Ibn Al Haitham Journal for Pure and Applied Science
Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Convergence Comparison of two Schemes for Common Fixed Points with an Application

Salwa Salman Abed
Department of Mathematics, College of Education for Pure Sciences Ibn Al-Haitham, University of Baghdad, Baghdad,Iraq.
salwaalbundi@yahoo.com
zahramoh1990@gmail.com

Article history: Received 13 Novrmber 2018, Accepted 11 December 2018, Publish May 2019
Doi: 10.30526/32.2.2146

Abstract

Some cases of common fixed point theory for classes of generalized nonexpansive maps are studied. Also, we show that the Picard-Mann scheme can be employed to approximate the unique solution of a mixed-type Volterra-Fredholm functional nonlinear integral equation.

Keywords: Banach space, common fixed point, strong convergence, condition $\left(C_{\lambda}\right)$.

1. Introduction

Let B be a non-empty subset of a Banach space M . A map T on B is called quasinonexpansive [1]. if $F(T) \neq \varnothing$ and $\|T a-b\| \leq\|a-b\|$ for all $a \in B$ and all $b \in F(T)$, where $F(T)$ denoted the set of all fixed points of T .
In 2008, Suzuki [2]. introduced a condition on T which is stronger than quasi-nonexpansive and weaker than nonexpansive, called condition (C) and presented some results about fa fixed pointfor such maps.

In 2009, Dhompongsa et al [3]. extended Suzaicr's theorems to the general class of maps in Banach spaces. Garcial-Falset et al [4]. defined two generalization of condition (C), called condition $\left(E_{\lambda}\right)$ and condition $\left(C_{\lambda}\right)$ And studied their asymptotic behavior as well as the existence of fixed points. On the other hand, Bruck [5]. introduced a map called firmly nonexpansive map in Banach space. Of course, every firmly nonexpansive is nonexpansive.

To discuss about convergence theorem for two nonexpansive maps S and T on B to itself, Khan and Kim [6]. constricted the following iterative scheme to find a common fixed point of S and T :
$x \in B$
$x_{n+1}=\left(1-\alpha_{n}\right) T y_{n}+\alpha_{n} S y_{n}$
$y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n} \quad, n \in N$
Where $\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right) \in(0,1)$.
This scheme is independent of both Ishikawa scheme and Yao-Chen scheme [6].

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

In this paper, we prove some convergence theorems for approximating common fixed points of firmly nonexpansive and maps satisfied condition $\left(C_{\lambda}\right)$.

2. Preliminaries

We will assume throughout this paper that $(M,\|\cdot\|)$ is a uniformly convex Banach space and B is a non-empty closed convex subset of M. For maps $S, T: B \rightarrow B$ the set of all fixed points of S and T will be denoted by $F(T, S)$.
A sequences (a_{n}) in B is called:
Picard-Mann hybrid [7].
$a_{n+1}=S b_{n}$
$b_{n}=\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} T a_{n} \quad, \forall n \in N$
Where $\left(\alpha_{n}\right) \in(0,1)$.
Noor iterative scheme [8]. if
$z_{n+1}=\left(1-\alpha_{n}\right) z_{n}+\alpha_{n} S u_{n}$
$u_{n}=\left(1-\beta_{n}\right) z_{n}+\beta_{n} T v_{n}$
$v_{n}=\left(1-\gamma_{n}\right) z_{n}+\gamma_{n} T z_{n} \quad, \forall n \in N$
Where $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ and $\left(\gamma_{n}\right) \in[0,1]$.
Definition (1) [9]. A map $T:: \rightarrow B$ said to be Lipschitz continuous or liLipschitzf $\exists K>0$ such that $\|T a-T b\| \leq K\|a-b\|, \forall a, b \in B$.
If $K=1$, then T is nonexpansive.

Definition (2) [10]. A map $T: B \rightarrow B$ is said to satisfying:
1-Condition (C) if $\frac{1}{2}\|a-T a\| \leq\|a-b\| \xrightarrow{\text { yields }}\|T a-T b\| \leq\|a-b\|, \forall a, b \in B$.
2-Condition $\left(C_{\lambda}\right)$ if $\lambda\|a-T a\| \leq\|a-b\| \xrightarrow{\text { yields }}\|T a-T b\| \leq\|a-b\|, \forall a, b \in B$ and $\lambda \in$ $(0,1)$.

Defintion (3)[5]. A map $T: B \rightarrow M$ is said to be firmly nonexpansive map if $\|T a-T b\| \leq$ $\|(1-t)(T a-T b)+t(a-b)\|, \forall a, b \in B$ and $t \geq 0$.

Definition (4)[11]. Two maps are called:
1-Condition (A) if there is a nondecreasing function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(0)=0, g(i)>$ $0, \forall i \in(0, \infty)$ such that :
Either $\|a-T a\| \geq g(D(a, F))$ or $\|a-S a\| \geq g(D(a, F)), \forall a \in B$,
where $D(a, F)=\inf \left\{\left\|a-a^{*}\right\| ; a^{*} \in F\right\}$ and $F=F(T) \cap F(S)$.
2-Condition (I) if $\|a-T b\| \leq\|S a-T b\|, \forall a, b \in B$.

Definition (5)[12]. A map $T: B \rightarrow B$ is called
1-Demiclosed at 0 if \forall sequence $\left(a_{n}\right)$ in B such that $\left(a_{n}\right)$ converges weakly to (a) and ($T a_{n}$) converges strongly to 0 , then $T a=0$.
2-Affine if B is convex and

$$
T(K a+(1-K) b)=K T(a)+(1-K) T b, \forall a, b \in B \text { and } K \in[0,1] .
$$

