

Ibn Al Haitham Journal for Pure and Applied Science

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

On a New Kind of Collection of Subsets Noted by δ -field and Some Concepts Defined on δ -field

Hassan H. Ebrahim Ibrahim S. Ahmed Department of Mathematics, College of Computer science and Mathematics, University of Tikrit, Tikrit, Iraq.

hassan1962pl@tu.edu.iq

ibrahimsalhahmed69@gmail.com

Article history: Received 27 January 2019, Accepted 13 March 2019, Publish May 2019 Doi: 10.30526/32.2.2140

Abstract

The objective of this paper is, first, study a new collection of sets such as δ -field and we discuss the properties of this collection. Second, introduce a new concepts related to the δ -field such as measure on δ -field, outer measure on δ -field and we obtain some important results deals with these concepts. Third, introduce the concept of null-additive on δ -field as a generalization of the concept of measure on δ -field. Furthermore, we establish new concept related to δ - field noted by weakly null-additive on δ -field as a generalizations of the concepts of measure on and null-additive. Finally, we introduce the restriction of a set function Ψ on δ -field and many of its properties and characterizations are given.

Keywords: σ -field, measure on σ -field, monotone measure, null-additive.

1. Introduction

The theory of measure is an important subject in mathematics. In 1972, Robret [1], discusses many details about measure and proves some important results in measure theory. The notion of σ -field was studied by Robret and Dietmar, where \aleph be a nonempty set. A collection \wp is said to σ -field iff $\aleph \in \wp$ and \wp is closed under complementation and countable union [1, 2]. Zhenyuan and George in 2009 and Junhi, Radko and Endre in 2014 are used the concept of null-additive on σ -field, where \wp be a σ -field, then a set function $\Psi: \wp \to \varphi$ $[-\infty,\infty]$ is called null-additive on \wp if A, B are disjoint sets in \wp and $\Psi(B) = 0$, then $\Psi(A \cup B) = \Psi(A)$ [3,4]. In 2016, Juha used the concept of σ -field to define measure, where \wp be a σ -field, then a measure on \wp is a set function $\Psi: \wp \to [0, \infty]$ such that $\Psi(\Phi) = 0$ and if A_1, A_2, \dots form a finite or countably infinite collection of disjoint sets in \wp , then $\Psi(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \Psi(A_n)$ [5]. and also used power set to define outer measure, where \aleph be a non-empty set, then a set function $\Psi: P(\aleph) \to [0, \infty]$ is called outer measure, if $\Psi(\Phi) = 0$ and if $A, B \subseteq \aleph$ such that $A \subset B$, then $\Psi(A) \leq \Psi(B)$ and if A_1, A_2, \dots are subsets of \aleph , then $\Psi(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \Psi(A_n)$ [5]. The concept of monotone measure was studied by Peipe, Minhao and Jun in 2018, where \wp be a σ -field, then a set function $\Psi: \wp \to [0, \infty]$ is called monotone measure, if $\Psi(\Phi) = 0$ and if A, B \in \wp such that $A \subset B$, then $\Psi(A) \leq \Psi(B)$ [6].

The main aim of this paper is to introduce and study new concepts such as δ -field, measure on δ -field, outer measure on δ -field and null-additive on δ -field and we give basic properties, characterizations and examples of these concepts.

2. The Main Results

Let \aleph be a nonempty set. Then a collection of all subsets of a set \aleph , denoted by P(\aleph), and it's called a power set of \aleph .

Definition 1

Let \aleph be a nonempty set. A collection $\wp \subseteq P(\aleph)$ is said to be δ -field of a set \aleph if the following conditions are satisfied:

- 1- Φε℘.
- 2- If A is a nonempty set in \wp and $A \subset B \subseteq \aleph$, then $B \in \wp$.

3- If $A_1, A_2, \dots \in \mathcal{O}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{O}$.

Proposition 2

For any δ -field \wp of a set \aleph , the following hold:

- 1- ℵ €Ø.
- 2- If A, $B \in \mathcal{D}$, then $A \cap B \in \mathcal{D}$.
- 3- If $A_1, A_2, \dots, A_n \in \mathcal{O}$, then $\bigcap_{i=1}^n A_i \in \mathcal{O}$.
- 4- If $A_1, A_2, ..., A_n \in \mathcal{D}$, then $\bigcup_{i=1}^n A_i \in \mathcal{D}$.
- 5- $A_1, A_2, \dots \in \mathcal{P}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{P}$.

Proof

It is easy, so we omitted.

Example 3

Let $\aleph = \{1, 2, 3, 4\}$ and $\wp = \{\Phi, \{1,2\}, \{1,2,3\}, \{1,2,4\}, \aleph\}$. Then \wp is a δ -field of a set \aleph . **Definition 4**

Definition 4

Let \aleph be a nonempty set and \wp is a δ -field of a set \aleph . Then a pair (\aleph, \wp) is called measurable space and any member of \wp is called a measurable set.

