WE-Prime Submodules and WE-Semi-Prime Submodules

Saif A. Hussin

Haibt K. Mohammadali

Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Iraq, Tikrit Saif.a19881988@gmail.com

Article history: Received 5 August 2018, Accepted 18 September 2018, Published December 2018

Abstract

In this article, we introduce the concept of a WE-Prime submodule , as a stronger form of a weakly prime submodule. And as a generalization of WE-Prime submodule, we introduce the concept of WE-Semi-Prime submodule, which is also a stronger form of a weakly semi-prime submodule. Various basic properties of these two concepts are discussed. Furthermore, the relationships between WE-Prime submodules and weakly prime submodules and studied. On the other hand, the relation between WE-Prime submodules and WE- Semi - Prime submodules are consider. Also the relation of "WE – Sime - Prime submodules and weakly semi-prime submodules are explained. Behind that, some characterizations of these concepts are investigated .

Keywords: weakly prime submodules, weakly semi-prime submodules, WE-Prime submodules, WE-Semi-Prime submodules.

1. Introduction

Weakly prime submodule have been introduced and studied by Hadi M. A in [1], where a proper submodule K of an R-module X is called a weakly prime, if wherever $0 \neq rx \in K$, where $r \in R, x \in X$, implies that either $x \in K$ or $r \in [K:X]$, where $[K:X] = \{a \in R : aX \leq X\}$ K. Weakly semi-prime submodule have been introduced and studied by Farzalipour F in [2], where a proper submodule K of an R-module X is called a weakly semi-prime if wherever $0 \neq r^2 x \in K$, where $r \in R, x \in X$, implies that $rx \in K$. Throughout this note all rings will be commutative with identity, and all R-modules are left unitary . A proper submodule K of an R-module X is said to be fully invariant if $f(K) \leq K$ for each $f \in$ End(X) [3]. An R-module M is called X- Injective, if for every R-homomorphism $g: N \to M$, and every R-homomorphism $f: N \to X$, there exists an R-homomorphism $h: X \to M$, where N is an R-module such that hof = g[5]. An R-module P is called X-Projective if for every R-homomorphism $f: P \to N$ and every R-epimorphism $g: M \to N$, there exists an R-homomorphism $h: P \to M$ such that goh = f [5]. An R-module X is called a scalar module if for each $f \in End(X)$, there exists $r \in R$ such that f(m) = rm for each $m \in X[6]$.

2. WE-Prime Submodules

In this section, we introduce the concept WE-Prime submodule as a stronger form of a weakly prime submodule, and established some of its basic properties, examples and characterizations.

Definition (1)

A proper submodule K of an R-module X is said to be a weakly endo-prime (for a short WE-Prime), where E = End(X), if wherever, $0 \neq \psi(x) \in K$, where $\psi \in End(X)$, $x \in X$, implies that either $x \in K$ or $\psi(x) \leq K$. And an ideal I of a ring R is said to be a weakly endo-prime ideal (WE-Prime ideal), if I is a WE-Prime as an R-submodule of an R-module R.

The following proposition gives relation of WE-Prime submodules and weakly prime submodules .

Proposition (2)

Every WE-Prime submodule of an R-module X is a weakly prime submodule of X.

Proof

Assume that K is a WE-Prime submodule of X, and $0 \neq rx \in K$, where $r \in R, x \in X$, with $x \notin K$. Now, let $\psi: X \to X$ be a mapping defined by $\psi(x) = rx$ for all $x \in X$. Clearly $\psi \in End(X)$. In fact we have $0 \neq rx = \psi(x) \in K$. But K is a WE-Prime submodule of X, and $x \notin K$, implies that $\psi(x) \leq K$, hence $rx \leq K$, so $r \in [K:X]$. Therefore K is a weakly prime submodule of X.

The converse of Proposition (2) is not true in general, as the following example shows .

