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Abstract 
    This paper deals with finding the approximation solution of a nonlinear parabolic boundary 
value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and 
Crank Nicolson (CN) scheme in time, the problem then reduces to solve a Galerkin nonlinear 
algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to 
solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS 
is solved once using the Cholesky method (CHM) as it appears in the matlab package and 
once again using the Cholesky reduction order technique (CHROT) which we employ it here 
to save a massive time. The results, for CHROT are given by tables and figures and show the 
efficiency of this method, from other sides we conclude that the both methods are given the 
same results, but the CHROT is very fast than the CHM.  
 
Keywords: nonlinear parabolic boundary value problem, Galerkin finite element methods, 
Crank-Nicolson. 
 
1. Introduction                                                                                                     
     In the last decades many researchers interested to study the solution of boundary value   
problems (bvps) in general and the solution of NLPBVP in particular, there are many different 
methods for solving the NLPBVP, f.g. in 2000, Karlsen and Riserbo used a corrected operator 
Splitting method [1], Pao in 2001 used the time period solutions [2], in 2006, Alam and etc 
used the simultaneous space–time adaptive wavelet method [3].  Timothy in 2010 studied the 
explicit and implicit difference method [4], in 2011 Ghoreishi and Ismail are used the 
Homotopy Perturbation Method (HPM) [ 5], and many others. 
         The study of the solution for the parabolic bvp using the finite element method (FEM) 
back to the beginning of the 17th century, and are studied from many researchers so as 
Douglas and Dupont  [6], in 1993 Reddy introduced in his book an introduction to the FEM 
was applied to linear, one and two-dimensional problems of engineering and applied sciences 
[7]. In 1997-2006 Thomee [8] studied the GFEM with backward Euler method for nonlinear 
parabolic bvp. According to these studied it was important in this paper to study the 
approximate solution for NLPBVP using the GFEM method for the space variable and the CN 
scheme for the time variable.  
This paper starts with give a description of proposed NLPBVP and its weak form (wf). The 
approximation solution of the problem is obtained by discretize the wf by using the GFEM for 
the space variable and the CN Scheme for the time variable, the problem then reduces to solve 
a GNLAS which transforms it to a LAS which is solved once using the CHM and once again 
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using that we give it the name CHROT to save a massive time, which is explained in a two 
steps formula. Finally, illustrative examples are given to solve different problems using 
MATLAB R2013a software, the results are given by tables and by figures and are show the 
efficiency of this method, and are show that the CHROT is very fast to solve the linear 
algebraic system than the CHM.  
Definition 1, [9]: A point 𝑥∗ ∈ 𝑆 ⊂ ℝ  is said to be fixed point of a given function  𝑞: 𝑆 →
ℝ , if 𝑞 𝑥∗ 𝑥∗.                                                                 
Definition 2, [9]: A function 𝑞: 𝑆 ⊂ ℝ → ℝ   is said to be contractive on 𝑆, if for each 𝑥, 𝑦 ∈
𝑆:  ‖𝑞 𝑥 𝑞 𝑦 ‖ 𝛽‖𝑥 𝑦‖ , where 0 𝛽 1  is a constant. 
Theorem 3, [9]: A contractive function 𝑞 on a complete normed space  𝑆 has a unique fixed 
point 𝑥∗ in  .                    
Theorem 4, [9]:  Let ‖∙‖ is a norm in ℝ  and 𝑆 ⊂ ℝ . If   𝑞: 𝑆 → ℝ  is contractive function 
on 𝑆, and one of the following is satisfied: 
(1) 𝑞 𝑥 ∈ 𝑆, ∀ 𝑥 ∈ 𝑆 .                                                                                               
(2) 𝑆 𝑥|‖𝑥 𝑦‖ 𝜇  and ‖𝑞 𝑦 𝑦‖ 1 𝛽 𝜇  .              

