

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Convergence Comparison of two Schemes for Common Fixed Points with an Application

Salwa Salman Abed

Zahra Mahmood Mohamed Hasan

Department of Mathematics, College of Education for Pure Sciences Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

salwaalbundi@yahoo.com

zahramoh1990@gmail.com

Article history: Received 13 Novrmber 2018, Accepted 11 December 2018, Publish May 2019 Doi: 10.30526/32.2.2146

Abstract

Some cases of common fixed point theory for classes of generalized nonexpansive maps are studied. Also, we show that the Picard-Mann scheme can be employed to approximate the unique solution of a mixed-type Volterra-Fredholm functional nonlinear integral equation.

Keywords: Banach space, common fixed point, strong convergence, condition (C_{λ}) .

1. Introduction

Let B be a non-empty subset of a Banach space M. A map T on B is called quasinonexpansive [1]. if $F(T) \neq \emptyset$ and $||Ta - b|| \leq ||a - b||$ for all $a \in B$ and all $b \in F(T)$, where F(T) denoted the set of all fixed points of T.

In 2008, Suzuki [2]. introduced a condition on T which is stronger than quasi-nonexpansive and weaker than nonexpansive, called condition (C) and presented some results about fa fixed pointfor such maps.

In 2009, Dhompongsa et al [3]. extended Suzaicr's theorems to the general class of maps in Banach spaces. Garcial-Falset et al [4]. defined two generalization of condition (C), called condition (E_{λ}) and condition (C_{λ}) And studied their asymptotic behavior as well as the existence of fixed points. On the other hand, Bruck [5]. introduced a map called firmly nonexpansive map in Banach space. Of course, every firmly nonexpansive is nonexpansive.

To discuss about convergence theorem for two nonexpansive maps S and T on B to itself, Khan and Kim [6]. constricted the following iterative scheme to find a common fixed point of S and T:

 $\begin{aligned} x \in B \\ x_{n+1} &= (1 - \alpha_n)Ty_n + \alpha_n Sy_n \\ y_n &= (1 - \beta_n)x_n + \beta_n Tx_n \\ \end{aligned} , n \in N \\ \text{Where } (\alpha_n) \text{ and } (\beta_n) \in (0, 1). \end{aligned}$

This scheme is independent of both Ishikawa scheme and Yao-Chen scheme [6].

In this paper, we prove some convergence theorems for approximating common fixed points of firmly nonexpansive and maps satisfied condition (C_{λ}) .

2. Preliminaries

We will assume throughout this paper that $(M, \|.\|)$ is a uniformly convex Banach space and B is a non-empty closed convex subset of M. For maps $S, T: B \to B$ the set of all fixed points of S and T will be denoted by F(T, S).

A sequences (a_n) in B is called:

Picard-Mann hybrid [7].

 $\begin{aligned} a_{n+1} &= Sb_n \\ b_n &= (1 - \alpha_n)a_n + \alpha_n Ta_n , \forall n \in N \end{aligned} \tag{1}$ Where $(\alpha_n) \in (0,1).$ Noor iterative scheme [8]. if $z_{n+1} &= (1 - \alpha_n)z_n + \alpha_n Su_n \\ u_n &= (1 - \beta_n)z_n + \beta_n Tv_n \\ v_n &= (1 - \gamma_n)z_n + \gamma_n Tz_n , \forall n \in N \\ \end{aligned}$ Where $(\alpha_n), (\beta_n)$ and $(\gamma_n) \in [0,1].$

Definition (1) [9]. A map $T:: \rightarrow B$ said to be Lipschitz continuous or liLipschitzf $\exists K > 0$ such that $||Ta - Tb|| \le K ||a - b||, \forall a, b \in B$. If K = 1, then T is nonexpansive.

Definition (2) [10]. A map $T: B \to B$ is said to satisfying: **1**-Condition (*C*) if $\frac{1}{2} ||a - Ta|| \le ||a - b|| \xrightarrow{yields} ||Ta - Tb|| \le ||a - b||, \forall a, b \in B$. **2**-Condition (C_{λ}) if $\lambda ||a - Ta|| \le ||a - b|| \xrightarrow{yields} ||Ta - Tb|| \le ||a - b||, \forall a, b \in B and \lambda \in (0,1)$.

Definiton (3)[5]. A map $T: B \to M$ is said to be firmly nonexpansive map if $||Ta - Tb|| \le ||(1-t)(Ta - Tb) + t(a - b)||, \forall a, b \in B and t \ge 0.$

Definition (4)[11]. Two maps are called:

1-Condition (A) if there is a nondecreasing function $g: [0, \infty) \rightarrow [0, \infty)$ with $g(0) = 0, g(i) > 0, \forall i \in (0, \infty)$ such that : Either $||a - Ta|| \ge g(D(a, F))$ or $||a - Sa|| \ge g(D(a, F)), \forall a \in B$, where $D(a, F) = inf\{||a - a^*||; a^* \in F\}$ and $F = F(T) \cap F(S)$. 2-Condition (I) if $||a - Tb|| \le ||Sa - Tb||, \forall a, b \in B$.

Definition (5)[12]. A map $T: B \rightarrow B$ is called

1-Demiclosed at 0 if \forall sequence (a_n) in *B* such that (a_n) converges weakly to (a) and (Ta_n) converges strongly to 0, then Ta = 0.