Example (3)

Let $X = Z_3 \oplus Z$ and $R=Z, K = \langle \overline{0} \rangle \oplus 3Z$. Clearly K is a weakly prime submodule of X, but K is not WE-Prime submodule of X. Since we define $\psi: X \to X$ by $\psi(\overline{a}, b) = (\overline{0}, b)$ for all $(\overline{a}, b) \in X$. Clearly $\psi \in End(X)$. Now $(\overline{0}, 0) \neq \psi(\overline{1}, 3) = (\overline{0}, 3) \in K$, but $(\overline{1}, 3) \notin K$ and $\psi(X) = (\overline{0}) \oplus Z \leq K$.

The converse of Proposition (2) is true in the class of cyclic R-modules, as the following proposition shows .

Proposition (4)

Let X be a cyclic R-module, and K is a proper submodule of X such that K is a weakly prime submodule of X. Then K is a WE-Prime submodule of X .

Proof

Assume that K is a weakly prime submodule of cyclic R-module X, where $X = Rm, m \in X$. Suppose that $0 \neq \psi(x) \in K$, where $\psi \in End(X), x \in X$ and $x \notin K$. Now, let $y \in X$, then y = rm and $x = r_1m$ for some $r, r_1 \in R$. Thus, $0 \neq \psi(x) = r_1\psi(m) \in K$, but K is a weakly prime submodule of X, then either $r_1 \in [K:X]$ or $\varphi(m) \in K$. But $r_1 \notin [K:X]$ for $x = r_1m \notin K$. Hence $\psi(m) \in K$, hence $\psi(y) = r\psi(m) \in K$. Therefore $\psi(X) \leq K$.

Corollary (5)

Let K be a proper submodule of a cyclic R-module X . Then K is a WE-Prime if and only if K is a weakly prime submodule of X.

Proposition (6)

Let X be a faithful R-module , and K is a WE-Prime submodule of X . Then [K:X] is a WE-Prime ideal of R.

Proof

Since K is a WE-Prime submodule of X, then by Proposition (2.2), K is a weakly prime submodule of X. Hence by [1, Prop.2.4], we get [K:X] is a weakly prime ideal of R. But R is a cyclic R-module, then by Proposition (2.4), we get [K:X] is a WE-Prime ideal of R.

We need to recall the following result before we introduce the next proposition .

Lemma (7) [3]

Let N and K be two submodules of an R-module X, then

- 1. If $N \leq K$, then $[N:X] \leq [K:X]$.
- 2. If $N \leq K$, then $[N:X] \leq [N:K]$.

The following proposition is a characterization of a WE-Prime submodules .

Proposition (8)

Let K be a proper fully invariant submodule of an R-module X. Then K is a WE-Prime submodule of X if and only if $[K:\psi(X)] = [K:\psi(H)]$ for all $\psi \in End(X)$ and a non-zero submodule H of X with K < H.

Proof

(⇒) Assume that K is a WE-Prime submodule of X, and H is a non-zero submodule of X such that K < H. Let $\psi \in End(X)$, then by Lemma (2.7)(2) we have $[K:\psi(X)] \leq [K:\psi(H)]$, since K < H, then there exists $x \in H$ and $x \notin K$. Now, suppose that b is a non-zero element in $[K:\psi(H)]$, then $0 \neq b\psi(H) \leq K$, implies that $0 \neq b\psi(x) \in K$, where $x \in H \leq X$. Define $\psi: X \to X$ by $\psi(y) = b\psi(y)$ for all $y \in X$, clearly $\psi \in End(X)$, also $0 \neq b\psi(x) = \psi(x) \in K$. But K is a WE-Prime submodule of X, and $x \notin K$, then $\psi(X) \leq K$, implies that $b\psi(X) \leq K$ and hence $b \in [K:\psi(X)]$. Thus $[K:\psi(H)] \leq [K:\psi(X)]$, and it follows that $[K:\psi(X)] = [K:\psi(H)]$.