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

Definition (6)[7]. Let $\left(f_{n}\right)$ and $\left(g_{n}\right)$ be two sequences of real numbers that converging to f and g
$\lim _{n \rightarrow \infty} \frac{\left\|f_{n}-f\right\|}{\left\|g_{n}-g\right\|}=0$.
Then $\left(f_{n}\right)$ converges faster than $\left(g_{n}\right)$.
Lemma (7)[13]. Let $\left(\mu_{n}\right)^{\infty}{ }_{\mathrm{n}=0} \&\left(\omega_{n}\right)^{\infty}{ }_{\mathrm{n}=0}$ be nonnegative real sequences satisfying the inequality: $\mu_{n+1} \leq\left(1-\delta_{n}\right) \mu_{n}+\omega_{n}$
Where $\delta_{n} \in(0,1), \forall n \geq n_{0}, \sum_{n=1}^{\infty} \delta_{n}=\infty$ and $\frac{\omega_{n}}{\delta_{n}} \rightarrow 0$ as $n \rightarrow \infty$, then $\lim _{n \rightarrow \infty} \mu_{n}=0$.
Lemma (8)[10]. Let M be a uniformly convex Banach space and $0<l \leq t_{n} \leq k<1, \forall n \in N$.
Suppose that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are two sequences of M such that $\lim _{n \rightarrow \infty}\left\|a_{n}\right\| \leq m, \lim _{n \rightarrow \infty}\left\|b_{n}\right\| \leq$ m and $\lim _{n \rightarrow \infty}\left\|t_{n} a_{n}+\left(1-t_{n}\right) b_{n}\right\|=m$ hold for some $m \geq 0$. Then $\lim _{n \rightarrow \infty}\left\|a_{n}-b_{n}\right\|=0$.

3. Two Lemmas

Lemma (9): Let B be a non-empty closed convex subset of a normed space $\mathrm{M}, T:: \rightarrow B$ be a firmly noninexpensivep and satisfying Lipschitz $S: B \rightarrow B$ be satisfying condition $\left(C_{\lambda}\right)$.Let $1-\left(a_{n}\right)$ be as in (1) where $\left(\alpha_{n}\right) \in(0,1), n \in N$.
$2-\left(z_{n}\right)$ be as in (2) where $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ and $\left(\gamma_{n}\right) \in[0,1]$.
If $F(S, T) \neq \emptyset$, then $\lim _{n \rightarrow \infty}\left\|a_{n}-a^{*}\right\|$ and $\lim _{n \rightarrow \infty}\left\|z_{n}-a^{*}\right\|$ exist $\forall a^{*} \in F(S, T)$.
Proof: Let $a^{*} \in F(T, S)$.
By using condition $\left(C_{\lambda}\right)$, we have

$$
\lambda\left\|a^{*}-S a^{*}\right\|=0 \leq\left\|b_{n}-a^{*}\right\| \xrightarrow{\text { yields }}\left\|S b_{n}-a^{*}\right\| \leq\left\|b_{n}-a^{*}\right\| .
$$

Then

$$
\begin{aligned}
1-\left\|a_{n+1}-a^{*}\right\| & =\left\|S b_{n}-a^{*}\right\| \\
& \leq\left\|b_{n}-a^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}\left\|T a_{n}-a^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}(1-t)\left\|T a_{n}-a^{*}\right\|+\alpha_{n} t\left\|a_{n}-a^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n} K(1-t)\left\|a_{n}-a^{*}\right\|+\alpha_{n} t\left\|a_{n}-a^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}[(1-t) K+t]\left\|a_{n}-a^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}\left\|a_{n}-a^{*}\right\| \\
& \leq\left\|a_{n}-a^{*}\right\|
\end{aligned}
$$

Then $\lim _{n \rightarrow \infty}\left\|a_{n}-a^{*}\right\|$ exists $\forall a^{*} \in F(T, S)$.
$2-\left\|v_{n}-a^{*}\right\|=\left\|\left(1-\gamma_{n}\right) z_{n}+\gamma_{n} T z_{n}-a^{*}\right\|$

$$
\begin{aligned}
& \leq\left(1-\gamma_{n}\right)\left\|z_{n}-a^{*}\right\|+\gamma_{n}\left\|T z_{n}-a^{*}\right\| \\
& \leq\left(1-\gamma_{n}\right)\left\|z_{n}-a^{*}\right\|+\gamma_{n}(1-t)\left\|T z_{n}-a^{*}\right\|+\gamma_{n} t\left\|z_{n}-a^{*}\right\| \\
& \leq\left(1-\gamma_{n}\right)\left\|z_{n}-a^{*}\right\|+\gamma_{n} K(1-t)\left\|z_{n}-a^{*}\right\|+\gamma_{n} t\left\|z_{n}-a^{*}\right\| \\
& \leq\left(1-\gamma_{n}\right)\left\|z_{n}-a^{*}\right\|+\gamma_{n}[(1-t) K+t]\left\|z_{n}-a^{*}\right\| \\
& \leq\left\|z_{n}-a^{*}\right\|
\end{aligned}
$$

$$
\left\|u_{n}-a^{*}\right\| \leq\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\beta_{n}\left\|T v_{n}-a^{*}\right\|
$$

$$
\begin{aligned}
& \leq\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\beta_{n}[(1-t) K+t]\left\|v_{n}-a^{*}\right\| \\
& \leq\left\|z_{n}-a^{*}\right\|
\end{aligned}
$$

$$
\leq\left\|z_{n}-a^{*}\right\|
$$

Now
$\left\|z_{n+1}-a^{*}\right\| \leq\left(1-\alpha_{n}\right)\left\|z_{n}-a^{*}\right\|+\alpha_{n}\left\|S u_{n}-a^{*}\right\|$

$$
\leq\left(1-\alpha_{n}\right)\left\|z_{n}-a^{*}\right\|+\alpha_{n}\left\|u_{n}-a^{*}\right\|
$$

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

$\leq\left\|z_{n}-a^{*}\right\|$
Then $\lim _{n \rightarrow \infty}\left\|z_{n}-a^{*}\right\|$ exists $\forall a^{*} \in F(T, S)$.
Lemma (10): Let M be a uniformly convex Banach space and B be a nonempty closed convex subset of M. Let:
1-T: $B \rightarrow B$ be firmly nonexpansive map and satisfying Lipschitz, $S: B \rightarrow B$ be affine and satisfying condition $\left(C_{\lambda}\right)$ and $\left(a_{n}\right)$ be as in (1).
2-T:B $\rightarrow \mathrm{B}$ be firmly nonexpansive map and satisfying Lipschitz, $\mathrm{S}: \mathrm{B} \rightarrow \mathrm{B}$ be satisfying condition $\left(C_{\lambda}\right)$ and $\left(z_{n}\right)$ be as in (2). Suppose that condition (I) holds. If $F(S, T) \neq \emptyset$, then $\lim _{n \rightarrow \infty}\left\|T a_{n}-a^{*}\right\|=0=\lim _{n \rightarrow \infty}\left\|S a_{n}-a^{*}\right\| \& \lim _{n \rightarrow \infty}\left\|T z_{n}-a^{*}\right\|=0=\lim _{n \rightarrow \infty}\left\|S z_{n}-a^{*}\right\|$.
Proof: Let $a^{*} \in F(T, S)$.
1- As proved by lemma (9), $\lim _{n \rightarrow \infty}\left\|a_{n}-a^{*}\right\|$ exists. Suppose that $\lim _{n \rightarrow \infty}\left\|a_{n}-a^{*}\right\|=c$, $\forall c \geq 0$.
If $c=0$, there is nothing to prove.
Now, suppose $c>0$,
Since, $\left\|a_{n+1}-a^{*}\right\|=\left\|S b_{n}-a^{*}\right\|$

