac{c}{d} = \frac{c}{n^2 d} \cdot n^2 \in \langle n^2 \rangle \cdot Q$, thus

$$Q = \langle n^2 \rangle \cdot Q. \text{ Therefore } \langle n^2 \rangle \cdot Q \cap \langle \frac{a}{b} \rangle = \langle \frac{a}{b} \rangle, \text{ implies that } \langle n^2 \rangle \cdot Q \cap \langle \frac{a}{b} \rangle \neq \langle n^2 \rangle \cdot \langle \frac{a}{b} \rangle.$$

(5) It is clear every direct summand is 2-pure since every direct summand is pure submodule, hence is a 2-pure submodule, but the converse is not true, for example: the submodule of the module Z9 as Z-module. It is easily to check that $I^2Z_9 \, \cap \,$ $= I^2$ $\{\overline{0},\overline{3},\overline{6}\}$ $\{\overline{0},\overline{3},\overline{6}\}$

 $\{\overline{0},\overline{3},\overline{6}\}\$ for each I of Z. So, $\{\overline{0},\overline{3},\overline{6}\}\$ is 2-pure in Z₉ but not pure and hence not direct

summand. Since if we take I = 3Z, then IZ₉
$$\cap$$
 $\{\overline{0}, \overline{3}, \overline{6}\}$ = $\{\overline{0}, \overline{3}, \overline{6}\}$ and I· $\{\overline{0}, \overline{3}, \overline{6}\}$ = $\{\overline{0}\}$.

(6) Let N be a 2-pure submodule of M such that $N \cong K$ for some submodule K of M, then K may not be a 2-pure. For example: consider the module Z as Z-module. Let N = Z and K = 2Z. It is clear $Z \cong 2Z$ but 2Z is not 2-pure in Z.

The following propositions give some properties of 2-pure submodules.

Proposition (1.3):

Let M be an R-module and N be a 2-pure submodule of M. If A is a 2-pure submodule in N, then A is a 2-pure submodule in M.

Proof:

Let I be an ideal of R. Since N is a 2-pure submodule in M and A is a 2-pure submodule in N, then $I^2M \cap N = I^2N$ and $I^2N \cap A = I^2A$. But $A \subseteq N$, implies $I^2A = I^2N \cap A =$ $(I^2M \cap N) \cap A = I^2M \cap (N \cap A) = I^2M \cap A.$

Ibn Al-Haitham. J. for Pure & Appl. Sci.

Proposition (1.4):

Let M be an R-module and N is a 2-pure submodule of M. If A is a submodule of M containing N, then N is a 2-pure submodule in A.

Proof:

Let I be an ideal of R. Since N is a 2-pure submodule in M, hence $I^2M \cap N = I^2N$ and since $N \subset A \subset M$ implies $I^2A \cap N = (I^2A \cap I^2M) \cap N = I^2A \cap (I^2M \cap N) = I^2A \cap I^2N = I^2N$.

Proposition (1.5):

Let M be an R-module and N is a 2-pure submodule of M. If H is a submodule of N, then N is a 2-pure submodule in M. Η

Let I be an ideal of R. Since

$$I^{2}\left(\frac{M}{H}\right) \cap \frac{N}{H} = \frac{I^{2}M + H}{H} \cap \frac{N}{H}$$
$$= \frac{(I^{2}M + H) \cap N}{H}$$
$$= \frac{(I^{2}M \cap N) + (H \cap N)}{H} \qquad \text{by Modular law}$$
$$= \frac{I^{2}N + H}{H}$$
$$= I^{2}\left(\frac{N}{H}\right)$$

Recall that a ring R is called an arithmetical ring if every finitely generated ideal of R is a multiplication ideal, where an ideal I of R is called a multiplication ideal if every ideal $J \subset I$ there exists an ideal K of R such that J = IK, see [5].

The following proposition gives a characterization of 2-pure submodules of modules over some classes of rings. First let us state the following theorem, which can be found in [6].

Theorem (1.6):

Let I = $(a_1, a_2, ..., a_n)$ be a multiplication ideal in the ring R. Then for each positive integer k, $(a_1, a_2, ..., a_n)^k = (a_1^k, a_2^k, ..., a_n^k)$.