2-Affine if B is convex and

$$T(Ka + (1 - K)b) = KT(a) + (1 - K)Tb, \forall a, b \in B and K \in [0, 1].$$

Definition (6)[7]. Let (f_n) and (g_n) be two sequences of real numbers that converging to

f and g $\lim_{n\to\infty}\frac{\|f_n-f\|}{\|g_n-g\|}=0.$ Then (f_n) converges faster than (g_n) .

Lemma (7)[13]. Let $(\mu_n)_{n=0}^{\infty} \& (\omega_n)_{n=0}^{\infty}$ be nonnegative real sequences satisfying the inequality: $\mu_{n+1} \leq (1 - \delta_n)\mu_n + \omega_n$ Where $\delta_n \in (0,1), \forall n \ge n_0, \sum_{n=1}^{\infty} \delta_n = \infty$ and $\frac{\omega_n}{\delta_n} \to 0$ as $n \to \infty$, then $\lim_{n \to \infty} \mu_n = 0$.

Lemma (8)[10]. Let M be a uniformly convex Banach space and $0 < l \le t_n \le k < 1, \forall n \in N$. Suppose that (a_n) and (b_n) are two sequences of M such that $\lim_{n\to\infty} ||a_n|| \le m$, $\lim_{n\to\infty} ||b_n|| \le m$ m and $\lim_{n\to\infty} ||t_n a_n + (1-t_n)b_n|| = m$ hold for some $m \ge 0$. Then $\lim_{n\to\infty} ||a_n - b_n|| = 0$.

3. Two Lemmas

Lemma (9): Let B be a non-empty closed convex subset of a normed space M, $T: \rightarrow B$ be a firmly noninexpensive and satisfying Lipschitz $S: B \to B$ be satisfying condition (C_{λ}) . Let 1- (a_n) be as in (1) where $(\alpha_n) \in (0,1), n \in N$. 2- (z_n) be as in (2) where $(\alpha_n), (\beta_n)$ and $(\gamma_n) \in [0,1]$. If $F(S,T) \neq \emptyset$, then $\lim_{n\to\infty} ||a_n - a^*||$ and $\lim_{n\to\infty} ||z_n - a^*||$ exist $\forall a^* \in F(S,T)$. **Proof:** Let $a^* \in F(T, S)$. By using condition(C_{λ}), we have $\lambda \|a^* - Sa^*\| = 0 \le \|b_n - a^*\| \xrightarrow{\text{yields}} \|Sb_n - a^*\| \le \|b_n - a^*\|.$ Then $1 - \|a_{n+1} - a^*\| = \|Sb_n - a^*\|$ $\leq ||b_n - a^*||$ $\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n \|Ta_n - a^*\|$ $\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n (1 - t) \|Ta_n - a^*\| + \alpha_n t \|a_n - a^*\|$ $\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n K(1 - t) \|a_n - a^*\| + \alpha_n t \|a_n - a^*\|$ $\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n [(1 - t)K + t] \|a_n - a^*\| \\ \leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n \|a_n - a^*\|$ $\leq \|a_n - a^*\|$ Then $\lim_{n\to\infty} ||a_n - a^*||$ exists $\forall a^* \in F(T, S)$. $2 \cdot \|v_n - a^*\| = \|(1 - \gamma_n)z_n + \gamma_n T z_n - a^*\|$ $\leq (1 - \gamma_n) \|z_n - a^*\| + \gamma_n \|Tz_n - a^*\|$ $\leq (1 - \gamma_n) \|z_n - a^*\| + \gamma_n (1 - t) \|Tz_n - a^*\| + \gamma_n t \|z_n - a^*\|$ $\leq (1 - \gamma_n) \|z_n - a^*\| + \gamma_n K(1 - t) \|z_n - a^*\| + \gamma_n t \|z_n - a^*\|$ $\leq (1 - \gamma_n) \|z_n - a^*\| + \gamma_n [(1 - t)K + t] \|z_n - a^*\|$ $\leq ||z_n - a^*||$

$$\begin{split} \|u_n - a^*\| &\leq (1 - \beta_n) \|z_n - a^*\| + \beta_n \|Tv_n - a^*\| \\ &\leq (1 - \beta_n) \|z_n - a^*\| + \beta_n [(1 - t)K + t] \|v_n - a^*\| \\ &\leq \|z_n - a^*\| \end{split}$$
 Now

 $||z_{n+1} - a^*|| \le (1 - \alpha_n) ||z_n - a^*|| + \alpha_n ||Su_n - a^*||$ $\leq (1 - \alpha_n) \|z_n - a^*\| + \alpha_n \|u_n - a^*\|$

 $\leq ||z_n - a^*||$ Then $\lim_{n\to\infty} ||z_n - a^*||$ exists $\forall a^* \in F(T, S)$.

Lemma (10): Let M be a uniformly convex Banach space and B be a nonempty closed convex subset of M. Let:

 $1-T: B \to B$ be firmly nonexpansive map and satisfying Lipschitz, $S: B \to B$ be affine and satisfying condition (C_{λ}) and (a_n) be as in (1).