(3) 𝑆 𝑥|‖𝑥 𝑥∗ ‖ 𝜇 , where 𝑥∗ is a fixed point of 𝑞  Then 𝑥  ∈ 𝑆 , where  𝑥  is the  

𝑙 th  iterative value of  𝑥 .                         
Theorem 5, [9]:  Let ‖∙‖ is a norm in ℝ  and 𝑆 be a closed subset of ℝ . If  𝑞: 𝑆 → ℝ  is 

contractive function on, and 𝑥 ∈ 𝑆, then  

(1) 𝑥  is converge to a fixed point 𝑥∗ ∈ 𝑆    
 (2) 𝑥∗ is a unique in 𝑆                                                                                         
3. Description of the (NLPBVPCC) 
    Let W = 𝑥 𝑥 , 𝑥 ∈ ℝ : 0 𝑥  , 𝑥 1  , with Lipischitz boundary ∂W , and let  I
0, T  , 0 T ∞ , and P W I.  

The nonlinear parabolic equation is given by: -                                         
 𝑢 ∆𝑢 𝐻 �⃗�, 𝑡, 𝑢 ,  in   P                                                                                                   (1)                        
with the boundary condition (b.c)                                                                                           
 𝑢 �⃗�, 𝑡 0 , on  ∂𝑊 I                                                                                                         (2)                        
and the initial condition (i.c)                                                                                                  
𝑢 �⃗�, 0 𝑢 �⃗�  ,   in W                                                                                                          (3)                        

where    𝑢 𝑢 �⃗�, 𝑡  , ∆𝑢 ∑    is the Laplace operator and   𝐻 ∈ 𝐶 𝑊 .  

In this work the inner product and norm in L W  will be denoted by ∙ ,∙  and  ‖∙‖  , the 
inner product and norm in Sobolev space  V H W  will be denoted by ∙ , ∙  and  ‖∙‖ , 
the duality bracket between  V and its dual   V∗ will be denoted by 〈∙ ,∙〉 and  ‖∙‖  be the norm 
in  L P  .                        
Now, the wf   of (1-3) is given by: 
 〈𝑢  , 𝜉 〉  〈𝛻𝑢 , 𝛻𝜉〉 = 𝐻 𝑢 , 𝜉  ,  ∀  𝜉 ∈ 𝑉     a.e   on   I                                                      (4)                       
𝑢 0  , 𝜉  = 𝑢  , 𝜉 ,   in  W                                                                                                   (5)      

  with  𝑢  belongs to 𝑉 and to 𝐿 W  since  𝑉 ⊂  𝐿 W  .                                 
Assumptions:  
(1) for some positive constants  𝛾  , 𝛾   and for each   𝜂  , 𝜂  ∈ 𝑉 & 𝑡 ∈ I ̅ , the following 
inequality are satisfies  
      | 𝛻𝜂  , 𝛻𝜂 |  𝛾  ‖𝛻𝜂 ‖  ‖𝛻𝜂 ‖          
      𝛻𝜂 , 𝛻𝜂   𝛾  ‖𝛻𝜂 ‖                                                                                                    
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(2) the function  H is of a Carathéodory type on  P ℝ , satisfies the following sub linearity  
and  Lipischitz conditions  
     |𝐻 �⃗�, 𝑡, 𝑢 | 𝛿 �⃗�, 𝑡 𝑐 |𝑢|,  where 𝑐 0 , (�⃗�, 𝑡 ∈ 𝑃  , , 𝑢 ∈ ℝ and 𝛿 ∈ 𝐿 𝑃, ℝ  
     |𝐻 �⃗�, 𝑡, 𝑢 𝐻 �⃗�, 𝑡, 𝑢 | 𝐿|𝑢 𝑢 |, where (𝑥, 𝑡 ∈ 𝑃, 𝑢 , 𝑢 ∈ ℝ, L is a Lipischitz 
constant. 
4. Discretization of the Continuous Equation:                          
    The wf of (4-5) is discretized by using the GFEM, as follows, let the domain W is a 

polyhedron. For every integer 𝑛, let 𝑊  be an admissible regular traingulation of  W 

into closed disimplices [8], 𝐼   be a subdivision of the interval I̅ into 𝑁𝑇 𝑛  intervals, 

where 𝑡  𝑡  , 𝑡  , of equal length  ∆𝑡 𝑇 𝑁𝑇⁄ , let 𝑂 𝑊 𝐼   and  𝑉  ⊂ 𝑉

𝐻 W  be the space of continuous piecewise affine in W. The Discrete state equation (DSEq) 
of the wf (4-5) is obtained after using the CN formula and is given by 

 𝑢 𝑢  , 𝜉  + ∆𝑡 𝛻𝑢  , 𝛻𝜉  = ∆𝑡 𝐻 𝑡  , 𝑢 , 𝜉  , j=0,1,...,NT-1                               (6)                         

 𝑢 , 𝜉 𝑢 , 𝜉                                                                                                                      (7)                        

where  𝜉 ∈ 𝑉 ,  𝑢  𝑢 𝑢  , 𝑡 𝑡 𝑡  ,  j=0,1 ...,NT, 𝑢 ∈ 𝑉 𝑎𝑛𝑑 𝑢

𝑢 𝑡 ∈ 𝑉 , ∀ 𝑗 0,1, … , 𝑁𝑇.  

                                                            
5. The Approximation Solution of the Nonlinear Parabolic Equation:                               
    To find the approximation solution (app.sol)   𝑢 𝑢 , 𝑢 , … , 𝑢   of (6-7) by using the 
GFEM, the following procedure can be used: 
(1) For fixed any  𝑗 , 0 𝑗 𝑁𝑇 1 , let 𝜉  , 𝑖 1,2, … , 𝑁 , 𝑤𝑖𝑡ℎ 𝜉 �⃗� 0 , 𝑜𝑛 𝜕𝑊  be a 
continuous piecewise affine finite basis of  𝑉  in W , then for any i=1,2,...,N  and  𝑢 , 𝑢 ∈ 

𝑉   (6-7) can be rewritten as: 

 𝑢 𝑢 , 𝜉 ∆𝑡 𝛻𝑢 , 𝛻𝜉 ∆𝑡 𝐻 𝑡 , 𝑢 𝑢 , 𝜉                                          (8)                       

𝑢 , 𝜉 𝑢 , 𝜉      ,   𝜉 ∈ 𝑉  ,  
 (9)  

(2) Using the Galerkin method [8], with the basis 𝜉 , 𝜉 , … , 𝜉  of   𝑉  , one has       𝑢

∑ 𝑋 𝜉   , ,  𝑢 ∑ 𝑋 𝜉   , and   𝑢 ∑ 𝑋 𝜉 

where , 𝑋 𝑋 𝑡   , for each 𝑗 0,1, … , 𝑁𝑇 are unknown constants to be determine.                            

(3) Substitute  𝑢  𝑎𝑛𝑑 𝑢  in  (8) to get the following nonlinear algebraic system 

𝑌 ∆𝑡𝑍 𝑋 𝑌 ∆𝑡𝑍 𝑋 𝑏 𝑡  ,    𝑗 0,1, … , 𝑁𝑇 1                                     (10)                       

 and substituting  𝑢   in  (9) to get the following  linear algebraic system           
 𝑌𝑋 𝑏                                                                                             (11)                        

where  𝑌 𝑦  , 𝑦 𝜉 , 𝜉 , 𝑍 𝑧  , 𝑧 𝛻𝜉 , 𝛻𝜉  ,  𝑋

𝑥 , 𝑥 , … , 𝑥  ,  𝑉 𝜉 , 𝜉 , … , 𝜉  ,  �⃗� 𝑏  ,  𝑏 ∆𝑡 𝐻 𝑉 𝑋

𝑉 𝑋 , 𝜉   and   𝑏 𝑏   ,  𝑏 𝑢 , 𝜉  ,       ∀ 𝑖, 𝑘 1,2, … , 𝑁.                                                         

System (10-11) has a unique solution [10]. To solve it, the linear algebraic system  (11) is 
solved at first to get  𝑋 , then to solve the nonlinear system (10) the PCT is used here [8], 

as follows : For each  𝑗 0 𝑗 𝑁𝑇 1  we predict at first the value  𝑋  by using the 
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explicit form (just the value of  𝑋 ) in the component of  𝑏 in the right hand side (RHS) of  

(10) , then by substitute   𝑋 𝑋 , in the component of  𝑏 in the   RHS  of  (10), 

makes system (10) linear, solving it  w.r.t  𝑋   to get the corrector solution , this 
procedure can be repeated (more than one time if we need) by substitute  the corrector 

solution  𝑋 𝑋   in the   RHS  of the linear system  (10) and solve it again w.r.t  

𝑋  , for fixed   𝑗 , to get a new corrector solution). Hence the corrector equation 
described as follows: 

  𝑢 𝑢 , 𝜉 ∆𝑡 𝛻𝑢 𝛻𝑢 , 𝛻𝜉  ∆𝑡 𝐻 𝑢 𝑢 , 𝜉                           (12)                            

where 𝑢 ∶ 𝑢  is the predictor solution at the iteration 𝑙 1,  𝑢 ∶ 𝑢   is its 

corresponding corrector solution at the iteration 𝑙   and  𝑢 𝑢  is the known corrector 

solution for the previous step  j, i.e. (12) can be written as :  

 𝑢 𝑞 𝑢                                                                                                                 (13)                            

Theorem 6:  The discrete state Equation (6-7) with fixed point and for  ∆𝑡  sufficiently 
small has a unique solution  𝑢 𝑢 , 𝑢 , … , 𝑢  , and the sequence of corrector solutions 
is convergence in ℝ. 

 Proof: Let 𝑢 𝑢 , … , 𝑢 , … , 𝑢    and        𝑣

𝑣 , … , 𝑣 , … , 𝑣    are two solutions of (12) , i.e.  

(𝑢 𝑢 , 𝜉 ∆𝑡 ∇𝑢 ∇𝑢 , ∇𝜉 ∆𝑡 𝐻 𝑢 𝑢 , 𝜉                          (14)   

                                       

( 𝑣 𝑢 , 𝜉 ∆𝑡 ∇𝑣 ∇𝑢 , ∇𝜉 ∆𝑡 𝐻 𝑣 𝑢 , 𝜉                              (15)                         

By subtracting (15) from (14), setting  𝜉 𝑢 𝑣   in the obtained equation and using  

Lipschitz condition on 𝐻 with respect to for 𝑢, once get that 

 𝑢 𝑣 + ∆𝑡 ∇𝑢 ∇𝑣      ∆𝑡𝐿 𝑢 𝑣 , 𝑢 𝑣  .     

Keep in mind that the  2  term in the left hand side (LHS) is positive and then using Cauchy 
Schwarz (CS) inequality on the RHS of above inequality, once get that 

𝑢 𝑣 𝛽 𝑢 𝑣    , where  𝛽 ∆𝑡𝐿 ,                                 

using (13), to get that  

𝑞 𝑢 𝑞 𝑣 𝛽 𝑢 𝑣                                                              

 Since ∆𝑡 is  sufficiently small and  𝛽 1, then q is contractive, and  by theorem (1) we get  

𝑢 𝑣 , hence the DSEq has a unique solution, also since 𝑢 ∈ ℝ , ∀ 𝑙   then 
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𝑞 𝑢 𝑢 ∈ ℝ , ∀ 𝑙 implies that 𝑞 𝑢 ∈ 𝑅 , ∀ 𝑢 ∈ ℝ ,  and by using Theorem (3) with 

S=ℝ , we get that 𝑢  is converged to a point in ℝ .   