Proof: see [6].

Proposition (1.7):

Let M be a module over arithmetical ring R. The following statements are equivalent:

- (1) N is a 2-pure submodule of M.
- (2) For each $\sum_{i=1}^{n} r_{ij}^2 x_i \in N, r_{ij} \in R, x_i \in M, j = 1, 2, ..., m$, there exists $x'_i \in N, i = 1, 2, ..., n$ such that $\sum_{i=1}^{n} r_{ij}^2 x_i = \sum_{i=1}^{n} r_{ij}^2 x'_i$ for each j.

Proof:

(1) \Rightarrow (2) Assume that N is a 2-pure submodule of M, let $y_i = \sum_{i=1}^{n} r_{ij}^2 x_i \in N$ for any finite sets, $\{x_i\}_{i=1}^n$ in M, $\{y_j\}_{j=1}^m$ in N and $\{r_{ij}\}$ in R where i = 1, 2, ..., n, j = 1, 2, ..., m. Let I be an ideal of R

187 | Mathematics

Ibn Al-Haitham. J. for Pure & Appl. Sci.

generated by the finite set $\{r_{1j}, r_{2j}, \dots, r_{nj}\}$, then $r_{ij} \in I$ and $r_{ij}^2 \in I^2$ imply $r_{ij}^2 x_i \in I^2M$. Thus $y_j = \sum_{i=1}^n r_{ij}^2 x_i \in I^2 M$, therefore $y_j \in I^2 M \cap N$. But $I^2 M \cap N = I^2 N$, implies $y_i \in I^2 N$. Since R is arithmetical ring, hence by theorem (1.6), $I^2 = (r_{1j}^2, r_{2j}^2, ..., r_{nj}^2)$. Therefore $y_j = \sum_{i=1}^n r_{ij}^2 x'_i$ for some $x'_i \in N$.

(2) \Rightarrow (1) Let N be any submodule of M. Let $y_j \in I^2 M \cap N$, $y_j = \sum_{i=1}^n r_{ij}^2 x_i$ where $\{x_i\}_{i=1}^n \subseteq M$, $\{y_i\}_{i=1}^m \subseteq N, i = 1, 2, ..., n, j = 1, 2, ..., m$. Therefore by hypothesis, there exists $x'_i \in N$ such that $y_j = \sum_{i=1}^n r_{ij}^2 x_i = \sum_{i=1}^n r_{ij}^2 x'_i \in I^2 N$ implies $y_j \in I^2 N$. Then $I^2 M \cap N \subseteq I^2 N$. The reverse inclusion is clear. Thus $I^2M \cap N = I^2N$, and hence N is a 2-pure submodule of M.

1- 2-Regular Modules

In this section, we introduce and study the class of 2-regular modules.

Definition (2.1):

An R-module M is called **2-regular module** if every submodule of M is 2-pure.

Remarks and Examples (2.2):

(1) It is clear that the following implications hold:

Von Neumman regular \Rightarrow regular \Rightarrow 2-regular

But non of these implications is reversible. For example: the module Z4 as Z-module is 2-regular since every submodule of Z₄ is 2-pure submodule in Z₄, but Z₄ is not regular of Z_4 is not pure, see remark and example (1.2)(1). since the submodule $\{\overline{0},\overline{2}\}$

(2) The modules Z and Q as Z-modules are not 2-regular modules, see remarks and examples (1.2)(3), and (4).

The following theorem shows that the cyclic 2-pure submodules is enough to make the module be 2-regular.

Theorem (2.3):

Let M be an R-module. The following statements are equivalent:

- (1) M is 2-regular module.
- (2) Every cyclic submodule of M is 2-pure submodule of M.
- (3) Every finitely generated submodule of M is 2-pure submodule.
- (4) Every submodule of M is a 2-pure submodule of M.

Proof:

(1) \Rightarrow (2) it follows by definition (2.1).