2-T:B \rightarrow B be firmly nonexpansive map and satisfying Lipschitz, S:B \rightarrow B be satisfying condition (C_{λ}) and (z_n) be as in (2). Suppose that condition (I) holds. If $F(S,T) \neq \emptyset$, then $\lim_{n \to \infty} \|Ta_n - a^*\| = 0 = \lim_{n \to \infty} \|Sa_n - a^*\| \& \lim_{n \to \infty} \|Tz_n - a^*\| = 0 = \lim_{n \to \infty} \|Sz_n - a^*\|.$ **Proof:** Let $a^* \in F(T, S)$.

1- As proved by lemma (9), $\lim_{n\to\infty} ||a_n - a^*||$ exists. Suppose that $\lim_{n\to\infty} ||a_n - a^*|| = c$, $\forall c \geq 0.$

If c = 0, there is nothing to prove. Now, suppose c > 0, Since, $||a_{n+1} - a^*|| = ||Sb_n - a^*||$ $\leq \|b_n - a^*\|$ $||b_n - a^*|| \le (1 - \alpha_n) ||a_n - a^*|| + \alpha_n ||Ta_n - a^*|| \le ||a_n - a^*||$

Then $\lim_{n\to\infty} ||b_n - a^*|| = c$. Next consider $c = \|b_n - a^*\| \le (1 - \alpha_n) \|a_n - a^*\| + \alpha_n \|Ta_n - a^*\|$ By applying lemma (9), we obtain

$$\lim_{n\to\infty} \| Ta_n - a_n \| = 0.$$

Now

 $c = \lim_{n \to \infty} \|a_{n+1} - a^*\| = \lim_{n \to \infty} \|Sb_n - a^*\|$ $\|Sb_n - a^*\| = \|S[(1 - \alpha_n)a_n + \alpha_n Ta_n - a^*\|$ $\leq (1 - \alpha_n) \|Sa_n - a^*\| + \alpha_n \|STa_n - a^*\|$ By applying Lemma (8), we have

$$\lim \|Sa_n - STa_n\| = 0$$

Next, by using condition (I), we obtain

$$\begin{aligned} |Sa_n - a^*|| &\leq ||Sa_n - STa_n|| + ||STa_n - a^*|| \\ &\leq 2||Sa_n - STa_n|| \to 0 \text{ as } n \to \infty \end{aligned}$$

Thus $\lim_{n\to\infty} ||Sa_n - a_n|| = 0$ **2**- As proved by lemma (9), $\lim_{n\to\infty} ||z_n - a^*||$ exists. Suppose that $\lim_{n\to\infty} ||z_n - a^*|| = c, \forall c \ge 1$ 0. If c = 0, there is nothing to prove. Now, suppose c > 0, Since $||Tz_n - a^*|| \le ||z_n - a^*||$, and as proved by lemma (3.1) $||Su_n - a^*|| \le ||u_n - a^*||$ and $||Tv_n - a^*|| \le ||v_n - a^*||$. Then. $\lim_{n\to\infty} \|Tz_n-a^*\| \leq c, \lim_{n\to\infty} \|Su_n-a^*\| \leq c \text{ and } \lim_{n\to\infty} \|Tv_n-a^*\| \leq c.$

Moreover $\lim_{n \to \infty} \|z_{n+1} - a^*\| = c$ $c = ||z_{n+1} - a^*|| \le (1 - \alpha_n) ||z_n - a^*|| + \alpha_n ||Su_n - a^*||$

By applying lemma (9), we get $\lim_{n \to \infty} ||z_n - Su_n|| = 0$ Now $||u_n - z_n|| \le (1 - \beta_n) ||z_n - z_n|| + \beta_n ||Tv_n - z_n|| = 0$ Then, $\lim_{n \to \infty} ||u_n - z_n|| = 0$. Since, $\lim_{n \to \infty} ||u_n - a^*|| \le c$ and $||z_n - a^*|| \le ||z_n - Su_n|| + ||Su_n - a^*||$, which implies to $c \le \lim_{n \to \infty} inf ||u_n - a^*|| = c$, so $c = ||u_n - a^*|| \le (1 - \beta_n) ||z_n - a^*|| + \beta_n ||Tv_n - a^*||$ That gives $\lim_{n \to \infty} ||u_n - a^*|| = c$, so $c = ||u_n - a^*|| \le (1 - \beta_n) ||z_n - a^*|| + \beta_n ||Tv_n - a^*||$ By lemma (9), we obtain: $\lim_{n \to \infty} ||z_n - Tz_n|| = 0$. Next $||z_n - Sz_n|| \le ||z_n - Su_n|| + ||Su_n - z_n|| + ||z_n - Sz_n||$

 $\begin{aligned} \|z_n - Sz_n\| &\le \|z_n - Su_n\| + \|Su_n - z_n\| + \|z_n - Sz_n\| \\ \text{Letting } n \to \infty, \text{ we have:} \\ \|z_n - Sz_n\| &\le \|z_n - Sz_n\| \\ \text{That means } \lim_{n \to \infty} \|z_n - Sz_n\| = 0. \end{aligned}$