Proposition 5

Let $\{\wp_i\}_{i\in I}$ be a sequence of δ -field of a set \aleph . Then $\bigcap_{i\in I} \wp_i$ is a δ -field of a set \aleph .

Proof

Since \wp_i is δ -field $\forall i \in I$, then $\Phi, \aleph \in \wp_i \forall i \in I$, hence $\wp_i \neq \Phi \forall i \in I$ and $\bigcap_{i \in I} \wp_i \neq \Phi$, therefore $\Phi, \aleph \in \bigcap_{i \in I} \wp_i$. Let $A \in \bigcap_{i \in I} \wp_i$ such that $\Phi \neq A \subset B \subseteq \aleph$, then $A \in \wp_i \forall i \in I$, but $A \subset B$. So, we get $B \in \wp_i \forall i \in I$, hence $B \in \bigcap_{i \in I} \wp_i$. Let $A_1, A_2, ... \in \bigcap_{i \in I} \wp_i$. Then $A_1, A_2, ... \in \wp_i, \forall i \in I$ and $\bigcap_{j=1}^{\infty} A_j \in \wp_i, \forall i \in I$ which is implies that $\bigcap_{j=1}^{\infty} A_j \in \bigcap_{i \in I} \wp_i$. Hence $\bigcap_{i \in I} \wp_i$ is a δ -field.

Definition 6

Let \wp be a δ – field of a set \aleph and let K be a non-empty subset of \aleph . Then the restriction of \wp on K is denoted by \wp |K and define as:

 $\mathcal{P}|K = \{B: B = A \cap K, \text{ for some } A \in \mathcal{P}\}.$

Proposition 7

Let \wp be a δ – field of a set \aleph and K be a non-empty subset of \aleph such that K $\epsilon \wp$. Then $\wp | K = \{A \subseteq K : A \epsilon \wp\}$.

Proof

Let $B \in \wp | K$. Then $B = A \cap K$, for some $A \in \wp$, hence $B \in \wp$. Therefore $B \in \{A \subseteq K : A \in \wp\}$ and $\wp | K \subseteq \{A \subseteq K : A \in \wp\}$. Let $C \in \{A \subseteq K : A \in \wp\}$. Then $C \subseteq K$ and $C \in \wp$, hence $C = C \cap K$, but $C \in \wp$, then $C \in \wp | K$ which is implies that $\{A \subseteq K : A \in \wp\} \subseteq \wp | K$, therefore $\wp | K = \{A \subseteq K : A \in \wp\}$.

Corollary 8

Let \wp be a δ – field of a set \aleph and K a non-empty subset of \aleph such that K $\epsilon \wp$. Then $\wp | K \subseteq \wp$.

Proof

From Proposition 7, we have $\mathscr{P}|K=\{A \subseteq K: A \in \mathscr{P}\}$. Now, for any $B \in \mathscr{P}|K$, then $B \in \{A \subseteq K: A \in \mathscr{P}\}$. Hence $B \subseteq K$ and $B \in \mathscr{P}$, therefore $\mathscr{P}|K \subseteq \mathscr{P}$.

Proposition 9

Let \wp be a δ – field of a set \aleph and let K be a non-empty subset of \aleph such that K $\epsilon \wp$. Then \wp |K is a δ - field of a set K.

Proof

Since \wp is a δ -field of \aleph , then $\Phi, \aleph \in \wp$. Since $K \subseteq \aleph$, then $K = \aleph \cap K$ and $K \in \wp | K$. Since $\Phi = \Phi \cap K$, then $\Phi \in \wp | K$. Let $B \in \wp | K$ such that $\Phi \neq B \subset D \subseteq K$ Then $B \in \wp$. But $B \subset D \subseteq K \subseteq \aleph$ and \wp is a δ -field of a set \aleph , then $D \in \wp$. Now, $D \subseteq K$ and $D \in \wp$, then $D \in \wp | K$. Let $B_1, B_2, ... \in \wp | K$. Then there exist $A_1, A_2, ... \in \wp$ such that $B_i = A_i \cap K$ where i = 1, 2, ..., now $\bigcap_{i=1}^{\infty} B_i = (\bigcap_{i=1}^{\infty} A_i) \cap K$. But, \wp is a δ -field, then $\bigcap_{i=1}^{\infty} A_i \in \wp$. Hence $\bigcap_{i=1}^{\infty} B_i \in \wp | K$. Therefore $\wp | K$ is a δ -field of a set K.

If we take Example 3 and if we assume that $K = \{1, 2, 4\}$, then $\mathcal{D} | K = \{\Phi, \{1, 2\}, K\}$ is a δ – field of a set K and $\mathcal{D} | K \subseteq \mathcal{D}$.

Definition 10

Let \mathscr{P} be a δ -field of a set \aleph . A measure on \mathscr{P} is a set function $\Psi: \mathscr{P} \to [0, \infty]$ such that $\Psi(\Phi) = 0$ and if C_1, C_2, \dots form a finite or countably infinite collection of disjoint sets in \mathscr{P} , then $\Psi(\bigcup_{n=1}^{\infty} C_n) = \sum_{n=1}^{\infty} \Psi(C_n)$.