(2) \Rightarrow (1) Assume that every cyclic submodule of M is 2-pure. Let N be a submmodule of M and I is an ideal of R. Let $x \in I^2M \cap N$ implies $x \in I^2M$ and $x \in N$. Therefore $x \in I^2 M \cap \langle x \rangle = I^2 \langle x \rangle \subset I^2 N.$

- (1) \Rightarrow (3) It follows by definition (2.1), and the proof of (2) \Rightarrow (1).
- $(3) \Rightarrow (2)$ It is clear.
- (1) \Rightarrow (4) It follows by definition (2.1).

188 | Mathematics

2- The Direct Sum of 2-Regular Modules-Basic Results

In this section, we study the direct sum and the epimorphic image of 2-regular module; various properties of 2-regular modules are discussed and illustrated.

We start with the following proposition.

The following proposition shows that the factor module of a 2-regular module is also 2-regular module.

Proposition (3.1):

Let M be an R-module. Then M is a 2-regular if and only if $\frac{M}{N}$ is 2-regular for every

submodule N of M.

Proof:

(⇒) Let N be a submodule of M and K is any submodule of M containing N. Since M is 2-regular then K is 2-pure in M. Thus $\frac{K}{N}$ is 2-pure in $\frac{M}{N}$ by proposition (1.5), therefore $\frac{M}{N}$

is 2-regular.

(\Leftarrow) It is easily by taking N = 0.

Now, we have several consequences of the proposition (3.1), the first result shows that the epimorphic image of 2-regular module is 2-regular.

Corollary (3.2):

Let M and M' be R-modules and $f: M \longrightarrow M'$ be an R-epimorphism. If M is 2-regular module then M' is 2-regular.

Proof: Since $f:M \longrightarrow M'$ is an R-epimorphism and M is 2-regular. Then $\frac{M}{\ker f}$ is 2-regular

module by proposition (3.1).But $\frac{M}{\ker f} \cong M'$ by the first isomorphism theorem. Therefore M' is

2-regular.

Corollary (3.3):

Let M_1 and M_2 be R-modules. If $M = M_1 \oplus M_2$ is 2-regular R-module, then M_1 and M_2 are 2-regular R-modules. The converse is true provided ann $(M_1) + ann (M_2) = R$. The following statements are equivalent:

Proof:

For the first assertion, assume that $M = M_1 \oplus M_2$ is 2-regular R-module. Let $\rho_i: M \longrightarrow M_i$ be the natural projective map of M onto M_i for each i = 1, 2. Since ρ_i is an R-epimorphism then the epimorphic image of M is 2-regular, implies that M_i is 2-regular. Conversely, assume M₁ and M₂ are 2-regular R-modules and M = M₁ \oplus M₂. Let be a submodule of M = M₁ \oplus M₂. Since ann(M₁) + ann(M₂) = R then by the same way of the

proof of [7,prop.(4.2),CH.1], $N = N_1 \oplus N_2$ where N_1 is a submodule in M_1 and N_2 is a submodule in M_2 . Let I be an ideal of R. To show $I^2M \cap N = I^2N$. Since $I^2M_1 \cap N_1 = I^2N_1$ and $I^2M_2 \cap N_2 = I^2N_2$ implies that $(I^2M_1 \cap N_1) \oplus (I^2M_2 \cap N_2) = I^2N_1 \oplus I^2N_2$. Then $(I^2M_1 \oplus I^2M_1) \cap (N_1 \oplus N_2) = I^2(N_1 \oplus N_2)$, therefore M is 2-regular module.

The proof of the following result is similar to that of corollary (3.3).

189 | Mathematics

Vol. 28 (2) 2015

Vol. 28 (2) 2015

Ibn Al-Haitham. J. for Pure & Appl. Sci.

Corollary (3.4):

Let M_1 and M_2 be R-modules. If N_1 is a 2-pure submodule in M_1 and N_2 is a 2-pure submodule in M_2 , then $N_1 \oplus N_2$ is a 2-pure submodule in $M_1 \oplus M_2$.

Corollary (3.5):

Let M_1 and M_2 be R-modules and $M_1\oplus\ M_2$ is 2-regular R-module, then M_1+M_2 is 2-regular.