$$
\leq\left\|b_{n}-a^{*}\right\|
$$

$\left\|b_{n}-a^{*}\right\| \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}\left\|T a_{n}-a^{*}\right\|$

$$
\leq\left\|a_{n}-a^{*}\right\|
$$

Then $\lim _{n \rightarrow \infty}\left\|b_{n}-a^{*}\right\|=c$.
Next consider
$c=\left\|b_{n}-a^{*}\right\| \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}\left\|T a_{n}-a^{*}\right\|$
By applying lemma (9),we obtain

$$
\lim _{n \rightarrow \infty}\left\|T a_{\mathrm{n}}-a_{\mathrm{n}}\right\|=0
$$

Now

$$
\begin{aligned}
& c=\lim _{n \rightarrow \infty}\left\|a_{n+1}-a^{*}\right\|=\lim _{n \rightarrow \infty}\left\|S b_{n}-a^{*}\right\| \\
& \left\|S b_{n}-a^{*}\right\|=\| S\left[\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} T a_{n}-a^{*} \|\right. \\
& \quad \leq\left(1-\alpha_{n}\right)\left\|S a_{n}-a^{*}\right\|+\alpha_{n}\left\|S T a_{n}-a^{*}\right\|
\end{aligned}
$$

By applying Lemma (8), we have

$$
\lim _{n \rightarrow \infty}\left\|S a_{n}-S T a_{n}\right\|=0
$$

Next, by using condition (I), we obtain

$$
\begin{gathered}
\left\|S a_{n}-a^{*}\right\| \leq\left\|S a_{n}-S T a_{n}\right\|+\left\|S T a_{n}-a^{*}\right\| \\
\leq 2\left\|S a_{n}-S T a_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
\end{gathered}
$$

Thus $\lim _{n \rightarrow \infty}\left\|S a_{n}-a_{n}\right\|=0$
2- As proved by lemma (9), $\lim _{n \rightarrow \infty}\left\|z_{n}-a^{*}\right\|$ exists. Suppose that $\lim _{n \rightarrow \infty}\left\|z_{n}-a^{*}\right\|=c, \forall c \geq$ 0.

If $c=0$, there is nothing to prove.
Now, suppose $c>0$,
Since $\left\|T z_{n}-a^{*}\right\| \leq\left\|z_{n}-a^{*}\right\|$, and as proved by lemma (3.1)

$$
\left\|S u_{n}-a^{*}\right\| \leq\left\|u_{n}-a^{*}\right\| \text { and }\left\|T v_{n}-a^{*}\right\| \leq\left\|v_{n}-a^{*}\right\|
$$

Then,

$$
\lim _{n \rightarrow \infty}\left\|T z_{n}-a^{*}\right\| \leq c, \lim _{n \rightarrow \infty}\left\|S u_{n}-a^{*}\right\| \leq c \text { and } \lim _{n \rightarrow \infty}\left\|T v_{n}-a^{*}\right\| \leq c .
$$

Moreover
$\lim _{n \rightarrow \infty}\left\|z_{n+1}-a^{*}\right\|=c$
$c=\left\|z_{n+1}-a^{*}\right\| \leq\left(1-\alpha_{n}\right)\left\|z_{n}-a^{*}\right\|+\alpha_{n}\left\|S u_{n}-a^{*}\right\|$

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

By applying lemma (9), we get
$\lim _{n \rightarrow \infty}\left\|z_{n}-S u_{n}\right\|=0$
Now
$\left\|u_{n}-z_{n}\right\| \leq\left(1-\beta_{n}\right)\left\|z_{n}-z_{n}\right\|+\beta_{n}\left\|T v_{n}-z_{n}\right\|=0$
Then, $\lim _{n \rightarrow \infty}\left\|u_{n}-z_{n}\right\|=0$.
Since, $\lim _{n \rightarrow \infty}\left\|u_{n}-a^{*}\right\| \leq c$ and $\left\|z_{n}-a^{*}\right\| \leq\left\|z_{n}-S u_{n}\right\|+\left\|S u_{n}-a^{*}\right\|$,
which implies to
$c \leq \lim _{n \rightarrow \infty} \inf \left\|u_{n}-a^{*}\right\|$
That gives $\lim _{n \rightarrow \infty}\left\|u_{n}-a^{*}\right\|=c$, so
$c=\left\|u_{n}-a^{*}\right\| \leq\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\beta_{n}\left\|T v_{n}-a^{*}\right\|$ $\leq\left(1-\alpha_{n} \beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\alpha_{n} \beta_{n}\left\|T z_{n}-a^{*}\right\|$

By lemma (9), we obtain:

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-T z_{n}\right\|=0
$$

Next
$\left\|z_{n}-S z_{n}\right\| \leq\left\|z_{n}-S u_{n}\right\|+\left\|S u_{n}-z_{n}\right\|+\left\|z_{n}-S z_{n}\right\|$
Letting $\mathrm{n} \rightarrow \infty$, we have:
$\left\|z_{n}-S z_{n}\right\| \leq\left\|z_{n}-S z_{n}\right\|$
That means $\lim _{n \rightarrow \infty}\left\|z_{n}-S z_{n}\right\|=0$.