Example 11

Let \mathscr{P} be a δ -field of a set \aleph and define $\Psi: \mathscr{P} \to [0, \infty]$ by $\Psi(C) = 0$, for all $C \in \mathscr{P}$. Then Ψ is a measure on \mathscr{P} .

A measure space is a triple (\aleph, \wp, Ψ) where \aleph is a nonempty set and \wp is a δ -field of a set \aleph and Ψ is a measure on \wp .

Definition 12

Let \mathscr{P} be a δ -field of a set \aleph . A countably subadditive on \mathscr{P} is a set function $\Psi: \mathscr{P} \to [0, \infty]$ such that $\Psi(C) \leq \sum_{n=1}^{\infty} \Psi(C_n)$ where $C_1, C_2, \dots \in \mathscr{P}$ and $C = \bigcup_{n=1}^{\infty} C_n$.

If this requirement holds only for finite collection of disjoint sets in \mathcal{P} , then Ψ is said to be finitely subadditive on a δ – field \mathcal{P} .

Definition 13

Let \wp be a δ -field of a set \aleph . Then a set function $\Psi: \wp \to [0, \infty]$ is said to be monotone measure, if it satisfies the following requirements:

- 1- $\Psi(\Phi) = 0.$
- 2- If $B \in \mathcal{D}$ and $B \subset D \subseteq \mathfrak{K}$, then $\Psi(B) \leq \Psi(D)$.

Definition 14

Let \wp be a δ -field of a set \aleph . Then a set function $\Psi: \wp \to [0, \infty]$ is called outer measure, if it satisfies the following requirements:

- 1- $\Psi(\Phi) = 0$.
- 2- If $B \in \mathcal{D}$ and $B \subset D \subseteq \mathfrak{K}$, then $\Psi(B) \leq \Psi(D)$.
- 3- If $C_1, C_2, \dots \in \mathcal{D}$, then $\Psi(\bigcup_{n=1}^{\infty} C_n) \leq \sum_{n=1}^{\infty} \Psi(C_n)$.

Lemma 15

Let Ψ be an outer measure on δ -field \wp of a set \aleph and $t \in [0, \infty)$. If $t\Psi: \wp \to [0, \infty]$ is defined by

 $(t\Psi)(A) = t. \Psi(A) \ \forall A \in \wp$, then $(t\Psi)$ is an outer measure on \wp .

Proof

Since Ψ is an outer measure on \wp and $\Phi \in \wp$, then $\Psi(\Phi) = 0$ and $(t\Psi)(\Phi) = 0$. Let $B \in \wp$ and $B \subset D \subseteq \aleph$, then $D \in \wp$ and $\Psi(B) \leq \Psi(D)$. Since $(t\Psi)(B) = t.\Psi(B) \leq t.\Psi(D) = (t\Psi)(D)$. Let $C_1, C_2, ... \in \wp$, then $\bigcup_{n=1}^{\infty} C_n \in \wp$ So, we have $(t\Psi)(\bigcup_{n=1}^{\infty} C_n) = t. \Psi(\bigcup_{n=1}^{\infty} C_n) \leq t. \sum_{n=1}^{\infty} \Psi(C_n)$

But, $t \colon \sum_{n=1}^{\infty} \Psi(C_n) = \sum_{n=1}^{\infty} t \cdot \Psi(C_n) = \sum_{n=1}^{\infty} (t\Psi)(C_n)$. Therefore $t\Psi$ is an outer measure on \mathscr{D} .

Lemma 16

Let Ψ_1 and Ψ_2 be two outer measures on a δ -field \wp of a set \aleph . If $\Psi_1 + \Psi_2 : \wp \to [0, \infty]$ is defined by

 $(\Psi_1 + \Psi_2)(C) = \Psi_1(C) + \Psi_2(C), \forall C \in \wp$, then $\Psi_1 + \Psi_2$ is an outer measure on \wp . **Proof**

Since Ψ_1 and Ψ_2 are outer measure on δ -field \wp and $\Phi \epsilon \wp$, then $\Psi_1(\Phi) = \Psi_2(\Phi) = 0$ and $(\Psi_1 + \Psi_2)(\Phi) = 0$. Let $B \epsilon \wp$ and $B \subset D \subseteq \aleph$, then $D \epsilon \wp$ and $\Psi_1(B) \leq \Psi_1(D)$ and $\Psi_2(B) \leq \Psi_2(D)$. So we have, $(\Psi_1 + \Psi_2)(B) = \Psi_1(B) + \Psi_2(B) \leq \Psi_1(D) + \Psi_2(D) = (\Psi_1 + \Psi_2)(D)$ Let $C_1, C_2, ..., \epsilon \wp$, then $\bigcup_{n=1}^{\infty} C_n \epsilon \wp$. So, we have $(\Psi_1 + \Psi_2)(\bigcup_{n=1}^{\infty} C_n) = \Psi_1(\bigcup_{n=1}^{\infty} C_n) + \Psi_2(\bigcup_{n=1}^{\infty} C_n)$

 $\leq \sum_{n=1}^{\infty} \Psi_1(C_n) + \sum_{n=1}^{\infty} \Psi_2(C_n) = \sum_{n=1}^{\infty} [\Psi_1(C_n) + \Psi_2(C_n)] \\ = \sum_{n=1}^{\infty} (\Psi_1 + \Psi_1)(C_n).$

Therefore $\Psi_1 + \Psi_2$ is an outer measure on \mathscr{D} .