Proof:

Define $f: M_1 \oplus M_2 \longrightarrow M_1+M_2$ by $f(m_1,m_2) = m_1 + m_2$. It is easily to check that f is an epimorphism. Since $M_1 \oplus M_2$ is 2-regular, thus the epimorphic image of $M_1 \oplus M_2$ is 2-regular by corollary (3.2). Therefore M_1+M_2 is 2-regular.

Corollary (3.6):

Let M_1 and M_2 be 2-regular R-modules such that ann (M_1) + ann (M_2) = R, then M_1 + M_2 is a 2-regular R-module.

Proof:

Since M_1 and M_2 are 2-regular R-modules then $M_1 \oplus M_2$ is 2-regular by corollary (3.3) implies that M_1+M_2 is a 2-regular by corollary (3.5).

The following result shows that every submodule of a 2-regular module inherits the 2-regular property.

Corollary (3.7):

Every submodule of a 2-regular module is a 2-regular module.

Proof:

Let N be a submodule of a 2-regular R-module M. To show that N is 2-regular R-module. Let K be a submodule in N and I is an ideal of R. Thus we have:

$$\begin{split} I^2 N \cap K &= (I^2 M \cap N) \cap K & \text{since N is 2-pure in M} \\ &= I^2 M \cap (N \cap K) \\ &= I^2 M \cap K \\ &= I^2 K & \text{since K is 2-pure in M} \\ \end{split}$$
Therefore K is 2-pure in N implies N is 2-regular.

We end this paper by the following remark.

Remark (3.8):

If all proper submodules of an R-module M are 2-regular then M may not be 2-regular, for example: the module Z_8 as Z-module is not 2-regular. Since $\langle \overline{4} \rangle$ is not 2-pure submodule of Z_8 because $2^2 \cdot Z_8 \cap \langle \overline{4} \rangle = \langle \overline{4} \rangle$ but $2^2 \cdot \langle \overline{4} \rangle = \langle \overline{0} \rangle$, while every proper submodule of Z_8 is 2-regular, since $\langle \overline{2} \rangle \cong Z_4$ and $\langle \overline{4} \rangle \cong Z_2$ are 2-regular modules.

مجلة ابن الهيثم للعلوم الصرفة والتطبيقية

References

- 1. Rotman, J.J., (1979), An Introduction to Homological Algebra, Academic Press, New York.
- 2. Fieldhous, D.J., (1969), Pure Theories, Math.Ann., 184, 1-18.
- 3. Anderson, F.W. and Fuller, K.R., (1992), Rings and Categories of Modules, Springer Verlag, New York.
- 4. Kasch, F., (1982), Modules and Rings, Academic Press, New York.
- 5. Larsen, M.D. and McCarthy, P.J., (1971), Multiplicative Theory of Ideals, Academic Press, New York.
- 6. Naoum, A.G. and Majid, M.Balboul, (1985), On Finitely Generated Multiplication Ideals in Commutative Rings, Beitrage Zur Algebra and Geometric, 19, 75-82.
- 7. Abbas, M.S., (1991), On Fully Stable Module, Ph.D. Thesis, University of Baghdad.

Vol. 28 (2) 2015

Ibn Al-Haitham. J. for Pure & Appl. Sci.

المقاسات المنتظمة من النمط -2 نهاد سالم عبد الكريم قسم الرياضيات/ كلية العلوم/ جامعة بغداد

غالب أحمد حمود قسم الرياضيات/كلية التربية للعلوم الصرفة (ابن الهيثم) / جامعة بغداد

أستلم البحث في: ٢٨ نيسان ٢٠١٥، قبل البحث في: ٧ حزيران ٢٠١٥

الخلاصة

في بحثنا هذا نقدم مفهوم المقاسات الجزئية النقية من النمط – 2 كتعميم لمفهوم المقاسات الجزئية النقية وباستعمال هذا المفهوم نعرف المقاسات المنتظمة من النمط – 2 إذ يقال ان المقاس M على الحلقة R بأنه منتظم من النمط – 2 اذا كان كل مقاس جزئي فيه يكون نقيا من النمط – 2. أعطينا العديد من النتائج حول هذا المفهوم.

الكلمات المفتاحية: المقاسات الجزئية النقية من النمط – 2، المقاسات النتظمة من النمط – 2، المقاسات الجزئية النقية، المقاسات المنتظمة