6. Cholesky Reduction Order Technique 

  This technique in fact is based on an idea which is introduce first in [11] about reducing the 
diagonal elements of the Galerkin matrix into columns, we formulate it by the following steps 
hence we called it by the Cholesky reduction order technique (CHROT): 

 First, the 𝑁 𝑁  obtained matrix is reduced to  𝑁 𝑀1  matrix 𝐴  by transform the lower 
diagonals (𝑀1  of 𝑁 𝑁 matrix to columns, second the reduction of matrix 𝐴  is a new 𝑁
𝑀1 matrix 𝑅 which is computed by using the following formula : 

for 1,2, … , 𝑁 , 𝑗 𝑖 1 , … , min 𝑖 𝑀, 𝑁                                               

• if  𝑖 1, then   𝑅 𝐴    and    𝑅      ,  𝑙 𝑖 𝑗 𝑀1               

• if  𝑖 1, then   𝑅 𝐴 ∑ 𝑅    ,  𝐾 max 𝑖 𝑀, 1 : 𝑖 1  

    𝑅 𝐴 ∑ 𝑅 𝑅      ,  𝑠 𝑟 𝑖 𝑗  ,  with     𝑗 𝐾 𝑀 .     

Example 7: Consider the following nonlinear parabolic b.v.p.:   
𝑢 ∆𝑢 𝐻 �⃗�, 𝑡, 𝑢    , where  �⃗� 𝑥 , 𝑥   
 𝑢 �⃗�, 𝑡 0   , on  ∂𝑊 I  
𝑢 �⃗�, 0 𝑥 𝑥 1 𝑥 1 𝑥  , on 𝑊        
where,  𝐻 �⃗�, 𝑡, 𝑢 𝑒 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 1 sin 𝑒 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥  𝑢 sin 𝑢                                                                                                           
The exact solution of this problem is:  𝑢 �⃗�, 𝑡 𝑥 𝑥 1 𝑥 1 𝑥 𝑒           
This problem solved using the GFEM for M=9 and NT=20, the results are shown in Table 1. 
and Figure 1. at time  �̂� 0.5 , the table shows the approximate solution  𝑢 𝑥 , 𝑥 , 𝑡  , the 
exact solution  𝑢 𝑥 , 𝑥 , 𝑡  and the absolute error at  𝑥  & 𝑥 . The Mat lap Software is used to 
solve this problem, it takes 5-hours when we use the CHM, while takes 1-hour and 7- 
minutes when we use the CHROT. 

Table 1. Comparison between exact and approximation solutions 

𝑥   𝑥   𝑢 𝑥 , 𝑥 , 𝑡  𝑢 𝑥 , 𝑥 , 𝑡  absolute error 𝑥  𝑥  𝑢 𝑥 , 𝑥 , 𝑡  𝑢 𝑥 , 𝑥 , 𝑡  absolute error 

0.1 0.1  0.0137    0.0137  0.0000 0.6 0.5  0.1014    0.1029  0.0015 
0.2 0.1  0.0243    0.0247  0.0004 0.7 0.5  0.0887    0.0901  0.0014 
0.3 0.1   0.0319    0.0323  0.0004 0.8 0.5  0.0676    0.0687  0.0011 
0.4 0.1  0.0365    0.0370  0.0005 0.9 0.5  0.0380    0.0386  0.0006 
0.5 0.1  0.0380    0.0386  0.0006 0.1 0.6  0.0365    0.0370  0.0005 
0.6 0.1  0.0365    0.0370  0.0005 0.2 0.6  0.0649    0.0659  0.0010 
0.7 0.1  0.0319    0.0324  0.0005 0.3 0.6  0.0852    0.0865  0.0013 
0.8 0.1  0.0243    0.0247 0.0004 0.4 0.6 0.0974   0.0988  0.0014 
0.9 0.1  0.0137    0.0140  0.0003 0.5 0.6  0.1014    0.1029  0.0015 
0.1 0.2  0.0243    0.0247  0.0004 0.6 0.6  0.0974    0.0988  0.0014 
0.2 0.2  0.0433    0.0440  0.0007 0.7 0.6  0.0852    0.0865  0.0013 
0.3 0.2  0.0568    0.0577  0.0009 0.8 0.6  0.0649    0.0659  0.0010 
0.4 0.2  0.0649    0.0659  0.0010 0.9 0.6  0.0365    0.0370  0.0005 
0.5 0.2  0.0676    0.0687 0.0011 0.1 0.7 0.0319   0.0324  0.0005 
0.6 0.2  0.0649    0.0659 0.0010 0.2 0.7 0.0568   0.0576  0.0008 
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0.7 0.2  0.0568    0.0576  0.0008 0.3 0.7  0.0745    0.0757  0.0012 
0.8 0.2  0.0433    0.0438  0.0005 0.4 0.7  0.0852    0.0865  0.0013 
0.9 0.2  0.0243    0.0247  0.0004 0.5 0.7  0.0887    0.0901  0.0014 
0.1 0.3  0.0319    0.0323  0.0004 0.6 0.7  0.0852    0.0865  0.0013 
0.2 0.3  0.0568    0.0577  0.0009 0.7 0.7  0.0745    0.0756  0.0011 
0.3 0.3  0.0745    0.0756  0.0011 0.8 0.7  0.0568    0.0577  0.0009 
0.4 0.3  0.0852    0.0865  0.0013 0.9 0.7  0.0319    0.0323  0.0004 
0.5 0.3  0.0887    0.0901  0.0014 0.1 0.8  0.0243    0.0247  0.0004 
0.6 0.3  0.0852    0.0865  0.0013 0.2 0.8  0.0433    0.0438  0.0005 
0.7 0.3  0.0745    0.0757  0.0012 0.3 0.8  0.0568    0.0576  0.0008 
0.8 0.3  0.0568    0.0576  0.0008 0.4 0.8  0.0649    0.0659  0.0010 
0.9 0.3  0.0319    0.0324  0.0005 0.5 0.8  0.0676    0.0687  0.0011 
0.1 0.4  0.0365    0.0370  0.0005 0.6 0.8  0.0649    0.0659  0.0010 
0.2 0.4  0.0649    0.0659  0.0010 0.7 0.8  0.0568    0.0577  0.0009 
0.3 0.4  0.0852    0.0865  0.0013 0.8 0.8  0.0433    0.0440  0.0007 
0.4 0.4  0.0974    0.0988  0.0014 0.9 0.8  0.0243    0.0247  0.0004 
0.5 0.4  0.1014    0.1029  0.0015 0.1 0.9  0.0137    0.0140  0.0003 
0.6 0.4  0.0974    0.0988  0.0014 0.2 0.9  0.0243    0.0247  0.0004 
0.7 0.4  0.0852    0.0865  0.0013 0.3 0.9  0.0319    0.0324  0.0005 
0.8 0.4  0.0649    0.0659  0.0010 0.4 0.9  0.0365    0.0370  0.0005 
0.9 0.4  0.0365    0.0370 0.0005 0.5 0.9 0.0380   0.0386  0.0006 
0.1 0.5  0.0380    0.0386  0.0006 0.6 0.9  0.0365    0.0370  0.0005 
0.2 0.5  0.0676    0.0687  0.0011 0.7 0.9 0.0319    0.0323  0.0004 

0.3 0.5  0.0887    0.0901  0.0014 0.8 0.9  0.0243    0.0247  0.0004 

0.4 0.5  0.1014    0.1029  0.0015 0.9 0.9 0.0137    0.0137 0.0000 

0.5 0.5  0.1057    0.1072  0.0015      

 

Figure 1. (a) shows the approximation solution and (b) shows the exact solution 

Example 8:  Consider the following nonlinear b.v.p.:  
𝑢 ∆𝑢 𝐻 �⃗�, 𝑡, 𝑢    , where  �⃗� 𝑥 , 𝑥                                                            
 Associated with the i.c and b.c                                                                                             
 𝑢 �⃗�, 𝑡 0   , on  ∂𝑊 I 
 𝑢 �⃗�, 0 0   , on 𝑊                                                                                                                   
where   𝐻 �⃗�, 𝑡, 𝑢 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 1 𝑡 sin 𝑡 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
𝑥 𝑥                         

                                  2𝑡 𝑥 𝑥 𝑥 𝑥 𝑢 sin 𝑢 

The exact solution of this problem is:   𝑢 �⃗�, 𝑡  𝑥 𝑥 𝑡 1 𝑥 1 𝑥                                                         
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This problem is solved using the GFEM for M=9 and NT=20, the results are shown in Table 
2. and Figure 2. at  �̂� 0.5 , the table shows the approximate solution  𝑢 𝑥 , 𝑥 , 𝑡  , the exact 
solution  𝑢 𝑥 , 𝑥 , 𝑡  and the absolute error at  𝑥  & 𝑥  . This problem is take 13 hours when 
we use the CHM to solve the PCT, while takes 3 hours and 27 minute when we use the 
CHROT. 

Table 2. Comparison between exact and approximation solutions 

 

𝑥  𝑥  𝑢 𝑥 , 𝑥 , 𝑡  𝑢 𝑥 , 𝑥 , 𝑡  absolute error 𝑥  𝑥  𝑢 𝑥 , 𝑥 , 𝑡  𝑢 𝑥 , 𝑥 , 𝑡  absolute error 

0.1 0.1  -0.0043    -0.0044 0.0001 0.6 0.5 -0.0315   -0.0328  0.0013 
0.2 0.1  -0.0076    -0.0079  0.0003 0.7 0.5 -0.0276    -0.0287  0.0011 
0.3 0.1 -0.0099    -0.0103  0.0004 0.8 0.5 -0.0210    -0.0219  0.0009 
0.4 0.1  -0.0113    -0.0118  0.0005 0.9 0.5 -0.0118    -0.0123  0.0005 
0.5 0.1  -0.0118    -0.0123  0.0005 0.1 0.6 -0.0113    -0.0118  0.0005 
0.6 0.1  -0.0113    -0.0118  0.0005 0.2 0.6 -0.0202    -0.0210  0.0008 
0.7 0.1  -0.0099    -0.0103 0.0004 0.3 0.6 -0.0265   -0.0276  0.0011 
0.8 0.1  -0.0076    -0.0079  0.0003 0.4 0.6 -0.0302    -0.0315  0.0013 
0.9 0.1  -0.0043    -0.0044  0.0001 0.5 0.6 -0.0315    -0.0328  0.0013 
0.1 0.2 -0.0076    -0.0079  0.0003 0.6 0.6 -0.0302    -0.0315  0.0013 
0.2 0.2 -0.0134    -0.0140  0.0006 0.7 0.6 -0.0265    -0.0276  0.0011 
0.3 0.2 -0.0176    -0.0184  0.0008 0.8 0.6 -0.0202    -0.0210  0.0008 
0.4 0.2 -0.0202    -0.0210 0.0008 0.9 0.6 -0.0113   -0.0118  0.0005 
0.5 0.2 -0.0210    -0.0219 0.0009 0.1 0.7 -0.0099   -0.0103  0.0004 
0.6 0.2 -0.0202    -0.0210  0.0008 0.2 0.7 -0.0176    -0.0184  0.0008 
0.7 0.2 -0.0176    -0.0184  0.0008 0.3 0.7 -0.0232    -0.0241  0.0009 
0.8 0.2 -0.0134    -0.0140  0.0006 0.4 0.7 -0.0265    -0.0276  0.0011 
0.9 0.2 -0.0076    -0.0079  0.0003 0.5 0.7 -0.0276    -0.0287  0.0011 
0.1 0.3 -0.0099    -0.0103 0.0004 0.6 0.7 -0.0265   -0.0276  0.0011 
0.2 0.3 -0.0176    -0.0184 0.0008 0.7 0.7 -0.0232   -0.0241  0.0009 
0.3 0.3 -0.0232    -0.0241  0.0009 0.8 0.7 -0.0176    -0.0184  0.0008 
0.4 0.3 -0.0265    -0.0276  0.0011 0.9 0.7 -0.0099    -0.0103  0.0004 
0.5 0.3 -0.0276    -0.0287  0.0011 0.1 0.8 -0.0076    -0.0079  0.0003 
0.6 0.3 -0.0265    -0.0276  0.0011 0.2 0.8 -0.0134    -0.0140  0.0006 
0.7 0.3 -0.0232    -0.0241  0.0009 0.3 0.8 -0.0176    -0.0184  0.0008 
0.8 0.3 -0.0176    -0.0184  0.0008 0.4 0.8 -0.0202    -0.0210  0.0008 
0.9 0.3 -0.0099    -0.0103  0.0004 0.5 0.8 -0.0210    -0.0219  0.0009 
0.1 0.4 -0.0113    -0.0118  0.0005 0.6 0.8 -0.0202    -0.0210  0.0008 
0.2 0.4 -0.0202    -0.0210  0.0008 0.7 0.8 -0.0176    -0.0184  0.0008 
0.3 0.4 -0.0265    -0.0276  0.0011 0.8 0.8 -0.0134    -0.0140  0.0006 
0.4 0.4 -0.0302    -0.0315  0.0013 0.9 0.8 -0.0076    -0.0079  0.0003 
0.5 0.4 -0.0315    -0.0328  0.0013 0.1 0.9 -0.0043    -0.0044  0.0001 
0.6 0.4 -0.0302    -0.0315  0.0013 0.2 0.9 -0.0076    -0.0079  0.0003 
0.7 0.4 -0.0265    -0.0276  0.0011 0.3 0.9 -0.0099    -0.0103  0.0004 
0.8 0.4 -0.0202    -0.0210  0.0008 0.4 0.9 -0.0113    -0.0118  0.0005 
0.9 0.4 -0.0113    -0.0118  0.0005 0.5 0.9 -0.0118    -0.0123  0.0005 
0.1 0.5 -0.0118    -0.0123  0.0005 0.6 0.9 -0.0113    -0.0118  0.0005 
0.2 0.5 -0.0210    -0.0219  0.0009 0.7 0.9 -0.0099    -0.0103  0.0004 

0.3 0.5 -0.0276    -0.0287  0.0011 0.8 0.9 -0.0076    -0.0079  0.0003 

0.4 0.5 -0.0315    -0.0328  0.0013 0.9 0.9 -0.0043    -0.0044 0.0001 

0.5 0.5 -0.0328    -0.0342  0.0014      
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Figure 2. (a) shows the approximation solution and (b) shows the exact solution 

7. Conclusion  

• The GFEM associated with the PCT is suitable, efficient and very fast to solve the 
nonlinear parabolic boundary value problems. 

• The CHROT is very fast than the CHM with same results and this is important when 
we have problems gives very large algebraic systems which take a long time in the 
classical CHM.            

• The value of  �̂� is chose arbitral in the interval I , same results with same accuracy will 
obtained if we can take any other value of  �̂� provided this value belong to I. 

 
Acknowledgement: The authors thank Prof. Dr. I. Chryssoverghi for fruitful discussion. 
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