The proof of the following proposition consequence from Lemma (15 and 16) with mathematical induction.

Proposition 17

Let Ψ_1 , Ψ_2 ,..., Ψ_n be outer measure on a δ -field \wp of a set \aleph and $t_i \in [0, \infty)$ for all i = 1, 2, ..., n. If a set function $\sum_{i=1}^n t_i \Psi_i \colon \wp \to [0, \infty]$ is defined by:

 $(\sum_{i=1}^{n} t_i \Psi_i)(C) = \sum_{i=1}^{n} t_i \Psi_i(C) \forall C \epsilon \wp$, then $\sum_{i=1}^{n} t_i \Psi_i$ is an outer measure on δ -field \wp . **Proof**

Since $t_i \in [0, \infty)$ and Ψ_i is an outer measure on a δ -field \wp for all i = 1, 2, ..., n. Then by Lemma15 we get $t_i \Psi_i$ is an outer measure on a δ -field $\wp \quad \forall i=1, 2, ..., n$.

Let $\psi_i = t_i \Psi_i \ \forall i = 1, 2, ..., n$. Then we prove that $(\sum_{i=1}^n \psi_i)$ is an outer measure on \mathscr{P} by mathematical induction. If n = 2, then $\psi_1 + \psi_2$ is an outer measure on \wp by Lemma16. Suppose that $(\sum_{i=1}^{k} \psi_i)$ is an outer measure on \mathscr{P} , then we must prove that $(\sum_{i=1}^{k+1} \psi_i)$ is an outer measure on \wp , whenever ψ_i is an outer measure on $\wp \quad \forall i =$ 1,2,..., k, k + 1. $(\sum_{i=1}^{k+1} \psi_i)(\Phi) = (\sum_{i=1}^{k} \psi_i + \psi_{k+1})(\Phi)$ $= (\sum_{i=1}^{k} \psi_i)(\Phi) + \psi_{k+1}(\Phi)$ = 0 since $(\sum_{i=1}^{k} \psi_i)$ and ψ_{k+1} are outer measure on \mathscr{P} Let $B, D \in \mathcal{D}$ and $B \subset D$. Then $(\sum_{i=1}^{k} \psi_i)(B) \leq (\sum_{i=1}^{k} \psi_i)(D)$ and $\psi_{k+1}(B) \leq \psi_{k+1}(D)$. $\left(\sum_{i=1}^{k+1} \psi_i\right)(B) = \left(\sum_{i=1}^k \psi_i\right)(B) + \psi_{k+1}(B)$ $\leq (\sum_{i=1}^{k} \psi_i)(D) + \psi_{k+1}(D)$ since $(\sum_{i=1}^{k} \psi_i)$ and ψ_{k+1} are outer measure $= (\sum_{i=1}^{k} \psi_i + \psi_{k+1})(D)$ $= \left(\sum_{i=1}^{k+1} \psi_i\right)(D).$ Let $C_1, C_2, \dots \in \mathcal{D}$. Then $(\sum_{i=1}^{k+1} \psi_i) (\bigcup_{n=1}^{\infty} C_n) = (\sum_{i=1}^k \psi_i + \psi_{k+1}) (\bigcup_{n=1}^{\infty} C_n)$ $= (\sum_{i=1}^{k} \psi_i) (\bigcup_{n=1}^{\infty} C_n) + \psi_{k+1} (\bigcup_{n=1}^{\infty} C_n)$ $\leq \sum_{n=1}^{\infty} (\sum_{i=1}^{k} \psi_i) (C_n) + \sum_{n=1}^{\infty} \psi_{k+1}(C_n)$ $= \sum_{n=1}^{\infty} \left[\left(\sum_{i=1}^{k} \psi_{i} \right) (C_{n}) + \psi_{k+1}(C_{n}) \right]$ $=\sum_{n=1}^{\infty} (\sum_{i=1}^{k} \psi_i + \psi_{k+1})(C_n)$ $= \sum_{n=1}^{\infty} (\sum_{i=1}^{k+1} \psi_i)(\mathcal{C}_n).$

Therefore, $\sum_{i=1}^{k+1} t_i \Psi_i$ is an outer measure on \wp .

Definition 18

Let \wp be a δ -field of a set \aleph . Then a set function $\Psi: \wp \to [0, \infty]$ is called null-additive on \wp iff C, D are disjoint sets in \wp and $\Psi(D) = 0$, then $\Psi(CUD) = \Psi(C)$.