(⇐) Assume that $0 \neq \psi(x) \in K$, where $x \in X$ and $\psi \in End(X)$, and suppose that $x \notin K$, we want to show that $\psi(X) \leq K$. Since $x \notin K$, then K < K + Rx, where K + Rx is a non-zero submodule of X. Thus by our hypothesis, we get $[K:\psi(X)] = [K:\psi(K + Rx)]$. Since K is a fully invariant, then $\psi(K) \leq K$ and $\psi(Rx) \leq K$, it follows that $\psi(K + Rx) \leq K$. Hence $[K:\psi(K + Rx)] = R$, therefore $1 \in [K:\psi(K + Rx)]$, implies that $1 \in [K:\psi(X)]$, hence $\psi(X) \leq K$. Thus K is a WE-Prime submodule of X.

Proposition (9)

Let X be an R-module, and L, H are submodules of X, with H is a fully invariant submodule of X and $H \le L$. If $\frac{L}{H}$ is a WE-Prime submodule of $\frac{X}{H}$, then L is a WE-Prime submodule of X.

Proof

Assume that $0 \neq \psi(x) \in L$, where $x \in X$ and $\psi \in End(X)$. If $x \notin L$, then we must show that $\psi(X) \leq L$. Define $\psi_1: \frac{X}{H} \longrightarrow \frac{X}{H}$ by $\psi_1(x + H) = \psi(x) + H$ for all $x \in X$. To prove that φ_1 is well define, suppose that $x_1 + H = x_2 + H$ where $x_1, x_2 \in X$, then $x_1 - x_2 \in H$, hence $\psi(x_1 - x_2) \in \psi(H) \leq H$ because H is a fully invariant. It follows that $\psi(x_1) - \psi(x_2) \in H$. Hence $\psi(x_1) + H = \psi(x_2) + H$, implies that $\psi_1(x_1) + H = \psi_1(x_2) + H$. Since $0 \neq \psi(x) \in U$.

L, implies that $0 \neq \psi(x) + H = \psi_1(x + H) \in \frac{L}{H}$. But $\frac{L}{H}$ is a WE-Prime submodule of $\frac{X}{H}$, and $x + H \notin \frac{L}{H}$, implies that $\psi_1\left(\frac{X}{H}\right) \leq \frac{L}{H}$, thus, we have $\frac{\psi(X)+H}{H} \leq \frac{L}{H}$, it follows that $\psi(X) + H \leq L$. Thus $\psi(X) \leq L$. Hence L is a WE-Prime submodule of X. **Proposition (10)**

Let L and K are submodules of an R-module X , with L is an X-injective, and K is a WE-Prime submodule of X . Then either $L \leq K$ or $K \cap L$ is a WE-Prime submodule of L .

Proof

Assume that $L \leq K$, then $K \cap L$ is a proper submodule of L. Now, let $0 \neq \psi(x) \in K \cap L$, where $x \in L$ and $\psi \in End(L)$. Suppose that $x \notin K \cap L$, then $x \notin K$. Now, consider the following diagram, where i is the inclusion map. Since L is an X-injective then there exists $\phi: X \to L$ such that $\phi oi = \psi$. Clearly $\phi \in End(X)$, but $0 \neq \psi(x) = (\phi oi)(x) = \phi(x) \in K$, implies that $0 = \phi(x) \in K$. But K is a WE-Prime submodule of X and $x \notin K$, then $\phi(X) \leq K$. Also, we have $\psi(L) = (\phi oi)(L) = \phi(L) \leq L$ and $\psi\psi(L) = \phi(L) \leq \phi(X) \leq K$. Hence $\psi(L) \leq K \cap L$, it follows that $K \cap L$ is a WE-Prime submodule of L.

Proposition (11)

Let X be an R-module and K, L are non-trivial submodules of X such that L is a WE-Prime submodule of X and IK is a non-zero submodule of L for some ideal I of R. If $I \leq [L:X]$ then $K \leq L$.