4. Convergence and Equivalence Results

Theorem (11): Let M be a uniformly convex Banach space. Let $B, S, T, (a_n)$ and (z_n) be as in lemma (10) and T, S satisfying condition (A). If $F(T,S) \neq \emptyset$, then (a_n) and (z_n) converge strongly to a common fixed point of T and S. **Proof:** Now, we will show that (a_n) is strong convergence. By lemma (10), $\lim_{n\to\infty} ||a_n - a^*|| exists$. Suppose that $\lim_{n\to\infty} ||a_n - a^*|| = c, c \ge 0$. From lemma (9), we have $||a_{n+1} - a^*|| \le ||a_n - a^*||$ That gives $inf_{a^*\in F} ||a_{n+1} - a^*|| \le inf_{a^*\in F} ||a_n - a^*||$ Which means, $d(a_{n+1}, F) \le d(a_n, F) \xrightarrow{yields} \lim_{n\to\infty} d(a_n, F)$ exists. By using condition (A), we have $\lim_{n\to\infty} g(d(a_n, F) \le \lim_{n\to\infty} ||a_n - Ta_n|| = 0$. Or $\lim_{n\to\infty} g(d(a_n, F) \le \lim_{n\to\infty} ||a_n - Sa_n|| = 0$. In both situations, we obtain

$$\lim_{n\to\infty}g(d(a_n,F)=0$$

Since g is a non-decreasing function and g(0) = 0. It follows that $\lim_{n\to\infty} d(a_n, F) = 0$. Now to show that (a_n) Is a Cauchy sequence in B. Let $\epsilon > 0$, $\lim_{n\to\infty} d(a_n, F) = 0$, \exists a positive integer n_0 , such that:

 $d(a_n, F) < \frac{\epsilon}{4}, \qquad \forall n \ge n_0$

In particular.

 $\inf\{\|a_n - a^*\|, a^* \in F\} < \frac{\epsilon}{2}$ Thus, it must exist $a^{**} \in F(T, S)$ such that $\|a_n - a^{**}\| < \frac{\epsilon}{2}$.

Now, $\forall n, w \ge n_0$, we obtain:

 $||a_{n+w} - a_n|| \le ||a_{n+w} - a^{**}|| + ||a_n - a^{**}|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

Hence, (a_n) Is Cauchy sequence in the B of M. Then (a_n) converges to a point $p \in B$.

 $\lim_{n\to\infty} d(a_n,F) = 0 \xrightarrow{\text{yields}} d(p,F) = 0.$

Since F is closed, hence $p \in F(T, S)$.

By utilizing the same procedure, we can prove (z_n) convergence strongly.

Theorem (12): Let $T: B \to B$ be a firmly nonexpansive and satisfying lipschitz, $S: B \to B$ satisfying condition (C_{λ}) , with $F(S, T) \neq \emptyset$ and,

1- (a_n) be as in (1) and $(\alpha_n) \in (0,1)$ satisfying $\sum_{k=0}^{\infty} \alpha_k = \infty$.

2- (z_n) be as in (2) and (α_n) , (β_n) and $(\gamma_n) \in [0,1]$ satisfying $\sum_{k=0}^{\infty} \alpha_k = \infty$.

Then $(a_n) \& (z_n)$ converge to a unique common fixed point $a^* \in F(S, T)$.

Proof:

$$\begin{aligned} 1 - \|b_n - a^*\| &\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n \|Ta_n - a^*\| \\ &\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n [(1 - t)K + t] \|a_n - a^*\| \\ \text{Suppose } \xi &= (1 - t)K + t \\ &\leq (1 - (1 - \xi)\alpha_n) \|a_n - a^*\| \\ &\|a_{n+1} - a^*\| = \|Sb_n - a^*\| \\ &\leq \|b_n - a^*\| \\ &\leq \|b_n - a^*\| \\ &\leq (1 - (1 - \xi)\alpha_n) \|a_n - a^*\| \end{aligned}$$

By induction

$$\begin{aligned} \|a_{n+1} - a^*\| &\leq \prod_{i=0}^n \leq (1 - (1 - \xi)\alpha_i) \|a_0 - a^*\| \\ &\leq \|a_0 - a^*\| e^{-(1 - \xi)\sum_{i=0}^{\infty} \alpha_i} \\ \text{Since } \sum_{i=0}^{\infty} \alpha_i &= \infty, e^{-(1 - \xi)\sum_{i=0}^{\infty} \alpha_i} \to 0 \text{ as } n \to \infty. \\ \text{Thus } \lim_{n \to \infty} \|a_n - a^*\| &= 0. \\ 2 - \|v_n - a^*\| &\leq (1 - \gamma_n) \|z_n - a^*\| + \gamma_n \|Tz_n - a^*\| \\ &\leq (1 - \gamma_n) \|z_n - a^*\| + \gamma_n [(1 - t)K + t] \|z_n - a^*\| \\ \text{Setting } \xi &= (1 - t)K + t \\ &\leq (1 - \gamma_n + \gamma_n \xi) \|z_n - a^*\| \end{aligned}$$

$$\begin{aligned} \|u_n - a^*\| &\leq (1 - \beta_n) \|z_n - a^*\| + \beta_n \|Tv_n - a^*\| \\ &\leq (1 - \beta_n) \|z_n - a^*\| + \beta_n \xi \|v_n - a^*\| \\ &\leq (1 - \beta_n) \|z_n - a^*\| + \beta_n \xi (1 - \gamma_n + \gamma_n \xi) \|z_n - a^*\| \\ &\leq (1 - \beta_n) \|z_n - a^*\| + \beta_n (1 - \gamma_n + \gamma_n \xi) \|z_n - a^*\| \end{aligned}$$

Now

$$\begin{aligned} \|z_{n+1} - a^*\| &\leq (1 - \alpha_n) \|z_n - a^*\| + \alpha_n \|Su_n - a^*\| \\ &\leq (1 - \alpha_n) \|z_n - a^*\| + \alpha_n \|u_n - a^*\| \\ &\leq (1 - \alpha_n) \|z_n - a^*\| + \alpha_n (1 - \beta_n) \|z_n - a^*\| \end{aligned}$$

$$\begin{aligned} &+\alpha_n\beta_n(1-\gamma_n+\gamma_n\xi)\|z_n-a^*\|\\ &\leq [1-\alpha_n\beta_n\gamma_n+\alpha_n\beta_n\gamma_n\xi]\|z_n-a^*\|\\ &\leq [1-\alpha_n\beta_n\gamma_n]\|z_n-a^*\|\end{aligned}$$

By induction

 $||z_{n+1} - a^*|| \le \prod_{i=0}^n [1 - \alpha_i \beta_i \gamma_i] ||z_0 - a^*||$ $\leq \|z_0 - a^*\|e^{-\sum_{i=0}^n \alpha_i \beta_i \gamma_i}$

Since $\sum_{i=0}^{\infty} \alpha_i \beta_i \gamma_i = \infty$, $e^{-\sum_{i=0}^n \alpha_i \beta_i \gamma_i} \to 0$ as $n \to \infty$. Thus, $\lim_{n\to\infty} ||z_n - a^*|| = 0.$

Theorem (13): Let $T: B \to B$ be a firmly nonexpansive mapping and satisfying lipachitz, $S: B \to B$ satisfying condition(C_{λ}) and $a^* \in B$ be a common fixed point of S and T. Let (a_n) and (z_n) be the Picard-Mann and Noor iterations defined in (1) and (2).

Suppose (α_n) , (β_n) and (γ_n) satisfied the following conditions: 1- (α_n) and $(\beta_n) \in (0,1), \forall n \ge 0$. $2-\sum \alpha_n = \infty.$ $3-\sum \alpha_n \beta_n < \infty.$ If $z_0 = a_0$ and R(T), R(S) are bounded, then the Picard-Mann iteration sequence (a_n) converges strongly to a^* ($a_n \rightarrow a^*$) and the Noor iteration sequence (z_n) converges strongly to

 $a^*(z_n \rightarrow a^*).$

Proof: Since the range of T and S is bounded, let:

$$M = \sup_{a \in B} \{ \|Ta\| \} + \|a_0\| < \infty$$

and
$$M = \sup_{a \in B} \{ \|Tz\| \} + \|z\| < \infty$$

Then

 $||a_n|| \le M, ||b_n|| \le M, ||z_n|| \le M, ||u_n|| \le M, ||v_n|| \le M$

Therefore $||Ta_n|| \le M, ||Tz_n|| \le M$ $||a_{n+1} - z_{n+1}|| = ||Sb_n - (1 - \alpha_n)z_n - \alpha_n Su_n||$ $\leq \|Sb_n - z_n\| + \alpha_n \|Su_n - z_n\|$ $\leq \|b_n - a^*\| + \alpha_n \|u_n - a^*\| + (1 + \alpha_n) \|z_n - a^*\|$

 $\begin{aligned} \|b_n - a^*\| &\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n (M + \|a^*\|) \\ \|v_n - a^*\| &\leq (1 - \gamma_n) \|z_n - a^*\| + \gamma_n \|Tz_n - a^*\| \end{aligned}$

Since T is Lipschitzain and firmly nonexpansive, setting $\xi = k - kt + t$ $\leq (1 - \gamma_n) \|z_n - a^*\| + \gamma_n \xi \|z_n - a^*\|$ $\leq ||z_n - a^*||$ $||u_n - a^*|| \le (1 - \beta_n) ||z_n - a^*|| + \beta_n ||Tv_n - a^*||$ $\leq (1 - \beta_n) \|z_n - a^*\| + \beta_n \xi \|v_n - a^*\|$ $\leq \|z_n - a^*\|$ $\leq M + \|a^*\|$ Then

$$||a_{n+1} - z_{n+1}|| \le ||b_n - a^*|| + \alpha_n ||u_n - a^*|| + (1 + \alpha_n) ||z_n - a^*||$$

$$\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n (M + \|a^*\|) + \\ \alpha_n (M + \|a^*\|) + (1 + \alpha_n) (M + \|a^*\|) \\ \leq (1 - \alpha_n) \|a_n - z_n\| + (1 - \alpha_n) (M + \|a^*\|) \\ + 2\alpha_n (M + \|a^*\|) + (1 + \alpha_n) (M + \|a^*\|) \\ \leq (1 - \alpha_n) \|a_n - z_n\| + 2 (1 + \alpha_n) (M + \|a^*\|)$$