Example 19

Let $\aleph = \{1,2\}$ and $\wp = \{\Phi, \{1\}, \{2\}, \aleph\}$ and define $\Psi: \wp \to [0, \infty]$ by: $\Psi(C) = \begin{cases} 0 & C = \Phi \\ 1 & C \neq \Phi \end{cases}$. Then Ψ is a null-additive.

Proposition 20

Let \wp be a δ -field of a set \aleph . Then every measure is null-additive.

Proof

Let Ψ be a measure on δ -field \wp and let C, D are disjoint sets in \wp and $\Psi(D) = 0$. Then $\Psi(C\cup D) = \Psi(C) + \Psi(D) = \Psi(C)$. Hence Ψ is a null-additive.

While the converse is not true and Example 19 indicate that Ψ is null-additive but not measure, because {1},{2} are disjoint sets in \mathcal{D} but $\Psi(\{1\}\cup\{2\}) \neq \Psi(\{1\}) + \Psi(\{2\})$.

Lemma 21

Let Ψ be a null-additive on a δ -field \wp of a set \aleph and $t \in (0, \infty)$. If $t\Psi : \wp \to [0, \infty]$ is defined by:

 $(t\Psi)(\mathcal{C}) = t.\Psi(\mathcal{C}) \quad \forall \mathcal{C} \epsilon \wp$, then $(t\Psi)$ is a null-additive on \wp .

Proof

Let C, D be disjoint sets in \mathscr{P} such that $(t\Psi)(D) = 0$. Then $t.\Psi(D) = 0$ and hence $\Psi(D) = 0$ since t > 0. Now, $(t\Psi)(CUD) = t.\Psi(CUD)$

$$= t.\Psi(C) = (t.\Psi)(C)$$

Therefore, $t\Psi$ is a null-additive on \wp .

Lemma 22

Let Ψ_1 and Ψ_2 be two null-additives on a δ -field \wp of a set \aleph . If $\Psi_1 + \Psi_2$: $\wp \to [0, \infty]$ is defined by:

 $(\Psi_1 + \Psi_2)(\mathcal{C}) = \Psi_1(\mathcal{C}) + \Psi_2(\mathcal{C}) \quad \forall \mathcal{C} \epsilon \wp$, then $\Psi_1 + \Psi_2$ is a null-additive on \wp . **Proof**

Let C, D be disjoint sets in \wp such that $(\Psi_1 + \Psi_2)(D) = 0$. Then $\Psi_1(D) + \Psi_2(D) = 0$, hence $\Psi_1(D) = \Psi_2(D) = 0$ since Ψ_1 and Ψ_2 are null-additive on \wp .

Now,
$$(\Psi_1 + \Psi_2)(\text{CUD}) = \Psi_1(\text{CUD}) + \Psi_2(\text{CUD})$$

= $\Psi_1(\text{C}) + \Psi_2(\text{C})$
= $(\Psi_1 + \Psi_2)(\text{C}).$

Therefore, $\Psi_1 + \Psi_2$ is a null-additive on \wp .

Proposition 23

Let Ψ_1 , Ψ_2 ,..., Ψ_n be a null-additive on a δ -field \mathscr{P} of a set \aleph and $t_i \in (0, \infty)$ for all k = 1, 2, ..., n. If a set function $\sum_{k=1}^n t_k \Psi_k$: $\mathscr{P} \to [0, \infty]$ is defined by:

 $\left(\sum_{k=1}^{n} t_{k} \Psi_{k}\right)(C) = \sum_{k=1}^{n} t_{k}.\Psi_{k}(C) \quad \forall C \in \mathcal{O}, \text{ then } \sum_{k=1}^{n} t_{k} \Psi_{k} \text{ is a null-additive on } \mathcal{O}.$ **Proof**

Since $t_k \in (0, \infty)$ and Ψ_k is null-additive on \wp for all k = 1, 2, ..., n, then by Lemma 21, we get $t_k \Psi_k$ is a null-additive on $\wp \quad \forall k = 1, 2, ..., n$. Let $\psi_k = t_k \Psi_k$

If n = 2, then $\psi_1 + \psi_2$ is a null-additive on \mathscr{P} by Lemma 22. Let C, D are disjoint sets in \mathscr{P} such that $(\sum_{k=1}^{n} \psi_k)(D) = 0$. Then $\psi_k(D) = 0$ for all k = 1, 2, ..., n.

 $(\sum_{k=1}^{n} \psi_k) (C \cup D) = \psi_1 (C \cup D) + \dots + \psi_n (C \cup D)$ $= \psi_1 (C) + \dots + \psi_n (C) \text{ since } \psi_k \text{ is a null-additive and } \psi_k (D) = 0, \forall k$ $= (\sum_{k=1}^{n} \psi_k) (C). \text{ Hence } \sum_{k=1}^{n} t_k \Psi_k \text{ is a null-additive on } \emptyset.$

Definition 24

Let \mathscr{P} be a δ -field of a set \aleph and let $\Psi: \mathscr{P} \longrightarrow [0, \infty]$ be a set function and $B \in \mathscr{P}$. If $\Psi_B: \mathscr{P} \longrightarrow [0, \infty]$ is define by $\Psi_B(\mathcal{C}) = \Psi(\mathcal{C} \cap B)$ for all $\mathcal{C} \in \mathscr{P}$, then Ψ_B is called B - restriction of Ψ .

Proposition 25

Let \wp be a δ -field of a set \aleph and $B \in \wp$. If Ψ is a measure on \wp , then:

(1) Ψ_B is a measure on \wp .

(2) $\Psi_B(C) = \Psi(C)$, whenever $C \subseteq B$.

(3) $\Psi_B(C) = 0$, whenever *C*, *B* are disjoint sets in \wp .

Proof

(1). Since \wp is a δ -field, then $\Phi \epsilon \wp$ and $\Psi(\Phi) = 0$. From definition of Ψ_B we get, $\Psi_B(\Phi) = \Psi(\Phi \cap B) = \Psi(\Phi) = 0$. Let $C_1, C_2, ...$ are disjoint sets in \wp , then $\bigcup_{n=1}^{\infty} C_n \epsilon \wp$. Since $B, C_n \epsilon \wp \quad \forall \quad n=1,2,...,$ then $C_n \cap B \epsilon \wp$ and hence $\bigcup_{n=1}^{\infty} (C_n \cap B) \epsilon \wp$. So, we have $\Psi_B(\bigcup_{n=1}^{\infty} C_n) = \Psi((\bigcup_{n=1}^{\infty} C_n) \cap B)$ $= \Psi(\bigcup_{n=1}^{\infty} (C_n \cap B))$

$$= \sum_{n=1}^{\infty} \Psi(C_n \cap B)$$

= $\sum_{n=1}^{\infty} \Psi_B(C_n)$. Therefore, Ψ_B is a measure on \mathscr{D} .

(2). Since $C \subseteq B$, then $C \cap B = C$. So, we have $\Psi_B(C) = \Psi(C \cap B) = \Psi(C)$

(3). Since *C*, *B* are disjoint sets in \wp , then $C \cap B = \Phi$ and $\Psi_B(C) = \Psi(C \cap B)$

 $=\Psi(\Phi)=0.$

Proposition 26

Let \wp be a δ -field of a set \aleph and $B \in \wp$. If Ψ is an outer measure on \wp , then Ψ_B is an outer measure on \wp .

Proof

Since \wp is a δ -field, then $\Phi \notin \wp$ and $\Psi(\Phi) = 0$. From definition of Ψ_B we get, $\Psi_B(\Phi) = \Psi(\Phi \cap B) = \Psi(\Phi) = 0$. Let $A \notin \wp$ and $A \subset C \subseteq \aleph$, then $A \cap B \subset C \cap B$ and each of $C, A \cap B, C \cap B \notin \wp$. Since Ψ is an outer measure on \wp , then $\Psi(A \cap B) \leq \Psi(C \cap B)$. So, we have $\Psi_B(A) \leq \Psi_B(C)$. Let $C_1, C_2, \dots \notin \wp$. Then $\bigcup_{n=1}^{\infty} C_n \notin \wp$ and $C_n \cap B \notin \wp \forall n=1,2,\dots$, hence $\bigcup_{n=1}^{\infty} (C_n \cap B) \notin \wp$. So, we have,

 $\begin{aligned} \Psi_{B}(\bigcup_{n=1}^{\infty}C_{n}) &= \Psi((\bigcup_{n=1}^{\infty}C_{n})\cap B) \\ &= \Psi(\bigcup_{n=1}^{\infty}(C_{n}\cap B)) \leq \sum_{n=1}^{\infty}\Psi(C_{n}\cap B) = \sum_{n=1}^{\infty}\Psi_{B}(C_{n}). \end{aligned}$

Therefore, Ψ_B is an outer measure on \wp .

From Proposition 26, we conclude that if Ψ is a monotone measure on \mathcal{D} , then Ψ_B is a monotone measure on \mathcal{D} , where \mathcal{D} is a δ -field of a set \aleph and $B \in \mathcal{D}$.

Proposition 27

Let \wp be a δ -field of \aleph and $B \epsilon \wp$. If Ψ is a null-additive on \wp , then Ψ_B is a null-additive on \wp .

Proof

Let A, C be disjoint sets in \mathscr{P} and $\mathscr{\Psi}_B(C) = 0$. Then $\mathscr{\Psi}(C \cap B) = 0$. Now, $\mathscr{\Psi}_B(A \cup C) = \mathscr{\Psi}([A \cup C] \cap B)$ $= \mathscr{\Psi}([A \cap B] \cup [C \cap B])$ $= \mathscr{\Psi}(A \cap B)$ since $\mathscr{\Psi}$ is a null-additive on \mathscr{P} $= \mathscr{\Psi}_B(A)$ by definition of $\mathscr{\Psi}_B$.

Hence, Ψ_B is a null-additive on \wp .

Proposition 28

Let \wp be a δ -field of \aleph and $B \in \wp$. If Ψ is a measure on \wp , then Ψ_B is a null-additive on \wp .

Proof

It is easy, so we omitted.

Definition 29

Let \wp be a δ -field of a set \aleph and Ψ : $\wp \rightarrow [0, \infty]$ be a set function and K be a non-empty subsets of \aleph such that K $\epsilon \wp$. If $\Psi | K : \wp | K \rightarrow [0, \infty]$ is define by:

 $\Psi|K(A) = \Psi(A)$ for all $A \in \wp|K$, then $\Psi|K$ is called the restriction of Ψ on $\wp|K$

Proposition 30

Let Ψ be a measure on δ -field \wp of a set \aleph and $\Phi \neq K \subseteq \aleph$ such that $K \in \wp$. Then $\Psi | K$ is a measure on a δ -field $\wp | K$ of a set K.

Proof

Since \wp is a δ -field of a set \aleph , then $\Phi \epsilon \wp$ and $\Psi(\Phi) = 0$. Since $\Phi \epsilon \wp | K$, then by definition of $\Psi | K$, we get $\Psi | K(\Phi) = \Psi(\Phi) = 0$. Let $C_1, C_2, ...$ be disjoint sets in $\wp | K$. Then $C_n \subseteq K$ and $C_n \epsilon \wp$ for all n=1,2,..., hence $\bigcup_{n=1}^{\infty} C_n \epsilon \wp | K$. So, we have

$$\begin{aligned} \Psi | \mathsf{K}(\bigcup_{n=1}^{\infty} C_n) &= \Psi(\bigcup_{n=1}^{\infty} C_n) \\ &= \sum_{n=1}^{\infty} \Psi(C_n) \quad \text{since } \Psi \text{ is a measure on } \mathscr{O} \\ &= \sum_{n=1}^{\infty} \Psi | \mathsf{K}(C_n) \end{aligned}$$

Therefore, Ψ |K is a measure on a δ -field \wp |K of a set K.

If Ψ is an outer measure on δ -field \wp of a set \aleph , then we need the following two facts to prove that $\Psi|K$ is an outer measure on a δ -field $\wp|K$ of a set K.

Lemma 31

Let Ψ be a monotone measure on δ -field \wp of a set \aleph and $\Phi \neq K \subseteq \aleph$ such that $K \in \wp$. Then $\Psi | K$ is a monotone measure on a δ -field $\wp | K$ of a set K.

Proof

Let Ψ be a monotone measure on \wp , then $\Psi(\Phi) = 0$. Since $\wp|K$ is a δ -field, then $\Phi \in \wp|K$. From definition of $\Psi|K$, we get $\Psi|K(\Phi) = \Psi(\Phi) = 0$.

Let $B \in \mathcal{D}|K$ such that $B \subset C \subseteq K$, then $B \in \mathcal{D}$ and $B \subset C \subseteq \aleph$. Since Ψ is a monotone measure on \mathcal{D} , then $\Psi(B) \leq \Psi(C)$. But $B, C \in \mathcal{D}|K$, then $\Psi|K(B)=\Psi(B)$ and $\Psi|K(C) = \Psi(C)$, hence $\Psi|K(B) \leq \Psi|K(C)$ and $\Psi|K$ is monotone measure on $\mathcal{D}|K$ of K.

Lemma 32

Let Ψ be a countably subadditive on δ -field \wp of a set \aleph and $\Phi \neq K \subseteq \aleph$ such that $K \in \wp$, then Ψ |Kis a countably subadditive on a δ -field \wp |K of a set K.

Proof

Let $C_1, C_2, ... \epsilon \mathscr{D} | K$ and $C = \bigcup_{n=1}^{\infty} C_n$, then $C_1, C_2, ... \epsilon \mathscr{D}$ and $C \epsilon \mathscr{D}$. Since Ψ be a countably subadditive on \mathscr{D} , then $\Psi(c) \leq \sum_{n=1}^{\infty} \Psi(C_n)$, but $C, C_1, C_2, ... \epsilon \mathscr{D} | K$. So, we have $\Psi(C) = \Psi | K(C)$ and $\Psi(C_n) = \Psi | K(C_n)$ for all n=1,2,..., hence $\Psi | K(C) \leq \sum_{n=1}^{\infty} \Psi | K(C_n)$ and $\Psi | K$ is a countably subadditive on $\mathscr{D} | K$ of a set K.

Proposition 33

Let Ψ be an outer measure on δ -field \wp of a set \aleph and $\Phi \neq K \subseteq \aleph$ such that $K \in \wp$. Then $\Psi | K$ is an outer measure on δ -field $\wp | K$ of a set K.

Proof

Since Ψ is an outer measure on \mathcal{P} , then Ψ is a monotone measure and countably subadditive. By Lemma 31 and Lemma 32 we have $\Psi|K$ is a monotone measure and countably subadditive on $\mathcal{P}|K$ of K. Therefore $\Psi|K$ is an outer measure on $\mathcal{P}|K$ of K.