4. Convergence and Equivalence Results

Theorem (11): Let M be a uniformly convex Banach space. Let $B, S, T,\left(a_{\mathrm{n}}\right)$ and $\left(z_{\mathrm{n}}\right)$ be as in lemma (10) and T, S satisfying condition (A). If $F(T, S) \neq \emptyset$, then $\left(a_{\mathrm{n}}\right)$ and $\left(z_{\mathrm{n}}\right)$ converge strongly to a common fixed point of T and S .
Proof: Now, we will show that $\left(a_{n}\right)$ is strong convergence. By lemma (10), $\lim _{n \rightarrow \infty} \| a_{n}-$ $a^{*} \|$ exists. Suppose that $\lim _{n \rightarrow \infty}\left\|a_{n}-a^{*}\right\|=c, c \geq 0$.
From lemma (9), we have $\left\|a_{n+1}-a^{*}\right\| \leq\left\|a_{n}-a^{*}\right\|$
That gives
$\inf _{a^{*} \in F}\left\|a_{n+1}-a^{*}\right\| \leq \inf f_{a^{*} \in F}\left\|a_{n}-a^{*}\right\|$
Which means, $d\left(a_{n+1}, F\right) \leq d\left(a_{n}, F\right) \xrightarrow{\text { yields }} \lim _{n \rightarrow \infty} d\left(a_{n}, F\right)$ exists.
By using condition (A), we have
$\lim _{n \rightarrow \infty} g\left(d\left(a_{n}, F\right) \leq \lim _{n \rightarrow \infty}\left\|a_{n}-T a_{n}\right\|=0\right.$.
Or
$\lim _{n \rightarrow \infty} g\left(d\left(a_{n}, F\right) \leq \lim _{n \rightarrow \infty}\left\|a_{n}-S a_{n}\right\|=0\right.$.
In both situations, we obtain

$$
\lim _{n \rightarrow \infty} g\left(d\left(a_{n}, F\right)=0\right.
$$

Since g is a non-decreasing function and $g(0)=0$. It follows that $\lim _{n \rightarrow \infty} d\left(a_{n}, F\right)=0$.
Now to show that $\left(a_{n}\right)$ Is a Cauchy sequence in B. Let $\epsilon>0, \lim _{n \rightarrow \infty} d\left(a_{n}, F\right)=0, \exists$ a positive integer n_{0}, such that:

$$
d\left(a_{n}, F\right)<\frac{\epsilon}{4}, \quad \forall n \geq n_{0}
$$

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

In particular.
$\inf \left\{\left\|a_{n}-a^{*}\right\|, a^{*} \in F\right\}<\frac{\epsilon}{2}$
Thus, it must exist $a^{* *} \in F(T, S)$ such that $\left\|a_{n}-a^{* *}\right\|<\frac{\epsilon}{2}$.
Now, $\forall n, w \geq n_{0}$, we obtain:
$\left\|a_{n+w}-a_{n}\right\| \leq\left\|a_{n+w}-a^{* *}\right\|+\left\|a_{n}-a^{* *}\right\|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$
Hence, $\left(a_{n}\right)$ Is Cauchy sequence in the B of M . Then $\left(a_{n}\right)$ converges to a point $p \in B$.
$\operatorname{Lim}_{n \rightarrow \infty} d\left(a_{n}, F\right)=0 \xrightarrow{\text { yields }} d(p, F)=0$.
Since F is closed, hence $p \in F(T, S)$.
By utilizing the same procedure, we can prove $\left(\mathrm{z}_{\mathrm{n}}\right)$ convergence strongly.
Theorem (12): Let $T: B \rightarrow B$ be a firmly nonexpansive and satisfying lipschitz, $S: B \rightarrow B$ satisfying condition $\left(C_{\lambda}\right)$, with $F(S, T) \neq \emptyset$ and,
1- $\left(a_{n}\right)$ be as in (1) and $\left(\alpha_{n}\right) \in(0,1)$ satisfying $\sum_{k=0}^{\infty} \alpha_{k}=\infty$.
$2-\left(z_{n}\right)$ be as in (2) and $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ and $\left(\gamma_{n}\right) \in[0,1]$ satisfying $\sum_{k=0}^{\infty} \alpha_{k}=\infty$.
Then $\left(a_{n}\right) \&\left(z_{n}\right)$ converge to a unique common fixed point $a^{*} \in F(S, T)$.

Proof:

$$
\begin{aligned}
1-\left\|b_{n}-a^{*}\right\| & \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}\left\|T a_{n}-a^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}[(1-t) K+t]\left\|a_{n}-a^{*}\right\|
\end{aligned}
$$

Suppose $\xi=(1-t) K+t$

$$
\begin{aligned}
& \leq\left(1-(1-\xi) \alpha_{n}\right)\left\|a_{n}-a^{*}\right\| \\
\left\|a_{n+1}-a^{*}\right\| & =\left\|S b_{n}-a^{*}\right\| \\
& \leq\left\|b_{n}-a^{*}\right\| \\
& \leq\left(1-(1-\xi) \alpha_{n}\right)\left\|a_{n}-a^{*}\right\|
\end{aligned}
$$

By induction

$$
\begin{aligned}
\left\|a_{n+1}-a^{*}\right\| & \leq \prod_{i=0}^{n} \leq\left(1-(1-\xi) \alpha_{i}\right)\left\|a_{0}-a^{*}\right\| \\
& \leq\left\|a_{0}-a^{*}\right\| e^{-(1-\xi) \sum_{i=0}^{\infty} \alpha_{i}}
\end{aligned}
$$

Since $\sum_{i=0}^{\infty} \alpha_{i}=\infty, e^{-(1-\xi) \sum_{i=0}^{\infty} \alpha_{i}} \rightarrow 0$ as $n \rightarrow \infty$.
Thus $\lim _{n \rightarrow \infty}\left\|a_{n}-a^{*}\right\|=0$.

$$
\begin{aligned}
2-\left\|v_{n}-a^{*}\right\| & \leq\left(1-\gamma_{n}\right)\left\|z_{n}-a^{*}\right\|+\gamma_{n}\left\|T z_{n}-a^{*}\right\| \\
& \leq\left(1-\gamma_{n}\right)\left\|z_{n}-a^{*}\right\|+\gamma_{n}[(1-t) K+t]\left\|z_{n}-a^{*}\right\|
\end{aligned}
$$

Setting $\xi=(1-t) K+t$

$$
\leq\left(1-\gamma_{n}+\gamma_{n} \xi\right)\left\|z_{n}-a^{*}\right\|
$$

$$
\begin{aligned}
\left\|u_{n}-a^{*}\right\| & \leq\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\beta_{n}\left\|T v_{n}-a^{*}\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\beta_{n} \xi\left\|v_{n}-a^{*}\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\beta_{n} \xi\left(1-\gamma_{n}+\gamma_{n} \xi\right)\left\|z_{n}-a^{*}\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\beta_{n}\left(1-\gamma_{n}+\gamma_{n} \xi\right)\left\|z_{n}-a^{*}\right\|
\end{aligned}
$$

Now

$$
\begin{aligned}
\left\|z_{n+1}-a^{*}\right\| & \leq\left(1-\alpha_{n}\right)\left\|z_{n}-a^{*}\right\|+\alpha_{n}\left\|S u_{n}-a^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|z_{n}-a^{*}\right\|+\alpha_{n}\left\|u_{n}-a^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|z_{n}-a^{*}\right\|+\alpha_{n}\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|
\end{aligned}
$$

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

$$
\begin{aligned}
& +\alpha_{n} \beta_{n}\left(1-\gamma_{n}+\gamma_{n} \xi\right)\left\|z_{n}-a^{*}\right\| \\
\leq & {\left[1-\alpha_{n} \beta_{n} \gamma_{n}+\alpha_{n} \beta_{n} \gamma_{n} \xi\right]\left\|z_{n}-a^{*}\right\| } \\
\leq & {\left[1-\alpha_{n} \beta_{n} \gamma_{n}\right]\left\|z_{n}-a^{*}\right\| }
\end{aligned}
$$

By induction

$$
\begin{aligned}
\left\|z_{n+1}-a^{*}\right\| & \leq \prod_{i=0}^{n}\left[1-\alpha_{i} \beta_{i} \gamma_{i}\right]\left\|z_{0}-a^{*}\right\| \\
& \leq\left\|z_{0}-a^{*}\right\| e^{-\sum_{i=0}^{n} \alpha_{i} \beta_{i} \gamma_{i}}
\end{aligned}
$$

Since $\sum_{i=0}^{\infty} \alpha_{i} \beta_{i} \gamma_{i}=\infty, e^{-\sum_{i=0}^{n} \alpha_{i} \beta_{i} \gamma_{i}} \rightarrow 0$ as $n \rightarrow \infty$.
Thus, $\lim _{n \rightarrow \infty}\left\|z_{n}-a^{*}\right\|=0$.
Theorem (13): Let $T: B \rightarrow B$ be a firmly nonexpansive mapping and satisfying lipachitz, $S: B \rightarrow B$ satisfying condition $\left(C_{\lambda}\right)$ and $a^{*} \in B$ be a common fixed point of S and T. Let (a_{n}) and $\left(z_{n}\right)$ be the Picard-Mann and Noor iterations defined in (1) and (2).

Suppose $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ and $\left(\gamma_{n}\right)$ satisfied the following conditions:
$1-\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right) \in(0,1), \forall n \geq 0$.
$2-\sum \alpha_{n}=\infty$.
$3-\sum \alpha_{n} \beta_{n}<\infty$.
If $z_{0}=a_{0}$ and $R(T), R(S)$ are bounded, then the Picard-Mann iteration sequence (a_{n})
converges strongly to $a^{*}\left(a_{n} \rightarrow a^{*}\right)$ and the Noor iteration sequence (z_{n}) converges strongly to $a^{*}\left(z_{n} \rightarrow a^{*}\right)$.
Proof: Since the range of T and S is bounded, let:
$M=\sup _{a \in B}\{\|T a\|\}+\left\|a_{0}\right\|<\infty$
and

$$
M=\sup _{a \in B}\{\|T z\|\}+\|z\|<\infty
$$

Then
$\left\|a_{n}\right\| \leq M,\left\|b_{n}\right\| \leq M,\left\|z_{n}\right\| \leq M,\left\|u_{n}\right\| \leq M,\left\|v_{n}\right\| \leq M$

Therefore

$$
\begin{aligned}
& \left\|T a_{n}\right\| \leq M,\left\|T z_{n}\right\| \leq M \\
& \left\|a_{n+1}-z_{n+1}\right\|=\left\|S b_{n}-\left(1-\alpha_{n}\right) z_{n}-\alpha_{n} S u_{n}\right\| \\
& \quad \leq\left\|S b_{n}-z_{n}\right\|+\alpha_{n}\left\|S u_{n}-z_{n}\right\| \\
& \leq\left\|b_{n}-a^{*}\right\|+\alpha_{n}\left\|u_{n}-a^{*}\right\|+\left(1+\alpha_{n}\right)\left\|z_{n}-a^{*}\right\| \\
& \left\|b_{n}-a^{*}\right\| \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}\left(M+\left\|a^{*}\right\|\right) \\
& \left\|v_{n}-a^{*}\right\| \leq\left(1-\gamma_{n}\right)\left\|z_{n}-a^{*}\right\|+\gamma_{n}\left\|T z_{n}-a^{*}\right\|
\end{aligned}
$$

Since T is Lipschitzain and firmly nonexpansive, setting $\xi=k-k t+t$

$$
\begin{aligned}
& \leq\left(1-\gamma_{n}\right)\left\|z_{n}-a^{*}\right\|+\gamma_{n} \xi\left\|z_{n}-a^{*}\right\| \\
& \leq\left\|z_{n}-a^{*}\right\| \\
&\left\|u_{n}-a^{*}\right\| \leq\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\beta_{n}\left\|T v_{n}-a^{*}\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\beta_{n} \xi\left\|v_{n}-a^{*}\right\| \\
& \leq\left\|z_{n}-a^{*}\right\| \\
& \leq M+\left\|a^{*}\right\|
\end{aligned}
$$

Then
$\left\|a_{n+1}-z_{n+1}\right\| \leq\left\|b_{n}-a^{*}\right\|+\alpha_{n}\left\|u_{n}-a^{*}\right\|+\left(1+\alpha_{n}\right)\left\|z_{n}-a^{*}\right\|$

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

$$
\begin{aligned}
\leq & \left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}\left(M+\left\|a^{*}\right\|\right)+ \\
& \alpha_{n}\left(M+\left\|a^{*}\right\|\right)+\left(1+\alpha_{n}\right)\left(M+\left\|a^{*}\right\|\right) \\
\leq & \left(1-\alpha_{n}\right)\left\|a_{n}-z_{n}\right\|+\left(1-\alpha_{n}\right)\left(M+\left\|a^{*}\right\|\right) \\
& +2 \alpha_{n}\left(M+\left\|a^{*}\right\|\right)+\left(1+\alpha_{n}\right)\left(M+\left\|a^{*}\right\|\right) \\
\leq & \left(1-\alpha_{n}\right)\left\|a_{n}-z_{n}\right\|+2\left(1+\alpha_{n}\right)\left(M+\left\|a^{*}\right\|\right)
\end{aligned}
$$

Let
$\mu_{n}=\left\|a_{n}-z_{n}\right\|, \omega_{n}=\left(2+2 \alpha_{n}\right)\left(M+\left\|a^{*}\right\|\right)$
and $\frac{\omega_{n}}{\delta_{n}} \rightarrow 0$ as $n \rightarrow \infty$. By applying lemma (7), we get:
$\lim _{n \rightarrow \infty}\left\|a_{n}-w_{n}\right\|=0$
If $a_{n} \rightarrow a^{*} \in F(T, S)$, then
$\left\|z_{n}-a^{*}\right\| \leq\left\|z_{n}-a_{n}\right\|+\left\|a_{n}-a^{*}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
If $z_{n} \rightarrow a^{*} \in F(T, S)$, then
$\left\|a_{n}-a^{*}\right\| \leq\left\|a_{n}-z_{n}\right\|+\left\|z_{n}-a^{*}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Theorem (14): Let $T: B \rightarrow B$ be a firmly nonexpansive mapping and satisfying Lipschitz with $K t<1$ and $S: B \rightarrow B$ satisfying condition $\left(C_{\lambda}\right)$. Suppose that the Picard-Mann and Noor iteration converge to the same common fixed point a*. Then picard-Mann iteration converges faster than Noor iteration.
Proof: Let $a^{*} \in F(T, S)$. Then, for Picard-Mann iteration.
$\left\|b_{n}-a^{*}\right\| \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}\left\|T a_{n}-a^{*}\right\|$
Setting $\xi=(1-t) K+t$, then we have

$$
\leq\left(1-(1-\xi) \alpha_{n}\right)\left\|a_{n}-a^{*}\right\|
$$

Next

$$
\begin{aligned}
\left\|a_{n+1}-a^{*}\right\| & =\left\|S b_{n}-a^{*}\right\| \\
& \leq\left\|b_{n}-a^{*}\right\| \\
& \leq\left(1-(1-\xi) \alpha_{n}\right)\left\|a_{n}-a^{*}\right\| \\
& \leq . \\
& \leq \\
& \leq(1-(1-\xi) \alpha)^{n}\left\|a_{1}-a^{*}\right\|
\end{aligned}
$$

Let $f_{n}=(1-(1-\xi) \alpha)^{n}\left\|a_{1}-a^{*}\right\|$
Now, Noor iteration.

$$
\begin{aligned}
\left\|v_{n}-a^{*}\right\| & \leq\left(1-\gamma_{n}\right)\left\|z_{n}-a^{*}\right\|+\gamma_{n}\left\|T z_{n}-a^{*}\right\| \\
& \leq\left(1-\gamma_{n}\right)\left\|z_{n}-a^{*}\right\|+\gamma_{n} \xi\left\|z_{n}-a^{*}\right\| \\
& =\left\|z_{n}-a^{*}\right\| \\
\left\|u_{n}-a^{*}\right\| & \leq\left(1-\beta_{n}\right)\left\|z_{n}-a^{*}\right\|+\beta_{n}\left\|T v_{n}-a^{*}\right\|
\end{aligned}
$$

$$
\leq
$$

Then

$$
\leq\left(1-(1-\xi) \beta_{n}\right)\left\|z_{n}-a^{*}\right\|
$$

$$
\begin{aligned}
\left\|z_{n+1}-a^{*}\right\| & \leq\left(1-\alpha_{n}\right)\left\|z_{n}-a^{*}\right\|+\alpha_{n}\left\|S u_{n}-a^{*}\right\| \\
& \leq\left(1-\alpha_{n}+\alpha_{n}\left(1-(1-\xi) \beta_{n}\right)\left\|z_{n}-a^{*}\right\|\right.
\end{aligned}
$$

Assume that

$$
\begin{aligned}
\alpha_{n} & \leq\left(1-\alpha_{n}+\alpha_{n}\left(1-(1-\xi) \beta_{n}\right)\right. \\
& \leq \alpha_{n}\left\|z_{n}-a^{*}\right\| \\
& \leq \\
& \leq \\
& \leq \alpha^{n}\left\|z_{1}-a^{*}\right\|
\end{aligned}
$$

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

Let $g_{n}=\alpha^{n}\left\|z_{1}-a^{*}\right\|$
Now,
$\frac{f_{n}}{g_{n}}=\frac{(1-(1-\xi) \alpha)^{n}\left\|a_{1}-a^{*}\right\|}{\alpha^{n}\left\|z_{1}-a^{*}\right\|} \leq(1-(1-\xi))^{n} \frac{\left\|a_{1}-a^{*}\right\|}{\left\|z_{1}-a^{*}\right\|} \rightarrow 0 \quad$ as $n \rightarrow \infty$.
Then, $\left(a_{n}\right)$ converges faster than $\left(z_{n}\right)$ to a^{*}.
Example (15): Let $B=[0, \infty)$ and $T, S: B \rightarrow B$ be an mappings defined by $T a=\frac{3-a}{2}$ and $S a=\frac{1+4 a}{5} \forall a \in B$. Choose $\alpha_{\mathrm{n}}=\beta_{\mathrm{n}}=\gamma_{\mathrm{n}}=\frac{1}{2}, \forall n$ with initial value $a_{1}=20$. The Picard-Mann iteration converges faster than Noor iteration, as shown in Table 1. and Figure 1.

Table 1. Numerical results corresponding to $a_{1}=20$ for 30 steps.