Let

$$\begin{split} \mu_n &= \|a_n - z_n\|, \ \omega_n = (2 + 2\alpha_n)(M + \|a^*\|) \\ \text{and } \frac{\omega_n}{\delta_n} &\to 0 \ as \ n \to \infty. \text{ By applying lemma (7), we get:} \\ \lim_{n \to \infty} \|a_n - w_n\| &= 0 \\ \text{If } a_n \to a^* \in F(T, S), \text{ then} \\ \|z_n - a^*\| &\leq \|z_n - a_n\| + \|a_n - a^*\| \to 0 \ as \ n \to \infty. \\ \text{If } z_n \to a^* \in F(T, S), \text{ then} \\ \|a_n - a^*\| &\leq \|a_n - z_n\| + \|z_n - a^*\| \to 0 \ as \ n \to \infty. \end{split}$$

Theorem (14): Let $T: B \to B$ be a firmly nonexpansive mapping and satisfying Lipschitz with Kt < 1 and $S: B \to B$ satisfying condition (C_{λ}) . Suppose that the Picard-Mann and Noor iteration converge to the same common fixed point a^{*}. Then picard-Mann iteration converges faster than Noor iteration.

Proof: Let $a^* \in F(T, S)$. Then, for Picard-Mann iteration. $||b_n - a^*|| \le (1 - \alpha_n) ||a_n - a^*|| + \alpha_n ||Ta_n - a^*||$ Setting $\xi = (1 - t)K + t$, then we have $\leq (1 - (1 - \xi)\alpha_n) \|a_n - a^*\|$ Next $||a_{n+1} - a^*|| = ||Sb_n - a^*||$ $\leq \|b_n - a^*\|$ $\leq (1 - (1 - \xi)\alpha_n) \|a_n - a^*\|$ ≤ . $\sum_{k=1}^{n-1} \frac{1}{2} (1 - (1 - \xi)\alpha)^n \|a_1 - a^*\|$ Let $f_n = (1 - (1 - \xi)\alpha)^n \|a_1 - a^*\|$ Now, Noor iteration. $||v_n - a^*|| \le (1 - \gamma_n) ||z_n - a^*|| + \gamma_n ||Tz_n - a^*||$ $\leq (1 - \gamma_n) \|z_n - a^*\| + \gamma_n \xi \|z_n - a^*\|$ $= ||z_n - a^*||$ $||u_n - a^*|| \le (1 - \beta_n) ||z_n - a^*|| + \beta_n ||Tv_n - a^*||$ $\leq (1 - (1 - \xi)\beta_n) \|z_n - a^*\|$ Then $||z_{n+1} - a^*|| \le (1 - \alpha_n) ||z_n - a^*|| + \alpha_n ||Su_n - a^*||$ $\leq (1 - \alpha_n + \alpha_n (1 - (1 - \xi)\beta_n) \|z_n - a^*\|$ Assume that $\alpha_n \le (1 - \alpha_n + \alpha_n (1 - (1 - \xi)\beta_n))$ $\leq \alpha_n \|z_n - a^*\|$ \leq . \leq . $\leq \alpha^n \|z_1 - a^*\|$

Let $g_n = \alpha^n \|z_1 - a^*\|$

Now,

 $\frac{f_n}{g_n} = \frac{(1 - (1 - \xi)\alpha)^n ||a_1 - a^*||}{\alpha^n ||z_1 - a^*||} \le \left(1 - (1 - \xi)\right)^n \frac{||a_1 - a^*||}{||z_1 - a^*||} \to 0 \quad as \ n \to \infty.$ Then, (a_n) converges faster than (z_n) to a^* .

Example (15): Let $B = [0, \infty)$ and $T, S: B \to B$ be an mappings defined by $Ta = \frac{3-a}{2}$ and $Sa = \frac{1+4a}{5} \forall a \in B$. Choose $\alpha_n = \beta_n = \gamma_n = \frac{1}{2}$, $\forall n$ with initial value $a_1 = 20$. The Picard-Mann iteration converges faster than Noor iteration, as shown in **Table 1.** and **Figure 1**.

Table 1. Numerical results corresponding to $a_1 = 20$ for 30 steps.					
n	Picard-Mann	Noor	n	Picard-Mann	Noor
0	20	20	16	1.0000	1.0353
1	4.8000	13.8250	17	1.0000	1.0238
2	1.7600	9.6569	18	1.0000	1.0161
3	1.1520	6.8434	19	1.0000	1.0109
4	1.0304	4.9443	20	1.0000	1.0073
5	1.0061	3.6624	21	1.0000	1.0049
6	1.0012	2.7971	22	1.0000	1.0033
7	1.0002	2.2131	23	1.0000	1.0023
8	1.0000	1.8188	24	1.0000	1.0015
9	1.0000	1.5527	25	1.0000	1.0010
10	1.0000	1.3731	26	1.0000	1.0007
11	1.0000	1.2518	27	1.0000	1.0005
12	1.0000	1.1700	28	1.0000	1.0003
12	1.0000	1.1147	<u>20</u> 29	1.0000	1.0003
14	1.0000	1.0774	30	1.0000	1.0001
15	1.0000	1.523			

Table 1. Numerical results corresponding to $a_1 = 20$ for 30 steps.

Figure 1: Convergence behavior corresponding to $a_1 = 20$ for 30 steps.