Proposition 34

Let Ψ be a null-additive on δ -field \wp of a set \aleph and $\Phi \neq K \subseteq \aleph$ such that $K \in \wp$. Then $\Psi|K$ is a null-additive on δ -field $\wp|K$.

Proof:

Let C, D be disjoint sets in $\mathcal{P}|K$ and $\Psi|K(D) = 0$. Then $\Psi(D) = 0$. Now, $\Psi|K(C\cup D) = \Psi([C\cup D)$

 $= \Psi(C)$ since Ψ is a null-additive on \wp

 $= \Psi | K(C)$ by definition of $\Psi | K$.

Hence, Ψ |K is a null-additive on \wp .

3. Conclusions

The main results of this paper are the following:

(1) Let \aleph be a nonempty set. A collection $\wp \subseteq P(\aleph)$ is said to be δ -field of a set \aleph if the following conditions are satisfied:

1. Φ*εβ*.

- 2. If A is a nonempty set in \wp and $A \subset B \subseteq \aleph$, then $B \in \wp$.
- 3. If $A_1, A_2, \dots \in \mathcal{P}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{P}$.

(2) Let $\{\mathscr{P}_i\}_{i \in I}$ be a sequence of δ -field of a set \aleph . Then $\bigcap_{i \in I} \mathscr{P}_i$ is a δ -field of a set \aleph .

(3) Let \mathscr{D} be a δ – field of a set \aleph and let K be a non-empty subset of \aleph . Then the restriction of \mathscr{D} on K is denoted by $\mathscr{D}|K$ and $\mathscr{D}|K = \{B: B = A \cap K, \text{ for some } A \in \mathscr{D}\}.$

(4) Let \wp be a δ -field of a set \aleph . Then every measure is null-additive.

(5) Let $\Psi_1, \Psi_2, ..., \Psi_n$ be null-additive on a δ -field \wp of a set \aleph and $t_i \in (0, \infty)$ for all k = 1, 2, ..., n. If a set function $\sum_{k=1}^n t_k \Psi_k$: $\wp \to [0, \infty]$ is defined by:

 $\left(\sum_{k=1}^{n} t_{k} \Psi_{k}\right)(\mathcal{C}) = \sum_{k=1}^{n} t_{k}.\Psi_{k}(\mathcal{C}) \quad \forall \mathcal{C} \epsilon \wp, \text{ then } \sum_{k=1}^{n} t_{k} \Psi_{k} \text{ is a null-additive on } \wp.$

(6) Let \mathscr{D} be a δ -field of a set \aleph and $B \in \mathscr{D}$. If Ψ is a measure on \mathscr{D} , then:

- 1. Ψ_B is a measure on \wp .
- 2. $\Psi_B(C) = \Psi(C)$, whenever $C \subseteq B$.
- 3. $\Psi_B(C) = 0$, whenever C, B are disjoint sets in \mathcal{P} .

(7) Let \wp be a δ -field of a set \aleph and $B \epsilon \wp$. If Ψ is an outer measure on \wp , then Ψ_B is an outer measure on \wp .

(8) Let \wp be a δ -field of \aleph and $B \in \wp$. If Ψ is a null-additive on \wp , then Ψ_B is a null-additive on \wp .

(9) Let Ψ be a measure on δ -field \wp of a set \aleph and $\Phi \neq K \subseteq \aleph$ such that $K \in \wp$. Then $\Psi | K$ is a measure on a δ -field $\wp | K$ of a set K.

(10) Let Ψ be a monotone measure on δ -field \wp of a set \aleph and $\Phi \neq K \subseteq \aleph$ such that $K \in \wp$. Then $\Psi | K$ is a monotone measure on a δ -field $\wp | K$ of a set K.

References

- 1. Robret, B.A. Real Analysis and Probability, Academic Press, Inc, New York. 1972, 4-16.
- 2. Dietmar, A.S. *Measure and Integration, ETH* Zürich [Internet].**2016**.Available from: https://people.math.ethz.ch/~salamon/PREPRINTS/measure.pdf.
- 3. Zhenyuan, W.; George, J.K. Generalized Measure Theory, Springer Science and Business Media, LLC. **2009**, 133-134.
- 4. Jun, Li.; Radko, M.; Endre, P. Atoms of weakly null-additive monotone measures and integrals. *Information Sciences. elsevier Inc.* **2014**, 257, 183–192, doi: 10.1016/j.ins.2013.09.013.
- 5. Juha, K. *measure and Integrals*. Aalto Math [internet].2016.Available form: https://math.aalto.fi/~jkkinnun/files/measure_and_integral.pdf.
- 6. Peipei, W.; Minhao, Yu.; Jun, Li. Monotone Measures Defined by Pan-Integral. *Advances in Pure Mathematics*. **2018**, *8*, 535–547, doi:10.4236/apm.2018.86031.