\mathbf{n}	Picard-Mann	Noor	\mathbf{n}	Picard-Mann	Noor
$\mathbf{0}$	20	20	$\mathbf{1 6}$	1.0000	1.0353
$\mathbf{1}$	4.8000	13.8250	$\mathbf{1 7}$	1.0000	1.0238
$\mathbf{2}$	1.7600	9.6569	$\mathbf{1 8}$	1.0000	1.0161
$\mathbf{3}$	1.1520	6.8434	$\mathbf{1 9}$	1.0000	1.0109
$\mathbf{4}$	1.0304	4.9443	$\mathbf{2 0}$	1.0000	1.0073
$\mathbf{5}$	1.0061	3.6624	$\mathbf{2 1}$	1.0000	1.0049
$\mathbf{6}$	1.0012	2.7971	$\mathbf{2 2}$	1.0000	1.0033
$\mathbf{7}$	1.0002	2.2131	$\mathbf{2 3}$	1.0000	1.0023
$\mathbf{8}$	1.0000	1.8188	$\mathbf{2 4}$	1.0000	1.0015
$\mathbf{9}$	1.0000	1.5527	$\mathbf{2 5}$	1.0000	1.0010
$\mathbf{1 0}$	1.0000	1.3731	$\mathbf{2 6}$	1.0000	1.0007
$\mathbf{1 1}$	1.0000	1.2518	$\mathbf{2 7}$	1.0000	1.0005
$\mathbf{1 2}$	1.0000	1.1700	$\mathbf{2 8}$	1.0000	1.0003
$\mathbf{1 3}$	1.0000	1.1147	$\mathbf{2 9}$	1.0000	1.0002
$\mathbf{1 4}$	1.0000	1.0774	$\mathbf{3 0}$	1.0000	1.0001
$\mathbf{1 5}$	1.0000	1.523			

Figure 1: Convergence behavior corresponding to $a_{1}=20$ for 30 steps.

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

5. Application

The following mixed type of Volterra-Fredholm functional nonlinear integral equation that is appeared in [14]. We use theorem (14) to solve it:
$a(t)=G\left(t, a(t), \int_{x_{1}}^{t_{1}} \ldots \int_{x_{n}}^{t_{n}} K(t, r, a(r)) d r, \int_{x_{1}}^{y_{1}} \ldots \int_{x_{n}}^{y_{n}} \mathrm{H}(t, r, a(r)) d r\right)$
Where:
$\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right]$ be an interval in $R^{n}, Қ, \mathrm{H}:\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right] \times\left[x_{1}, y_{1}\right] \times \ldots \times$ $\left[x_{n}, y_{n}\right] \times R \rightarrow R$ continuous functions and G: $\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right] \times R^{3} \rightarrow R$.
Assume that the following conditions are accomplished:

$$
\begin{array}{ll}
\text { i- } & \text { Қ, } Н \in C\left(\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right] \times\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right] \times R\right) . \\
\text { ii- } & G \in C\left(\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right] \times R^{3}\right) . \\
\text { iii- } & \exists \text { positive constants }, \varrho, \text {, è such that }\left|G\left(t, a_{1}, b_{1}, c_{1}\right)-G\left(t, a_{2}, b_{2}, c_{2}\right)\right| \leq \\
& ¢\left|a_{1}-a_{2}\right|+\varrho\left|b_{1}-b_{2}\right|+\text { è }\left|c_{1}-c_{2}\right| \forall t \in \\
& {\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right], a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \in R .} \\
\text { iv- } & \exists \text { positive constants } S_{\text {K }} \text { and } S_{\mathrm{H}} \text { such that }|Қ(t, r, a)-Қ(t, r, b)| \leq E_{\text {K }} \mid a- \\
& b|\&| Н(t, r, a)-\mathrm{H}(t, r, b)\left|\leq E_{\mathrm{H}}\right| a-b \mid \forall t \in\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right] \text { and } a, b \in R . \\
\text { v- } & \mathrm{C}+\left(\varrho E_{\text {K }}+\text { è } E_{\mathrm{H}}\right)\left(y_{1}-x_{1}\right) \ldots\left(y_{n}-x_{n}\right)<1, a^{*} \in C\left(\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right]\right) .
\end{array}
$$

Theorem (16)[14]. Suppose that conditions (i-v) are satisfied. Then, the equation (3) has a unique solution $a^{*} \in C\left(\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right]\right)$.

Theorem (17): We deem Banach space $M=C\left(\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right],\|\|.\right)$, such that satisfying $\sum_{k=0}^{\infty} \alpha_{k}=\infty$. Let $\left(a_{n}\right)$ be as shown in step (1) and a map $T: M \rightarrow M$ is defined by
$\left.T a(t)=G\left(t, a(t), \int_{x_{1}}^{t_{1}} \ldots \int_{x_{n}}^{t_{n}} \zeta(t, r, a(r)) d r, \int_{x_{1}}^{y_{1}} \ldots \int_{x_{n}}^{y_{n}} \Gamma(t, r, a(r)) d r\right)\right)$
Suppose that the conditions (i-v) are accomplished. Then, the equation (3) has a unique solution a^{*} in $C\left(\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right]\right)$ and the Picard-Mann iteration converges to a^{*}.
Proof: To prove $a_{n} \rightarrow a^{*}$ as $n \rightarrow \infty$. Let
$\left\|a_{n+1}-a^{*}\right\|=\left\|S b_{n}-a^{*}\right\|$

$$
=\left|S b_{n}(t)-S a^{*}(t)\right|
$$

$=G\left(t, b_{n}(t), \int_{x_{1}}^{t_{1}} \ldots \int_{x_{n}}^{t_{n}} \zeta\left(t, r, b_{n}(r)\right) d r, \int_{x_{1}}^{y_{1}} \ldots \int_{x_{n}}^{y_{n}} \mathrm{H}\left(t, r, b_{n}(r)\right) d\right.$
$-G\left(t, a^{*}(t), \int_{x_{1}}^{t_{1}} \ldots \int_{x_{n}}^{t_{n}} Қ\left(t, r, a^{*}(r)\right) d r, \int_{x_{1}}^{y_{1}} \ldots \int_{x_{n}}^{y_{n}} \mathrm{H}\left(t, r, a^{*}(r)\right) d r\right)$
$\leq c\left|b_{n}(t)-a^{*}(t)\right|+\varrho\left|\int_{x_{1}}^{t_{1}} \ldots \int_{x_{n}}^{t_{n}} Қ\left(t, r, b_{n}(r)\right) d r, \int_{x_{1}}^{y_{1}} \ldots \int_{x_{n}}^{y_{n}} Қ\left(t, r, a^{*}(r)\right) d\right|$
$\left.+\grave{\mathrm{e}} \mid \int_{x_{1}}^{t_{1}} \ldots \int_{x_{n}}^{t_{n}} \mathrm{H}\left(t, r, b_{n}(r)\right) d r, \int_{x_{1}}^{y_{1}} \ldots \int_{x_{n}}^{y_{n}} \mathrm{H}\left(t, r, a^{*}(r)\right) d r\right) \mid$
$\leq\left[\mathrm{c}+\left(\varrho E_{\mathrm{K}}+\right.\right.$ è $\left.\left.E_{\mathrm{H}}\right)\left(y_{1}-x_{1}\right) \ldots\left(y_{n}-x_{n}\right)\right]\left\|b_{n}-a^{*}\right\|$
Since,
$\left\|b_{n}-a^{*}\right\| \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}\left\|T a_{n}(t)-T a^{*}(t)\right\|$

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

$$
\begin{aligned}
& \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\| \\
& +\alpha_{n} \mid G\left(t . b_{n}(t) . \int_{x_{1}}^{t_{1}} \ldots \int_{x_{n}}^{t_{n}} K\left(t . r . b_{n}(r)\right) d r . \int_{x_{1}}^{y_{1}} \ldots \int_{x_{n}}^{y_{n}} \mathrm{H}\left(\text { t.r. } b_{n}(r)\right)\right. \\
& -G\left(t . a^{*}(t) . \int_{x_{1}}^{t_{1}} \ldots \int_{x_{n}}^{t_{n}} Қ\left(t . r \cdot a^{*}(r)\right) d r . \int_{x_{1}}^{y_{1}} \ldots \int_{x_{n}}^{y_{n}} \mathrm{H}\left(t . r \cdot a^{*}(r)\right) d r\right) \mid \\
& \leq\left(1-\alpha_{n}\right)\left\|a_{n}-a^{*}\right\|+\alpha_{n}\left[\mathrm{c}+\left(\varrho E_{\text {K }}+E_{\text {Н }}\right)\left(y_{1}-x_{1}\right) \ldots\left(y_{n}-x_{n}\right)\right] \\
& \left\|a_{n}-a^{*}\right\| \\
& \leq\left\{1-\left(1-\alpha_{n}\left[\mathrm{c}+\left(\varrho E_{\text {K }}+\mathrm{è} E_{\text {Н }}\right)\left(y_{1}-x_{1}\right) \ldots\left(y_{n}-x_{n}\right)\right]\right\}\left\|a_{n}-a^{*}\right\|\right. \\
& \leq\left\|a_{0}-a^{*}\right\| \prod_{k=0}^{n}\left\{1-\left(1-\alpha_{n}\left[\mathrm{c}+\left(\varrho E_{\mathrm{K}}+\mathrm{è} E_{\mathrm{F}}\right)\left(y_{1}-x_{1}\right) \ldots\left(y_{n}-x_{n}\right)\right]\right\}\right.
\end{aligned}
$$

By condition (v), $1-\alpha_{n}\left[\mathrm{c}+\left(\varrho E_{\mathrm{K}}+\right.\right.$ è $\left.\left.E_{\mathrm{K}}\right)\left(y_{1}-x_{1}\right) \ldots\left(y_{n}-x_{n}\right)\right]<1$
Now, under using theorem (12), we obtain that equation (3) has a unique solution $a^{*} \in$ $C\left(\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{n}, y_{n}\right]\right)$ and Picard-Mann iteration converges to a^{*}.

In the same scope you can see the results in [15]. and [16]. where Hasan and Abed established weak convergence theorems by using appropriate conditions for approximating common fixed points and equivalence between the convergence of the Picard-Mann iteration scheme and Liu el.at iteration scheme in Banach spaces.

6.Conclusion

In the setting of 2-normed spaces [16]. we define firmly nonexpansive and generalized nonexpansive maps. Then, we study the convergence of Picard-Mann iteration and Noor iteration.

References

1. Diaz, J.B.; Metcalf, F.T. On the structure of the set of subsequential limit points of successive approximation. Bull. Am. Math. Sco. 1967, 73, 516-519.
2. Suzuki, T. Fixed point theorems and convergence theorems for some generalizednonexpansive mappings. J. Math. Anal. Appl. 2008, 340, 1088-1095.
3. Dhompongsa, S.; Inthakon, W.; Kaewkhao, A.; Edelstein, S. Method and Fixed point theorems for some generalized nonexpansive mappings. J.Math. Anal. Appl.2009, 350,12-17.
4. Garcial-Falset, J.; Llorens-Fuster, E.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 2011, 375, 185-195.
5. Bruck, RE. Nonexpansive projections on subsets of Banach spaces. Pac. J. Math. 1973, 47, 341-355.
6. Khan, S.H.; Kim, J.K. Common fixed points of two nonexpansive mappings by a modified faster iteration scheme. Bull. Korean. Math. Soc. 2010, 47, 5, 973-985.
7. Khan, S.H. A Picard-Mann hybrid iteration process. Fixed Point Theory Appl. 2013, 2013, 69
8. Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217-229.
9. Rajshree, D.; Balwant, T.S. A hybrid iteration for asymptotically strictly pesudocontractive mappings. Journal of Inequalities and Applications. 2014, 2014, 374, 1-11, doi: 10.1186/1029-242X-2014-374.
10. Anupam, S.; Mohammad, I. Approximating fixed points of generalize nonexpansive mappings Via faster iteration schemes. Fixed point theory. 2014, 4, 4, 605-623.

Lbn Al-Haitham Jour.for Pure \& Appl .Sci. 32 (2) 2019

11. Khan, S.H.; Abbas, M.; Khan, A.R. Common Fixed Points of two Nonexpansive Mappings by a new One-step iteration Process. Iranian Journal of Science \& Technology, Transuction A. 2009, $1,33, A 3$.
12. Deli, W.; Yisheng, S.; Xinwen, M. Common Fixed Points for Non-commuting Generalized (f,g)-Nonexpansive Maps. Applied Mathematical Sciences. 2008, 2, 52, 2597-2602.
13. Weng, X. Fixed point iteration for local strictly pseudo-contractive mapping. Proc. Amer. Math. Soc. 1991, 113, 3.
14. Craciun, C.; Serban, M.A. A nonlinear integral equation via Picard operators. Fixed point theory. 2011, 12, 1, 57-70.
15. Abed, S.S.; Hasan, Z.M., Convergence theorems of a finite-step iteration algorithm under two finite families of total asymptotically quasi-nonexpansive maps .IEEE Explore Digital Library .International Conference on Advanced Science and Engineering (ICOASE). 2018, dol:10.1109/ICOASE.2018.8548873.
16. Abed, S.S.; Abed Ali, R.S. Fixed Point for Asymptotically Non-Expansive Mappings in 2Banach Space. Ibn Al-Haitham Jour. for Pure \& Appl. Sci.2014,27,1,343-350.