5. Application

The following mixed type of Volterra-Fredholm functional nonlinear integral equation that is appeared in [14]. We use theorem (14) to solve it:

$$a(t) = G(t, a(t), \int_{x_1}^{t_1} \dots \int_{x_n}^{t_n} K(t, r, a(r)) dr, \int_{x_1}^{y_1} \dots \int_{x_n}^{y_n} H(t, r, a(r)) dr)$$
(3)

Where:

 $[x_1, y_1] \times ... \times [x_n, y_n]$ be an interval in R^n , K, H: $[x_1, y_1] \times ... \times [x_n, y_n] \times [x_1, y_1] \times ... \times [x_n, y_n] \times R \rightarrow R$ continuous functions and G: $[x_1, y_1] \times ... \times [x_n, y_n] \times R^3 \rightarrow R$. Assume that the following conditions are accomplished:

- i- $K, H \in C([x_1, y_1] \times ... \times [x_n, y_n] \times [x_1, y_1] \times ... \times [x_n, y_n] \times R).$
- ii- $G \in C([x_1, y_1] \times \dots \times [x_n, y_n] \times \mathbb{R}^3).$
- iii- $\exists \text{ positive constants } \varsigma, \varrho, \grave{e}$ such that $|G(t, a_1, b_1, c_1) G(t, a_2, b_2, c_2)| \le c|a_1 a_2| + \varrho|b_1 b_2| + \grave{e}|c_1 c_2| \forall t \in [x_1, y_1] \times ... \times [x_n, y_n], a_1, a_2, b_1, b_2, c_1, c_2 \in \mathbb{R}.$
- iv- $\exists \text{ positive constants } S_{K} \text{ and } S_{H} \text{ such that } |K(t,r,a) K(t,r,b)| \leq E_{K}|a b| \& |H(t,r,a) H(t,r,b)| \leq E_{H}|a b| \forall t \in [x_{1}, y_{1}] \times ... \times [x_{n}, y_{n}] \text{ and } a, b \in R.$ v- $c + (\varrho E_{K} + \grave{e} E_{H})(y_{1} - x_{1}) \dots (y_{n} - x_{n}) < 1, a^{*} \in C([x_{1}, y_{1}] \times ... \times [x_{n}, y_{n}]).$

Theorem (16)[14]. Suppose that conditions (i-v) are satisfied. Then, the equation (3) has a unique solution $a^* \in C([x_1, y_1] \times ... \times [x_n, y_n])$.

Theorem (17): We deem Banach space $M = C([x_1, y_1] \times ... \times [x_n, y_n], ||. ||)$, such that satisfying $\sum_{k=0}^{\infty} \alpha_k = \infty$. Let (a_n) be as shown in step (1) and a map $T: M \to M$ is defined by

$$Ta(t) = G(t, a(t), \int_{x_1}^{t_1} \dots \int_{x_n}^{t_n} K(t, r, a(r)) dr, \int_{x_1}^{y_1} \dots \int_{x_n}^{y_n} H(t, r, a(r)) dr)$$

Suppose that the conditions (i-v) are accomplished. Then, the equation (3) has a unique solution $a^*in C([x_1, y_1] \times ... \times [x_n, y_n])$ and the Picard-Mann iteration converges to a^* .

$$\begin{aligned} \mathbf{Proof:} \text{ To prove } a_n &\to a^* \text{ as } n \to \infty. \text{ Let} \\ \|a_{n+1} - a^*\| &= \|Sb_n - a^*\| \\ &= \|Sb_n(t) - Sa^*(t)\| \\ &= G(t, b_n(t), \int_{x_1}^{t_1} \dots \int_{x_n}^{t_n} \mathrm{K}(t, r, b_n(r)) dr, \int_{x_1}^{y_1} \dots \int_{x_n}^{y_n} \mathrm{H}(t, r, b_n(r)) d \\ &- G(t, a^*(t), \int_{x_1}^{t_1} \dots \int_{x_n}^{t_n} \mathrm{K}(t, r, a^*(r)) dr, \int_{x_1}^{y_1} \dots \int_{x_n}^{y_n} \mathrm{H}(t, r, a^*(r)) dr) \\ &\leq \varsigma |b_n(t) - a^*(t)| + \varrho \left| \int_{x_1}^{t_1} \dots \int_{x_n}^{t_n} \mathrm{K}(t, r, b_n(r)) dr, \int_{x_1}^{y_1} \dots \int_{x_n}^{y_n} \mathrm{K}(t, r, a^*(r)) dr \right| \\ &+ \grave{e} \left| \int_{x_1}^{t_1} \dots \int_{x_n}^{t_n} \mathrm{H}(t, r, b_n(r)) dr, \int_{x_1}^{y_1} \dots \int_{x_n}^{y_n} \mathrm{H}(t, r, a^*(r)) dr \right| \\ &\leq [\varsigma + (\varrho E_{\mathrm{K}} + \grave{e} E_{\mathrm{H}})(y_1 - x_1) \dots (y_n - x_n)] \|b_n - a^*\| \end{aligned}$$

Since,

 $\|b_n - a^*\| \le (1 - \alpha_n) \|a_n - a^*\| + \alpha_n \|Ta_n(t) - Ta^*(t)\|$

$$\leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n \left| G(t, b_n(t), \int_{x_1}^{t_1} \dots \int_{x_n}^{t_n} K(t, r, b_n(r)) dr, \int_{x_1}^{y_1} \dots \int_{x_n}^{y_n} H(t, r, b_n(r)) - G(t, a^*(t), \int_{x_1}^{t_1} \dots \int_{x_n}^{t_n} K(t, r, a^*(r)) dr, \int_{x_1}^{y_1} \dots \int_{x_n}^{y_n} H(t, r, a^*(r)) dr) \right| \leq (1 - \alpha_n) \|a_n - a^*\| + \alpha_n [\varsigma + (\varrho E_{\mathbb{K}} + E_{\mathbb{H}})(y_1 - x_1) \dots (y_n - x_n)] \|a_n - a^*\| \leq \{1 - (1 - \alpha_n [\varsigma + (\varrho E_{\mathbb{K}} + e_{\mathbb{H}})(y_1 - x_1) \dots (y_n - x_n)]\} \|a_n - a^*\| \leq \|a_0 - a^*\| \prod_{k=0}^{n} \{1 - (1 - \alpha_n [\varsigma + (\varrho E_{\mathbb{K}} + e_{\mathbb{H}})(y_1 - x_1) \dots (y_n - x_n)]\}$$

By condition (v), $1 - \alpha_n [c + (\varrho E_K + \grave{e} E_H)(y_1 - x_1) \dots (y_n - x_n)] < 1$ Now, under using theorem (12), we obtain that equation (3) has a unique solution $a^* \in C([x_1, y_1] \times \dots \times [x_n, y_n])$ and Picard-Mann iteration converges to a^* .

In the same scope you can see the results in [15]. and [16]. where Hasan and Abed established weak convergence theorems by using appropriate conditions for approximating common fixed points and equivalence between the convergence of the Picard-Mann iteration scheme and Liu el.at iteration scheme in Banach spaces.

6.Conclusion

In the setting of 2-normed spaces [16]. we define firmly nonexpansive and generalized nonexpansive maps. Then, we study the convergence of Picard-Mann iteration and Noor iteration.

References

- 1. Diaz, J.B.; Metcalf, F.T. On the structure of the set of subsequential limit points of successive approximation. *Bull. Am. Math. Sco.* **1967**, *73*, 516-519.
- 2. Suzuki, T. Fixed point theorems and convergence theorems for some generalizednonexpansive mappings. J. Math. Anal. Appl. 2008, 340, 1088–1095.
- 3. Dhompongsa, S.; Inthakon, W.; Kaewkhao, A.; Edelstein, S. Method and Fixed point theorems for some generalized nonexpansive mappings. *J.Math. Anal. Appl.***2009**, *350*,12-17.
- 4. Garcial-Falset, J.; Llorens-Fuster, E.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mappings. *J. Math. Anal. Appl.* **2011**, *375*, 185-195.
- 5. Bruck, RE. Nonexpansive projections on subsets of Banach spaces. *Pac. J. Math.* **1973**, *47*, 341-355.
- 6. Khan, S.H.; Kim, J.K. Common fixed points of two nonexpansive mappings by a modified faster iteration scheme. *Bull. Korean. Math. Soc.* **2010**, *47*, *5*, 973-985.
- 7. Khan, S.H. A Picard-Mann hybrid iteration process. Fixed Point Theory Appl. 2013, 2013, 69
- 8. Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217-229.
- 9. Rajshree, D.; Balwant, T.S. A hybrid iteration for asymptotically strictly pesudocontractive mappings. *Journal of Inequalities and Applications*. **2014**, *2014*, *374*, 1-11, doi: 10.1186/1029-242X-2014-374.
- 10. Anupam, S.; Mohammad, I. Approximating fixed points of generalize nonexpansive mappings Via faster iteration schemes. *Fixed point theory*. **2014**, *4*, *4*, 605-623.

- 11. Khan, S.H.; Abbas, M.; Khan, A.R. Common Fixed Points of two Nonexpansive Mappings by a new One-step iteration Process. *Iranian Journal of Science & Technology, Transuction A*. **2009**, *1*, *33*, *A3*.
- 12. Deli, W.; Yisheng, S.; Xinwen, M. Common Fixed Points for Non-commuting Generalized (f,g)-Nonexpansive Maps. *Applied Mathematical Sciences*. **2008**, *2*, *52*, 2597-2602.
- 13. Weng, X. Fixed point iteration for local strictly pseudo-contractive mapping. Proc. Amer. Math. Soc. **1991**, *113*, *3*.
- 14. Craciun, C.; Serban, M.A. A nonlinear integral equation via Picard operators. *Fixed point theory*. **2011**, *12*, *1*, 57-70.
- 15. Abed, S.S.; Hasan, Z.M., Convergence theorems of a finite-step iteration algorithm under two finite families of total asymptotically quasi-nonexpansive maps *.IEEE Explore Digital Library* .International Conference on Advanced Science and Engineering (ICOASE). 2018, doi:10.1109/ICOASE.2018.8548873.
- 16. Abed, S.S.; Abed Ali, R.S. Fixed Point for Asymptotically Non-Expansive Mappings in 2-Banach Space. *Ibn Al-Haitham Jour. for Pure & Appl. Sci.***2014**,*27*,*1*,343-350.