Proof

Suppose that $y \in K$, since $I \leq [L:X]$, then there exists $i \in I$ and $i \notin [L:X]$. Now, let $\psi: X \to X$ define by $\psi(x) = ix$ for all submodule $x \in X$, clearly $\psi \in End(X)$. Since IK is a non-zero submodule of L, then iy is a non-zero element in K. That is $0 \neq \psi(y) = iy \in IK \leq L$, implies that $0 \neq iy \in L$, but L is a WE-Prime submodule of X, and $iX = \psi(X) \leq L$, implies that $y \in L$. Thus $K \leq L$.

Proposition (12)

Let X be an R-module and $\psi: X \to X$ be an R-homomorphism, and K be a proper fully invariant WE-Prime submodule of X with $\psi(X) \leq K$. Then $\psi^{-1}(K)$ is a WE-Prime submodule of X.

Proof

Clearly $\psi^{-1}(K)$ is a proper submodule of X. Now, assume that $0 \neq \phi(x) \in \psi^{-1}(K)$ where $x \in X, \phi \in End(X)$. If $x \notin \psi^{-1}(K)$, then $\psi(x) \notin K$, it follows that $x \notin K$ because K is a fully invariant submodule of X. We must prove that $\phi(X) \leq \psi^{-1}(K)$. Since $0 \neq \psi o \phi(x) = \psi(\phi(x)) \in K$. That is $0 \neq \psi(\phi(x)) \in K$. But K is a WE-Prime submodule of X, and $x \notin K$, it follows that $(\psi o \phi)(X) \leq K$, implies that $\phi(X) \leq \psi^{-1}(K)$. Hence $\psi^{-1}(K)$ is a WE-Prime submodule of X.

3. WE-Semi-Prime Submodules

In this section, we introduce the concept of WE-Semi-Prime submodule as a generalization of a WE-Prime submodule and stronger form of a weakly semi-prime submodule and give some basic properties, examples and characterizations of this concept.

Definition (13)

A proper submodule K of an R-module X is said to be a weakly endo semi-prime submodule of X (for a short WE-Semi-Prime), where E = End(X), if, wherever $0 \neq \psi^2(x) \in K$, where $x \in X$ and $\psi \in End(X)$, implies that $\psi(m) \in K$. And an ideal I of a ring R is said to be a weakly endo semi- prime ideal of R, if I is a weakly endo semi- prime as an R-submodule of R-module R.

Proposition (14)

Every WE-Prime submodule of an R-module X is a WE-Semi-Prime submodule of X.

Proof

Let K be a WE-Prime submodule of X, and $0 \neq \psi^2(x) \in K$, where $x \in X$, $\psi \in End(X)$. Since K is a WE-Prime submodule, and $0 \neq \psi(\psi(x)) \in K$, then either $\psi(x) \in K$ or $\psi(X) \leq K$. Thus in any case $\psi(x) \in K$. Hence K is a WE-Semi-Prime submodule of X.

The converse of Proposition (3.2) is not true in general , as the following example shows that .

Example (15)

Let X=Z and R=Z, K=10Z as a Z-module of X. Then K is a WE-Semi-Prime but not WE-Prime submodule of X, since if we defined $\psi: Z \to Z$ by $\psi(x) = x$, $\psi \in End(X)$ and $0 \neq 2\psi(5) = 10 \in K$, but $5 \notin K$ and $\psi(Z) = Z \nleq K = 10Z$, hence K is not WE-Prime submodule of X. But K is a WE-Semi-Prime, since $0 \neq \psi^2(10) = \psi(\psi(10)) = 10 \in K$, implies that $\psi(10) = 10 \in K$.

Proposition (16)

Every WE-Semi-Prime submodule of an R-module X $\,$ is a weakly semi-prime submodule of X .

Proof

Let K be a WE-Semi-Prime submodule of X, and $0 \neq r^2 x \in K$, where $r \in R, x \in K$. Now, let $\psi: X \to X$ defined by $\psi(x) = rx$ for all $x \in X$, clearly $\psi \in End(X)$. Now, $0 \neq r^2 x = \psi^2(x) \in K$, but K is a WE-Semi-Prime submodule of X, implies that $\psi(x) = rx \in K$. Thus K is a weakly semi-prime submodule of X.

The converse of Proposition (3.4) is not true in general, as the following example shows .

Example (17)

Let $X = Z \oplus Z$, $\mathbb{R} = \mathbb{Z}$, $K = \mathbb{Z} \oplus 10\mathbb{Z}$, K is a weakly semi-prime submodule of X but not WE-Semi-Prime : Let $r = 2 \in \mathbb{Z}$ and $x = (3,5) \in X$, then $0 \neq 2^2(3,5) = (12,20) \in K$, implies that $2(3,5) = (6,10) \in K$. To show that K is not WE-Semi-Prime : Let $\psi: X \to X$ defined by $\psi(x, y) = (y, x)$ for all $x, y \in \mathbb{Z}$. Clearly $\psi \in End(X)$. Now, take $\psi(0,5) = (5,0) \notin K$ but $\psi^2(0,5) = \psi(\psi(0,5)) = \psi(5,0) = (0,5) \in K$. Hence K is not WE-Semi-Prime submodule of X.

Proposition (18)

Let K be a submodule of an R-module X with $K = \bigcap_{\alpha \in \Lambda} L_{\alpha}$, where each L_{α} is a WE-Prime submodule of X. Then K is a WE-Semi-Prime submodule of X.

Proof

Suppose that $0 \neq \psi^2(x) \in K$, where $x \in X$, $\psi \in End(X)$, then $0 \neq \psi^2(x) \in L_{\alpha}$ for each $\alpha \in \Lambda$. But L_{α} is a WE-Prime submodule of X, hence by Proposition (3.2) L_{α} is a WE-Semi-

Prime. Thus $\psi(x) \in L_{\alpha}$ for each $\alpha \in \Lambda$. Therefore $\psi(x) \in \bigcap_{\alpha \in \Lambda} L_{\alpha}$. Hence K is a WE-Semi-Prime submodule of X.

The following proposition shows that in the class of scalar modules, weakly semi-prime submodule and WE-Semi-Prime submodules are coinciding.

Proposition (19)

Let X be a scalar module, and L is a proper submodule of X. Then L is a WE-Semi-Prime submodule of X, if and only if L is a weakly semi-prime submodule of X.

Proof

 (\Rightarrow) Follows from Proposition (3.4).

(⇐) Suppose that L is a weakly semi-prime submodule of X, and $0 \neq \phi^2(x) \in L$, where $x \in X$ and $\phi \in End(X)$. Since X is a scalar module, then there exists $r \in R$ such that $\phi(x) = rx$ for each $x \in X$. Now, $0 \neq \phi^2(x) = \phi(\phi(x)) = \phi(rx) = r^2x \in L$. But L is a weakly semi-prime submodule of X, implies that $rx \in L$. Hence $\phi(x) \in L$. Thus L is a WE-Semi-Prime submodule of X.

The following propositions are characterizations of WE-Semi-Prime submodules .

Proposition (20)

Let X be an R-module, and L is a proper submodule of X. Then L is a WE-Semi-Prime submodule if and only if $0 \neq \phi^2(K) \leq L$, where K is a submodule of X and $\phi \in End(X)$, implies that $\phi(K) \leq L$.

Proof

(⇒) Assume that $0 \neq \phi^2(K) \leq L$, where K is a submodule of X, $\phi \in End(X)$, implies that $0 \neq \phi^2(x) \in L$ for all $x \in K \leq X$. Since L is a WE-Semi-Prime submodule of X, then $\phi(x) \in L$ for all $x \in X$. Thus $\phi(K) \leq L$.

(\Leftarrow) Suppose that $0 \neq \phi^2(x) \in L$, where $x \in X$, and $\phi \in End(X)$, then by hypothesis, we have K = (x) is a submodule of X, and $0 \neq \phi^2(K) \in L$, implies that $\phi(K) \leq L$, it follows that $\phi(x) \in L$. Hence L is a WE-Semi-Prime submodule of X.

Proposition (21)

Let X be an R-module, and L is a proper submodule of X. Then L is a WE-Semi-Prime submodule of X, if and only if, wherever $0 \neq \phi^n(x) \in L$, $x \in X$, $\phi \in End(X)$, and for $n \ge 2$, implies that $\phi(x) \in L$.

Proof

 (\Rightarrow) Follows by inducation on $n \in Z_+$.

 (\Leftarrow) Direct from definition of WE-Semi-Prime submodule .

In the class of scalar module, we get the following characterizations of WE-Semi-Prime submodules.

Proposition (22)

Let X be a scalar R-module, and L be a proper submodule of X. Then the following statements are equivalent:

- 1. L is a WE-Semi-Prime submodule of X .
- 2. $[L:r^2] = [(0):r^2] \cup [L:r]$ for non-zero r in R.
- 3. $[L:r^2] = [(0):r^2]$ or $[(0):r^2] = [L:r^2]$ for non-zero r in R.

Proof

 $(1) \Rightarrow (2)$ Since L is a WE-Semi-Prime submodule of X, then by Proposition (3.4) L is a weakly semi-prime submodule of X. Now, let $x \in [L:r^2]$, implies that $r^2x \in L$, either $0 \neq r^2x \in L$ or $r^2x = 0$. If $0 \neq r^2x \in L$, implies that $rx \in L$, hence $x \in [L:r]$. If $r^2x = 0$, implies that $x \in [(0):r^2]$, hence, we get $[L:r^2] \leq [L:r] \cup [(0):r^2]$. Clearly we have by Lemma (2.7), $[L:r] \leq [L:r^2]$, and $[(0):r^2] \leq [L:r^2]$, hence $[L:r] \cup [(0):r^2] \leq [L:r^2]$. Thus the equality holds.

 $(2) \Rightarrow (3)$ Direct.

 $(3) \Rightarrow (1)$ To prove first L is a weakly semi-prime submodule of X. Suppose that $0 \neq r^2 x \in L$, where $x \in X$, $r \in R$, implies that $x \in [L:r^2]$ and $x \notin [(0):r^2]$. Thus by hypothesis, we get $x \in [L:r]$, implies that $rx \in L$, hence L is a weakly semi-prime submodule of X. Thus by Proposition (3.7), we have L is a WE-Semi-Prime submodule of X.

Recall that an element x in R-module X is called torsion if $0 \neq ann(x) = \{r \in R : rx = 0\}$. The set of all torsion elements denoted by T(X), which is a submodule of X. If T(X)=(0), then X is called torsion free [3].

Proposition (23)

Let X is a torsion free scalar R-module, and L be a proper submodule of X, such that L is a WE-Semi-Prime submodule of X. Then [L:I] is a WE-Semi- Prime submodule of X for any non-zero ideal I of R.

Proof

Since L is a WE-Semi-Prime submodule of X, then by Proposition (3.4) L is a weakly semi-prime submodule of X. Thus by [2, Prop.27] we get [L:I] is a weakly semi-prime submodule of X. But X is a scalar module, hence by Proposition (3.7), we have [L:I] is a WE-Semi-Prime submodule of X.

Proposition (24)

Let $\phi: X \to X'$ be an R-epimorphism, and L is a WE-Semi-Prime submodule of X with $Ker\phi \leq L$. Then $\phi(L)$ is a WE-Semi-Prime submodule of X', where X' is an X-projective R-module.

Proof

Clearly $\phi(L)$ is a proper submodule of X'. Assume that $0 \neq f^2(x') \in \phi(L)$ where $x' \in X'$, and $f \in End(X')$, we prove that $f(x') \in \phi(L)$, since ϕ is an epimorphism, and $x' \in X'$, then there exists $x \in X$ such that $\phi(x) = x'$. