Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 32 (2) 2019

Ibn Al Haitham Journal for Pure and Applied Science
Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

On a New Kind of Collection of Subsets Noted by $\boldsymbol{\delta}$-field and Some Concepts Defined on $\boldsymbol{\delta}$-field

Hassan H. Ebrahim
Ibrahim S. Ahmed
Department of Mathematics, College of Computer science and Mathematics, University of Tikrit, Tikrit, Iraq.
hassan1962pl@tu.edu.iq
ibrahimsalhahmed69@gmail.com

Article history: Received 27 January 2019, Accepted 13 March 2019, Publish May 2019
Doi: 10.30526/32.2.2140

Abstract

The objective of this paper is, first, study a new collection of sets such as δ-field and we discuss the properties of this collection. Second, introduce a new concepts related to the δ-field such as measure on δ-field, outer measure on δ-field and we obtain some important results deals with these concepts. Third, introduce the concept of null-additive on δ-field as a generalization of the concept of measure on δ-field. Furthermore, we establish new concept related to δ - field noted by weakly null-additive on δ-field as a generalizations of the concepts of measure on and null-additive. Finally, we introduce the restriction of a set function Ψ on δ-field and many of its properties and characterizations are given.

Keywords: σ-field, measure on σ-field, monotone measure, null-additive.

1. Introduction

The theory of measure is an important subject in mathematics. In 1972, Robret [1], discusses many details about measure and proves some important results in measure theory. The notion of σ-field was studied by Robret and Dietmar, where \mathcal{N} be a nonempty set. A collection \wp is said to σ-field iff $\kappa \in \wp$ and \wp is closed under complementation and countable union [1, 2]. Zhenyuan and George in 2009 and Junhi, Radko and Endre in 2014 are used the concept of null-additive on σ-field, where \wp be a σ-field, then a set function $\Psi: \wp \rightarrow$ $[-\infty, \infty]$ is called null-additive on \wp if A, B are disjoint sets in \wp and $\Psi(B)=0$, then $\Psi(A \cup B)=\Psi(A)[3,4]$. In 2016, Juha used the concept of σ-field to define measure, where \wp be a σ-field, then a measure on \wp is a set function $\Psi: \wp \rightarrow[0, \infty]$ such that $\Psi(\Phi)=0$ and if A_{1}, A_{2}, \ldots form a finite or countably infinite collection of disjoint sets in \wp, then $\Psi\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \Psi\left(A_{n}\right)$ [5]. and also used power set to define outer measure, where \mathcal{N} be a non-empty set, then a set function $\Psi: \mathrm{P}(\aleph) \rightarrow[0, \infty]$ is called outer measure, if $\Psi(\Phi)=0$ and if $A, B \subseteq א$ such that $A \subset B$, then $\Psi(A) \leq \Psi(B)$ and if A_{1}, A_{2}, \ldots are subsets of κ, then $\Psi\left(\cup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \Psi\left(A_{n}\right)$ [5]. The concept of monotone measure was studied by Peipe, Minhao and Jun in 2018, where \wp be a σ-field, then a set function $\Psi: \wp \rightarrow[0, \infty]$ is called monotone measure, if $\Psi(\Phi)=0$ and if $\mathrm{A}, \mathrm{B} \in \wp$ such that $\mathrm{A} \subset \mathrm{B}$, then $\Psi(\mathrm{A}) \leq \Psi(\mathrm{B})[6]$.

Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 32 (2) 2019

The main aim of this paper is to introduce and study new concepts such as δ-field, measure on δ-field, outer measure on δ-field and null-additive on δ-field and we give basic properties, characterizations and examples of these concepts.

2. The Main Results

Let $\mathcal{\aleph}$ be a nonempty set. Then a collection of all subsets of a set \aleph, denoted by $P(\aleph)$, and it's called a power set of \boldsymbol{N}.

Definition 1

Let $\mathcal{\kappa}$ be a nonempty set. A collection $\wp \subseteq P(\aleph)$ is said to be δ-field of a set \mathcal{N} if the following conditions are satisfied:

1- Фє६.
2- If A is a nonempty set in \wp and $A \subset B \subseteq א$, then $B \in \wp$.
3- If $A_{1}, A_{2}, \ldots \in \wp$, then $\bigcap_{i=1}^{\infty} A_{i} \in \wp$.

Proposition 2

For any δ-field \wp of a set κ, the following hold:
1- $火 \in \wp$.
2- If $A, B \in \wp$, then $A \cap B \in \wp$.
3- If $A_{1}, A_{2}, \ldots, A_{n} \in \wp$, then $\bigcap_{i=1}^{n} A_{i} \in \wp$.
4- If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \in \wp$, then $\cup_{i=1}^{n} \mathrm{~A}_{\mathrm{i}} \in \wp$.
5- $A_{1}, A_{2}, \ldots \in \wp$, then $\bigcup_{i=1}^{\infty} A_{i} \in \wp \circ$.
Proof
It is easy, so we omitted.

Example 3

Let $\kappa=\{1,2,3,4\}$ and $\wp=\{\Phi,\{1,2\},\{1,2,3\},\{1,2,4\}, \mathcal{N}\}$. Then \wp is a δ - field of a set κ.

Definition 4

Let \mathcal{K} be a nonempty set and \wp is a δ-field of a set \mathcal{K}.Then a pair ($\mathcal{K}, \wp)$ is called measurable space and any member of \wp is called a measurable set.

Proposition 5

Let $\left\{\wp_{\mathrm{i}}\right\}_{i \in \mathrm{I}}$ be a sequence of δ - field of a set κ. Then $\bigcap_{\mathrm{i} \in \mathrm{I}} \wp_{\mathrm{i}}$ is a δ-field of a set κ.

Proof

Since \wp_{i} is δ - field $\forall \mathrm{i} \in \mathrm{I}$, then $\Phi, \aleph \in \wp_{\mathrm{i}} \forall \mathrm{i} \in \mathrm{I}$, hence $\wp_{\mathrm{i}} \neq \Phi \forall \mathrm{i} \in \mathrm{I}$ and $\bigcap_{\mathrm{i} \in \mathrm{I}} \wp_{\mathrm{i}} \neq \Phi$, therefore $\Phi, \aleph \in \bigcap_{i \in I} \wp_{i}$. Let $A \in \bigcap_{i \in I} \wp_{i}$ such that $\Phi \neq A \subset B \subseteq \kappa$, then $A \in \not \wp_{i} \forall i \in I$, but $A \subset B$. So, we get $B \in \wp_{i} \forall i \in I$, hence $B \in \bigcap_{i \in I} \wp_{i}$. Let $A_{1}, A_{2}, \ldots \epsilon \bigcap_{i \in I} \wp_{i}$. Then $A_{1}, A_{2}, \ldots \in \not \wp_{i}, \forall i \in I$ and $\bigcap_{j=1}^{\infty} A_{j} \in \wp_{i}, \forall i \in I$ which is implies that $\bigcap_{j=1}^{\infty} A_{j} \in \bigcap_{i \in I} \wp_{i}$. Hence $\bigcap_{\mathrm{i} \in \mathrm{I}} \wp_{\mathrm{i}}$ is a δ - field.

Definition 6

Let \wp be a δ-field of a set \aleph and let K be a non-empty subset of κ. Then the restriction of \wp on K is denoted by $\wp \mid \mathrm{K}$ and define as:
$\wp \mid K=\{B: B=A \cap K$, for some $A \in \wp\}$.

Proposition 7

Let \wp be a δ - field of a set \aleph and K be a non-empty subset of \aleph such that $\mathrm{K} \nprec$. Then $\wp \mid \mathrm{K}$ $=\{A \subseteq K: A \in \wp\}$.

Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 32 (2) 2019

Proof

Let $B \in \wp \mid K$. Then $B=A \cap K$, for some $A \in \wp$, hence $B \in \wp$. Therefore $B \in\{A \subseteq K: A \in \wp\}$ and $\wp \mid K \subseteq\{A \subseteq K: A \in \wp\}$. Let $C \in\{A \subseteq K: A \in \wp\}$. Then $C \subseteq K$ and $C \in \wp$, hence $C=C \cap K$, but $C \in \wp$, then $C \in \wp \mid K$ which is implies that $\{A \subseteq K: A \in \wp\} \subseteq \wp \mid K$, therefore $\wp \mid K=\{A \subseteq K$: $A \in \wp\}$.

Corollary 8

Let \wp be a δ - field of a set \aleph and K a non-empty subset of \aleph such that $\mathrm{K} € \wp$. Then $\wp \mid \mathrm{K} \subseteq$ §.

Proof

From Proposition 7, we have $\wp \mid K=\{A \subseteq K: A \in \wp\}$. Now, for any $B \in \wp \mid K$, then $B \in\{A \subseteq K$:
$A \in \wp\}$. Hence $B \subseteq K$ and $B \in \wp$, therefore $\wp \mid K \subseteq \wp$.

Proposition 9

Let \wp be a δ - field of a set κ and let K be a non-empty subset of $\mathcal{\aleph}$ such that $K \in \wp$. Then $\wp \mid \mathrm{K}$ is a δ - field of a set K .

Proof

Since \wp is a δ-field of κ, then $\Phi, \aleph \in \wp$. Since $K \subseteq א$, then $K=\kappa \cap K$ and $K є \wp \mid K$. Since $\Phi=\Phi \cap K$, then $\Phi \npreceq \wp \mid K$. Let $\mathrm{B} \npreceq \wp \mid \mathrm{K}$ such that $\Phi \neq \mathrm{B} \subset \mathrm{D} \subseteq \mathrm{K}$ Then $\mathrm{B} \notin \wp$. But $\mathrm{B} \subset \mathrm{D} \subseteq \mathrm{K} \subseteq$ κ and \wp is a δ-field of a set κ, then $\mathrm{D} \in \wp$. Now, $D \subseteq K$ and $\mathrm{D} \in \wp$, then $\mathrm{D} \in \wp \wp \mid \mathrm{K}$. Let $B_{1}, B_{2}, \ldots \in \wp \mid K$. Then there exist $A_{1}, A_{2}, \ldots \in \wp$ such that $B_{i}=A_{i} \cap K$ where $i=1,2, \ldots$, now $\bigcap_{i=1}^{\infty} B_{i}=\left(\bigcap_{i=1}^{\infty} A_{i}\right) \cap K$. But, \wp is a δ-field, then $\bigcap_{i=1}^{\infty} A_{i} \in \wp$. Hence $\bigcap_{i=1}^{\infty} B_{i} \in \wp \mid K$. Therefore $\wp \mid K$ is a δ - field of a set K.

If we take Example 3 and if we assume that $\mathrm{K}=\{1,2,4\}$, then $\wp \mid \mathrm{K}=\{\Phi,\{1,2\}, \mathrm{K}\}$ is a δ - field of a set K and $\wp \mid K \subseteq \wp$.

Definition 10

Let \wp be a δ-field of a set κ. A measure on \wp is a set function $\Psi: \wp \rightarrow[0, \infty]$ such that $\Psi(\Phi)=0$ and if C_{1}, C_{2}, \ldots form a finite or countably infinite collection of disjoint sets in \wp, then $\Psi\left(\cup_{n=1}^{\infty} C_{n}\right)=\sum_{n=1}^{\infty} \Psi\left(C_{n}\right)$.

Example 11

Let \wp be a δ - field of a set \aleph and define $\Psi: \wp \rightarrow[0, \infty]$ by $\Psi(\mathrm{C})=0$, for all $\mathrm{C} \epsilon \wp$. Then Ψ is a measure on \wp.
A measure space is a triple (\mathcal{N}, \wp, Ψ) where \mathcal{N} is a nonempty set and \wp is a δ-field of a set κ and Ψ is a measure on \wp.

Definition 12

Let \wp be a δ-field of a set κ. A countably subadditive on \wp is a set function $\Psi: \wp \rightarrow[0, \infty]$ such that $\Psi(C) \leq \sum_{n=1}^{\infty} \Psi\left(C_{n}\right)$ where $C_{1}, C_{2}, \ldots \in \wp$ and $C=\cup_{n=1}^{\infty} C_{n}$.

If this requirement holds only for finite collection of disjoint sets in \wp, then Ψ is said to be finitely subadditive on a δ - field \wp.

Definition 13

Let \wp be a δ-field of a set κ. Then a set function $\Psi: \wp \rightarrow[0, \infty]$ is said to be monotone measure, if it satisfies the following requirements:

1- $\Psi(\Phi)=0$.
2- If $B \in \wp$ and $\mathrm{B} \subset \mathrm{D} \subseteq \kappa$, then $\Psi(B) \leq \Psi(D)$.

Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 32 (2) 2019

Definition 14

Let δ be a δ-field of a set κ. Then a set function $\Psi: \wp \rightarrow[0, \infty]$ is called outer measure, if it satisfies the following requirements:

1- $\Psi(\Phi)=0$.
2- If $B \in \wp$ and $\mathrm{B} \subset \mathrm{D} \subseteq \mathbb{\kappa}$, then $\Psi(B) \leq \Psi(D)$.
3- If $C_{1}, C_{2}, \ldots \in \wp$, then $\Psi\left(\cup_{n=1}^{\infty} C_{n}\right) \leq \sum_{n=1}^{\infty} \Psi\left(C_{n}\right)$.

Lemma 15

Let Ψ be an outer measure on δ-field \wp of a set κ and $t \in[0, \infty)$. If $t \Psi: \wp \rightarrow[0, \infty]$ is defined by
$(t \Psi)(A)=t . \Psi(A) \forall A \in \wp$, then $(t \Psi)$ is an outer measure on \wp.

Proof

Since Ψ is an outer measure on \wp and $\Phi \in \wp$, then $\Psi(\Phi)=0$ and $(t \Psi)(\Phi)=0$.
Let $B \in \wp$ and $\mathrm{B} \subset \mathrm{D} \subseteq \kappa$, then $D \in \wp$ and $\Psi(B) \leq \Psi(D)$. Since
$(t \Psi)(\mathrm{B})=t . \Psi(\mathrm{B}) \leq \mathrm{t} . \Psi(D)=(t \Psi)(\mathrm{D})$. Let $C_{1}, C_{2}, \ldots \in \wp$, then $\cup_{n=1}^{\infty} C_{n} \in \wp$
So, we have $(t \Psi)\left(\cup_{n=1}^{\infty} C_{n}\right)=t . \Psi\left(\cup_{n=1}^{\infty} C_{n}\right) \leq t . \sum_{n=1}^{\infty} \Psi\left(C_{n}\right)$
But, $t . \sum_{n=1}^{\infty} \Psi\left(C_{n}\right)=\sum_{n=1}^{\infty} t . \Psi\left(C_{n}\right)=\sum_{n=1}^{\infty}(t \Psi)\left(C_{n}\right)$. Therefore $t \Psi$ is an outer measure on \wp.

Lemma 16

Let Ψ_{1} and Ψ_{2} be two outer measures on a δ-field \wp of a set $\mathcal{\kappa}$. If $\Psi_{1}+\Psi_{2}: \wp \rightarrow[0, \infty]$ is defined by
$\left(\Psi_{1}+\Psi_{2}\right)(C)=\Psi_{1}(C)+\Psi_{2}(C), \forall C \epsilon \wp$, then $\Psi_{1}+\Psi_{2}$ is an outer measure on \wp.

Proof

Since Ψ_{1} and Ψ_{2} are outer measure on δ - field \wp and $\Phi \in \wp$, then $\Psi_{1}(\Phi)=\Psi_{2}(\Phi)=0$ and $\left(\Psi_{1}+\Psi_{2}\right)(\Phi)=0$. Let $B \in \wp$ and $\mathrm{B} \subset \mathrm{D} \subseteq \kappa$, then $D \epsilon \wp$ and $\Psi_{1}(B) \leq \Psi_{1}(D)$ and $\Psi_{2}(B) \leq \Psi_{2}(D)$. So we have,
$\left(\Psi_{1}+\Psi_{2}\right)(\mathrm{B})=\Psi_{1}(\mathrm{~B})+\Psi_{2}(\mathrm{~B}) \leq \Psi_{1}(D)+\Psi_{2}(\mathrm{D})=\left(\Psi_{1}+\Psi_{2}\right)(\mathrm{D})$
Let $C_{1}, C_{2}, \ldots \in \wp$, then $\cup_{n=1}^{\infty} C_{n} \in \wp$. So, we have
$\left(\Psi_{1}+\Psi_{2}\right)\left(\cup_{n=1}^{\infty} C_{n}\right)=\Psi_{1}\left(\cup_{n=1}^{\infty} C_{n}\right)+\Psi_{2}\left(\cup_{n=1}^{\infty} C_{n}\right)$

$$
\begin{aligned}
\leq \sum_{n=1}^{\infty} \Psi_{1}\left(C_{n}\right)+\sum_{n=1}^{\infty} \Psi_{2}\left(C_{n}\right) & =\sum_{n=1}^{\infty}\left[\Psi_{1}\left(C_{n}\right)+\Psi_{2}\left(C_{n}\right)\right] \\
& =\sum_{n=1}^{\infty}\left(\Psi_{1}+\Psi_{1}\right)\left(C_{n}\right) .
\end{aligned}
$$

Therefore $\Psi_{1}+\Psi_{2}$ is an outer measure on \wp.
The proof of the following proposition consequence from Lemma (15 and 16) with mathematical induction.

Proposition 17

Let $\Psi_{1}, \Psi_{2}, \ldots, \Psi_{n}$ be outer measure on a δ-field \wp of a set κ and $t_{i} \in[0, \infty)$ for all $i=1,2, \ldots, n$. If a set function $\sum_{i=1}^{n} t_{i} \Psi_{i}: \wp \rightarrow[0, \infty]$ is defined by:
$\left(\sum_{i=1}^{n} t_{i} \Psi_{i}\right)(C)=\sum_{i=1}^{n} t_{i} . \Psi_{i}(C) \forall C \epsilon \wp$, then $\sum_{i=1}^{n} t_{i} \Psi_{i}$ is an outer measure on δ-field \wp.
Proof
Since $t_{i} \in[0, \infty)$ and Ψ_{i} is an outer measure on a δ - field \wp for all $i=1,2, \ldots, n$.
Then by Lemma15 we get $t_{i} \Psi_{i}$ is an outer measure on a δ - field $\wp \forall i=1,2, \ldots, n$.

Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 32 (2) 2019

Let $\psi_{i}=t_{i} \Psi_{i} \forall i=1,2, \ldots, n$. Then we prove that $\left(\sum_{i=1}^{n} \psi_{i}\right)$ is an outer measure on \wp by mathematical induction. If $n=2$, then $\psi_{1}+\psi_{2}$ is an outer measure on \wp by Lemma16. Suppose that $\left(\sum_{i=1}^{k} \psi_{i}\right)$ is an outer measure on \wp, then we must prove that
$\left(\sum_{i=1}^{k+1} \psi_{i}\right)$ is an outer measure on \wp, whenever ψ_{i} is an outer measure on $\wp \forall i=$ $1,2, \ldots, k, k+1 .\left(\sum_{i=1}^{k+1} \psi_{i}\right)(\Phi)=\left(\sum_{i=1}^{k} \psi_{i}+\psi_{k+1}\right)(\Phi)$

$$
=\left(\sum_{i=1}^{k} \psi_{i}\right)(\Phi)+\psi_{k+1}(\Phi)
$$

$$
=0 \text { since }\left(\sum_{i=1}^{k} \psi_{i}\right) \text { and } \psi_{k+1} \text { are outer measure on } \wp
$$

Let $B, D \in \wp$ and $B \subset D$. Then $\left(\sum_{i=1}^{k} \psi_{i}\right)(B) \leq\left(\sum_{i=1}^{k} \psi_{i}\right)(D)$ and $\psi_{k+1}(B) \leq \psi_{k+1}(D)$.

$$
\begin{aligned}
\left(\sum_{i=1}^{k+1} \psi_{i}\right)(B) & =\left(\sum_{i=1}^{k} \psi_{i}\right)(B)+\psi_{k+1}(B) \\
& \leq\left(\sum_{i=1}^{k} \psi_{i}\right)(D)+\psi_{k+1}(D) \text { since }\left(\sum_{i=1}^{k} \psi_{i}\right) \text { and } \psi_{k+1} \text { are outer measure } \\
& =\left(\sum_{i=1}^{k} \psi_{i}+\psi_{k+1}\right)(D) \\
& =\left(\sum_{i=1}^{k+1} \psi_{i}\right)(D)
\end{aligned}
$$

Let $C_{1}, C_{2}, \ldots \in \wp$. Then $\left(\sum_{i=1}^{k+1} \psi_{i}\right)\left(\cup_{n=1}^{\infty} C_{n}\right)=\left(\sum_{i=1}^{k} \psi_{i}+\psi_{k+1}\right)\left(\cup_{n=1}^{\infty} C_{n}\right)$

$$
\begin{aligned}
& =\left(\sum_{i=1}^{k} \psi_{i}\right)\left(\cup_{n=1}^{\infty} C_{n}\right)+\psi_{k+1}\left(\cup_{n=1}^{\infty} C_{n}\right) \\
\leq & \sum_{n=1}^{\infty}\left(\sum_{i=1}^{k} \psi_{i}\right)\left(C_{n}\right)+\sum_{n=1}^{\infty} \psi_{k+1}\left(C_{n}\right) \\
= & \sum_{n=1}^{\infty}\left[\left(\sum_{i=1}^{k} \psi_{i}\right)\left(C_{n}\right)+\psi_{k+1}\left(C_{n}\right)\right] \\
= & \sum_{n=1}^{\infty}\left(\sum_{i=1}^{k} \psi_{i}+\psi_{k+1}\right)\left(C_{n}\right) \\
= & \sum_{n=1}^{\infty}\left(\sum_{i=1}^{k+1} \psi_{i}\right)\left(C_{n}\right) .
\end{aligned}
$$

Therefore, $\sum_{i=1}^{k+1} t_{i} \Psi_{i}$ is an outer measure on \wp.

Definition 18

Let \wp be a δ-field of a set κ. Then a set function $\Psi: \wp \rightarrow[0, \infty]$ is called null-additive on \wp iff C, D are disjoint sets in \wp and $\Psi(D)=0$, then $\Psi(C U D)=\Psi(C)$.

Example 19

Let $\mathcal{K}=\{1,2\}$ and $\wp=\{\Phi,\{1\},\{2\}, \aleph\}$ and define $\Psi: \wp \rightarrow[0, \infty]$ by:
$\Psi(C)=\left\{\begin{array}{ll}0 & C=\Phi \\ 1 & C \neq \Phi\end{array} \quad\right.$. Then Ψ is a null-additive.

Proposition 20

Let \wp be a δ-field of a set \aleph. Then every measure is null-additive.

Proof

Let Ψ be a measure on δ-field \wp and let C, D are disjoint sets in \wp and $\Psi(D)=0$. Then $\Psi(\mathrm{CUD})=\Psi(\mathrm{C})+\Psi(D)=\Psi(\mathrm{C})$. Hence Ψ is a null-additive .

While the converse is not true and Example 19 indicate that Ψ is null-additive but not measure, because $\{1\},\{2\}$ are disjoint sets in \wp but $\Psi(\{1\} \cup\{2\}) \neq \Psi(\{1\})+\Psi(\{2\})$.

Lemma 21

Let Ψ be a null-additive on a δ-field \wp of a set \aleph and $t \in(0, \infty)$. If $t \Psi: \wp \rightarrow[0, \infty]$ is defined by:
$(t \Psi)(C)=t . \Psi(C) \quad \forall C \epsilon \wp$, then $(t \Psi)$ is a null-additive on \wp.

Proof

Let C, D be disjoint sets in \wp such that $(t \Psi)(D)=0$. Then $t . \Psi(D)=0$ and hence $\Psi(D)=0$ since $t>0$. Now, $(t \Psi)(\mathrm{CUD})=t . \Psi(\mathrm{CUD})$

$$
=t . \Psi(\mathrm{C})=(t . \Psi)(C)
$$

Therefore, $t \Psi$ is a null-additive on \wp.

Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 32 (2) 2019

Lemma 22

Let Ψ_{1} and Ψ_{2} be two null-additives on a δ-field \wp of a set κ. If $\Psi_{1}+\Psi_{2}: \wp \rightarrow[0, \infty]$ is defined by:
$\left(\Psi_{1}+\Psi_{2}\right)(C)=\Psi_{1}(C)+\Psi_{2}(C) \quad \forall C \epsilon \wp$, then $\Psi_{1}+\Psi_{2}$ is a null-additive on \wp.

Proof

Let C, D be disjoint sets in \wp such that $\left(\Psi_{1}+\Psi_{2}\right)(D)=0$. Then $\Psi_{1}(D)+\Psi_{2}(D)=0$, hence $\Psi_{1}(D)=\Psi_{2}(D)=0$ since Ψ_{1} and Ψ_{2} are null-additive on \wp.
Now, $\left(\Psi_{1}+\Psi_{2}\right)(\mathrm{CUD})=\Psi_{1}(\mathrm{CUD})+\Psi_{2}(\mathrm{CUD})$

$$
\begin{aligned}
& =\Psi_{1}(\mathrm{C})+\Psi_{2}(\mathrm{C}) \\
& =\left(\Psi_{1}+\Psi_{2}\right)(\mathrm{C}) .
\end{aligned}
$$

Therefore, $\Psi_{1}+\Psi_{2}$ is a null-additive on \wp.

Proposition 23

Let $\Psi_{1}, \Psi_{2}, \ldots, \Psi_{n}$ be a null-additive on a δ-field \wp of a set κ and $t_{i} \in(0, \infty)$ for all $k=1,2, \ldots, n$. If a set function $\sum_{k=1}^{n} t_{k} \Psi_{k}: \wp \rightarrow[0, \infty]$ is defined by:
$\left(\sum_{k=1}^{n} t_{k} \Psi_{k}\right)(C)=\sum_{k=1}^{n} t_{k} \cdot \Psi_{k}(C) \quad \forall C \epsilon \wp$, then $\sum_{k=1}^{n} t_{k} \Psi_{k}$ is a null-additive on \wp.

Proof

Since $t_{k} \in(0, \infty)$ and Ψ_{k} is null-additive on \wp for all $k=1,2, \ldots, n$, then by Lemma 21 , we get $t_{k} \Psi_{k}$ is a null-additive on $\wp \quad \forall k=1,2, \ldots, n$. Let $\psi_{k}=t_{k} \Psi_{k}$
If $n=2$, then $\psi_{1}+\psi_{2}$ is a null-additive on \wp by Lemma 22. Let C, D are disjoint sets in \wp such that $\left(\sum_{k=1}^{n} \psi_{k}\right)(D)=0$. Then $\psi_{k}(D)=0$ for all $k=1,2, \ldots, n$.

$$
\begin{aligned}
\left(\sum_{k=1}^{n} \psi_{k}\right)(C \cup D) & =\psi_{1}(C \cup D)+\cdots+\psi_{n}(C \cup D) \\
& =\psi_{1}(C)+\cdots+\psi_{n}(C) \text { since } \psi_{k} \text { is a null-additive and } \psi_{k}(D)=0, \forall k \\
& =\left(\sum_{k=1}^{n} \psi_{k}\right)(C) . \text { Hence } \sum_{k=1}^{n} t_{k} \Psi_{k} \text { is a null-additive on } \wp .
\end{aligned}
$$

Definition 24

Let \wp be a δ-field of a set \mathcal{K} and let $\Psi: \wp \rightarrow[0, \infty]$ be a set function and $B \in \wp$. If $\Psi_{B}: \wp \rightarrow[0, \infty]$ is define by $\Psi_{B}(C)=\Psi(C \cap B)$ for all $C \epsilon \wp$, then Ψ_{B} is called B - restriction of Ψ.

Proposition 25

Let \wp be a δ - field of a set κ and $B \in \wp$. If Ψ is a measure on \wp, then:
(1) Ψ_{B} is a measure on \wp.
(2) $\Psi_{B}(C)=\Psi(C)$, whenever $C \subseteq B$.
(3) $\Psi_{B}(C)=0$, whenever C, B are disjoint sets in \wp.

Proof

(1). Since \wp is a δ-field, then $\Phi \in \wp$ and $\Psi(\Phi)=0$. From definition of Ψ_{B} we get, $\Psi_{B}(\Phi)=\Psi(\Phi \cap B)=\Psi(\Phi)=0$. Let C_{1}, C_{2}, \ldots are disjoint sets in \wp, then $\cup_{n=1}^{\infty} C_{n} \epsilon \wp$. Since $B, C_{n} € \wp \quad \forall \mathrm{n}=1,2, \ldots$, then $C_{n} \cap B \epsilon \wp$ and hence $\cup_{n=1}^{\infty}\left(C_{n} \cap B\right) \in \wp$. So, we have $\Psi_{B}\left(\cup_{n=1}^{\infty} C_{n}\right)=\Psi\left(\left(\cup_{n=1}^{\infty} C_{n}\right) \cap B\right)$
$=\Psi\left(\cup_{n=1}^{\infty}\left(C_{n} \cap B\right)\right)$
$=\sum_{n=1}^{\infty} \Psi\left(C_{n} \cap B\right)$
$=\sum_{n=1}^{\infty} \Psi_{B}\left(C_{n}\right)$. Therefore, Ψ_{B} is a measure on \wp.
(2). Since $C \subseteq B$, then $C \cap B=C$. So, we have $\Psi_{B}(C)=\Psi(C \cap B)=\Psi(C)$
(3). Since C, B are disjoint sets in \wp, then $C \cap B=\Phi$ and $\Psi_{B}(C)=\Psi(C \cap B)$

$$
=\Psi(\Phi)=0
$$

Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 32 (2) 2019

Proposition 26

Let \wp be a δ-field of a set \aleph and $B \epsilon \wp$. If Ψ is an outer measure on \wp, then Ψ_{B} is an outer measure on \wp.

Proof

Since \wp is a δ - field, then $\Phi \in \wp$ and $\Psi(\Phi)=0$. From definition of Ψ_{B} we get, $\quad \Psi_{B}(\Phi)=$ $\Psi(\Phi \cap B)=\Psi(\Phi)=0$. Let $A \in \wp$ and $\mathrm{A} \subset \mathrm{C} \subseteq \mathcal{N}$, then $\mathrm{A} \cap \mathrm{B} \subset \mathrm{C} \cap B$ and each of $C, \mathrm{~A} \cap \mathrm{~B}, \mathrm{C} \cap \mathrm{B} \epsilon \wp$. Since Ψ is an outer measure on \wp, then $\Psi(A \cap B) \leq \Psi(C \cap B)$. So, we have $\Psi_{B}(\mathrm{~A}) \leq \Psi_{B}(\mathrm{C})$. Let $C_{1}, C_{2}, \ldots \in \wp$. Then $\cup_{n=1}^{\infty} C_{n} \in \wp$ and $C_{n} \cap B \in \wp \forall \mathrm{n}=1,2, \ldots$, hence $\cup_{n=1}^{\infty}\left(C_{n} \cap B\right) \epsilon \wp$. So, we have,

$$
\begin{aligned}
\Psi_{\boldsymbol{B}}\left(\cup_{n=1}^{\infty} C_{n}\right) & =\Psi\left(\left(\cup_{n=1}^{\infty} C_{n}\right) \cap B\right) \\
& =\Psi\left(\cup_{n=1}^{\infty}\left(C_{n} \cap B\right)\right) \leq \sum_{n=1}^{\infty} \Psi\left(C_{n} \cap B\right)=\sum_{n=1}^{\infty} \Psi_{\boldsymbol{B}}\left(C_{n}\right) .
\end{aligned}
$$

Therefore, Ψ_{B} is an outer measure on \wp.
From Proposition 26, we conclude that if Ψ is a monotone measure on \wp, then Ψ_{B} is a monotone measure on \wp, where \wp is a δ - field of a set κ and $B \in \wp$.

Proposition 27

Let \wp be a δ - field of $\mathcal{\chi}$ and $B \epsilon \wp$. If Ψ is a null-additive on \wp, then Ψ_{B} is a null-additive on \wp.

Proof

Let A, C be disjoint sets in \wp and $\Psi_{B}(C)=0$. Then $\Psi(\mathrm{C} \cap \mathrm{B})=0$.
Now, $\Psi_{B}(A \cup C)=\Psi([\mathrm{A} \cup \mathrm{C}] \cap \mathrm{B})$

$$
\begin{aligned}
& =\Psi([\mathrm{A} \cap \mathrm{~B}] \cup[\mathrm{C} \cap \mathrm{~B}]) \\
& =\Psi(\mathrm{A} \cap \mathrm{~B}) \quad \text { since } \Psi \text { is a null-additive on } \wp \\
& =\Psi_{B}(A) \quad \text { by definition of } \Psi_{B} .
\end{aligned}
$$

Hence, Ψ_{B} is a null-additive on \wp.

Proposition 28

Let \wp be a δ - field of \aleph and $B \in \wp$. If Ψ is a measure on \wp, then Ψ_{B} is a null-additive on \wp. Proof

It is easy, so we omitted.

Definition 29

Let \wp be a δ-field of a set \mathcal{K} and $\Psi: \wp \rightarrow[0, \infty]$ be a set function and K be a non-empty subsets of $\mathcal{\aleph}$ such that $\mathrm{K} \in \wp$. If $\Psi|\mathrm{K}: \wp| \mathrm{K} \rightarrow[0, \infty]$ is define by:
$\Psi \mid \mathrm{K}(A)=\Psi(A) \quad$ for all $A \in \wp \mid \mathrm{K}$, then $\Psi \mid \mathrm{K}$ is called the restriction of Ψ on $\wp \mid \mathrm{K}$

Proposition 30

Let Ψ be a measure on δ-field \wp of a set \mathcal{N} and $\Phi \neq \mathrm{K} \subseteq \mathcal{N}$ such that $K є \wp$. Then $\Psi \mid \mathrm{K}$ is a measure on a δ-field $\delta \mid$ K of a set K.

Proof

Since \wp is a δ-fieldof a set κ, then $\Phi \epsilon \wp$ and $\Psi(\Phi)=0$. Since $\Phi \epsilon \wp \mid \mathrm{K}$, then by definition of $\Psi \mid \mathrm{K}$, we get $\Psi \mid \mathrm{K}(\Phi)=\Psi(\Phi)=0$. Let C_{1}, C_{2}, \ldots be disjoint sets in $\wp \mid \mathrm{K}$. Then $C_{n} \subseteq \mathrm{~K}$ and $C_{n} \in \wp$ for all $\mathrm{n}=1,2, \ldots$, hence $\cup_{n=1}^{\infty} C_{n} \in \wp \mid \mathrm{K}$. So, we have

$$
\begin{aligned}
\Psi \mid \mathrm{K}\left(\mathrm{U}_{n=1}^{\infty} C_{n}\right) & =\Psi\left(\mathrm{U}_{n=1}^{\infty} C_{n}\right) \\
& =\sum_{n=1}^{\infty} \Psi\left(C_{n}\right) \quad \text { since } \Psi \text { is a measure on } \wp \\
& =\sum_{n=1}^{\infty} \Psi \mid \mathrm{K}\left(C_{n}\right)
\end{aligned}
$$

Therefore, $\Psi \mid \mathrm{K}$ is a measure on a δ - field $\wp \mid \mathrm{K}$ of a set K .

Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 32 (2) 2019

If Ψ is an outer measure on δ - field \wp of a set \aleph, then we need the following two facts to prove that $\Psi \mid \mathrm{K}$ is an outer measure on a δ - field $\wp \mid \mathrm{K}$ of a set K .

Lemma 31

Let Ψ be a monotone measure on δ - field \wp of a set $\mathcal{\kappa}$ and $\Phi \neq K \subseteq \mathcal{N}$ such that $K \in \wp$. Then $\Psi \mid \mathrm{K}$ is a monotone measure on a δ-field $\wp \mid \mathrm{K}$ of a set K .

Proof

Let Ψ be a monotone measure on \wp, then $\Psi(\Phi)=0$. Since $\wp \mid \mathrm{K}$ is a δ-field, then $\Phi \epsilon \wp \mid \mathrm{K}$. From definition of $\Psi \mid \mathrm{K}$, we get $\Psi \mid \mathrm{K}(\Phi)=\Psi(\Phi)=0$.
Let $B \in \wp \mid K$ such that $B \subset C \subseteq K$, then $B \in \wp$ and $B \subset C \subseteq \kappa$. Since Ψ is a monotone measure on \wp, then $\Psi(\mathrm{B}) \leq \Psi(\mathrm{C})$. But $B, C \in \wp \mid \mathrm{K}$, then $\Psi \mid \mathrm{K}(\mathrm{B})=\Psi(\mathrm{B})$ and $\Psi \mid \mathrm{K}(\mathrm{C})=\Psi(\mathrm{C})$, hence $\Psi|\mathrm{K}(\mathrm{B}) \leq \Psi| \mathrm{K}(\mathrm{C})$ and $\Psi \mid \mathrm{K}$ is monotone measure on $\wp \mid \mathrm{K}$ of K .
Lemma 32
Let Ψ be a countably subadditive on δ - field \wp of a set κ and $\Phi \neq K \subseteq \kappa$ such that $K \in \wp$, then $\Psi \mid$ Kis a countably subadditive on a δ - field $\wp \mid$ K of a set K.

Proof

Let $C_{1}, C_{2}, \ldots \in \wp \mid \mathrm{K}$ and $C=\cup_{n=1}^{\infty} C_{n}$, then $C_{1}, C_{2}, \ldots \in \wp$ and $C \epsilon \wp$. Since Ψ be a countably subadditive on \wp, then $\Psi(c) \leq \sum_{n=1}^{\infty} \Psi\left(C_{n}\right)$, but $C, C_{1}, C_{2}, \ldots \in \wp \mid \mathrm{K}$. So, we have $\Psi(C)=$ $\Psi \mid \mathrm{K}(C)$ and $\Psi\left(C_{n}\right)=\Psi \mid \mathrm{K}\left(C_{n}\right)$ for all $\mathrm{n}=1,2, \ldots$, hence $\Psi\left|\mathrm{K}(C) \leq \sum_{n=1}^{\infty} \Psi\right| \mathrm{K}\left(C_{n}\right)$ and $\Psi \mid \mathrm{K}$ is a countably subadditive on $\wp \mid \mathrm{K}$ of a set K .

Proposition 33

Let Ψ be an outer measure on δ-field \wp of a set κ and $\Phi \neq K \subseteq \aleph$ such that $K \in \wp$. Then $\Psi \mid \mathrm{K}$ is an outer measure on δ - field $\wp \emptyset \mid \mathrm{K}$ of a set K .

Proof

Since Ψ is an outer measure on \wp, then Ψ is a monotone measure and countably subadditive. By Lemma 31 and Lemma 32 we have $\Psi \mid \mathrm{K}$ is a monotone measure and countably subadditive on $\wp \mid \mathrm{K}$ of K . Therefore $\Psi \mid \mathrm{K}$ is an outer measure on $\wp \mid \mathrm{K}$ of K .

Proposition 34

Let Ψ be a null-additive on δ-field \wp of a set κ and $\Phi \neq K \subseteq א$ such that $K € \wp$. Then $\Psi \mid \mathrm{K}$ is a null-additive on δ - field $\wp \mid \mathrm{K}$.

Proof:

Let C, D be disjoint sets in $\wp \mid \mathrm{K}$ and $\Psi \mid \mathrm{K}(D)=0$. Then $\Psi(\mathrm{D})=0$.

$$
\text { Now, } \begin{aligned}
\Psi \mid \mathrm{K}(C \cup D) & =\Psi([\mathrm{CUD}) \\
& =\Psi(\mathrm{C}) \text { since } \Psi \text { is a null-additive on } \wp \\
& =\Psi \mid \mathrm{K}(C) \text { by definition of } \Psi \mid \mathrm{K} .
\end{aligned}
$$

Hence, $\Psi \mid \mathrm{K}$ is a null-additive on \wp.

3. Conclusions

The main results of this paper are the following:
(1) Let $\mathcal{\kappa}$ be a nonempty set. A collection $\wp \subseteq P(\aleph)$ is said to be δ-field of a set \mathcal{N} if the following conditions are satisfied:

1. $\Phi \in \wp$.
2. If A is a nonempty set in \wp and $A \subset B \subseteq \kappa$, then $B \in \wp$.
3. If $A_{1}, A_{2}, \ldots \in \wp$, then $\bigcap_{i=1}^{\infty} A_{i} \in \wp$.
(2) Let $\left\{\wp_{i}\right\}_{i \in I}$ be a sequence of δ-field of a set \aleph. Then $\bigcap_{i \in I} \wp_{i}$ is a δ-field of a set κ.

Ibn Al-Haitham Jour. for Pure \& Appl. Sci. 32 (2) 2019

(3) Let \wp be a δ - field of a set $\mathcal{\aleph}$ and let K be a non-empty subset of \mathcal{N}. Then the restriction of \wp on K is denoted by $\wp \mid K$ and $\wp \mid K=\{B: B=A \cap K$, for some $A \in \wp\}$.
(4) Let \wp be a δ-field of a set κ. Then every measure is null-additive.
(5) Let $\Psi_{1}, \Psi_{2}, \ldots, \Psi_{n}$ be null-additive on a δ-field \wp of a set \aleph and $t_{i} \in(0, \infty)$ for all $k=1,2, \ldots, n$. If a set function $\sum_{k=1}^{n} t_{k} \Psi_{k}: \wp \rightarrow[0, \infty]$ is defined by:
$\left(\sum_{k=1}^{n} t_{k} \Psi_{k}\right)(C)=\sum_{k=1}^{n} t_{k} \cdot \Psi_{k}(C) \quad \forall C \epsilon \wp$, then $\sum_{k=1}^{n} t_{k} \Psi_{k}$ is a null-additive on \wp.
(6) Let \wp be a δ-field of a set \aleph and $B \epsilon \wp$. If Ψ is a measure on \wp, then:

1. Ψ_{B} is a measure on \wp.
2. $\Psi_{B}(C)=\Psi(C)$, whenever $C \subseteq B$.
3. $\Psi_{B}(C)=0$, whenever C, B are disjoint sets in \wp.
(7) Let \wp be a δ - field of a set \aleph and $B \epsilon \wp$. If Ψ is an outer measure on \wp, then Ψ_{B} is an outer measure on \wp.
(8) Let \wp be a δ - field of \mathcal{N} and $B \epsilon \wp$. If Ψ is a null-additive on \wp, then Ψ_{B} is a null-additive on \wp.
(9) Let Ψ be a measure on δ - field \wp of a set κ and $\Phi \neq \mathrm{K} \subseteq \mathcal{N}$ such that $\mathrm{K} є \wp$. Then $\Psi \mid \mathrm{K}$ is a measure on a δ - field $\delta \mid \mathrm{K}$ of a set K .
(10) Let Ψ be a monotone measure on δ-field \wp of a set \mathcal{N} and $\Phi \neq K \subseteq \mathcal{N}$ such that $K \in \wp$. Then $\Psi \mid \mathrm{K}$ is a monotone measure on a δ - field $\wp \mid \mathrm{K}$ of a set K .

References

1. Robret, B.A. Real Analysis and Probability, Academic Press, Inc, New York.1972, 4-16.
2. Dietmar, A.S. Measure and Integration, ETH Zürich [Internet].2016.Available from: https://people.math.ethz.ch/~salamon/PREPRINTS/measure.pdf.
3. Zhenyuan, W.; George, J.K. Generalized Measure Theory, Springer Science and Business Media, LLC. 2009, 133-134.
4. Jun, Li.; Radko, M.; Endre, P. Atoms of weakly null-additive monotone measures and integrals. Information Sciences. elsevier Inc. 2014, 257, 183-192, doi: 10.1016/j.ins.2013.09.013.
5. Juha, K. measure and Integrals. Aalto Math [internet].2016.Available form: https://math.aalto.fi/~jkkinnun/files/measure_and_integral.pdf.
6. Peipei, W.; Minhao, Yu.; Jun, Li. Monotone Measures Defined by Pan-Integral. Advances in Pure Mathematics. 2018, 8, 535-547, doi:10.4236/apm.2018.86031.
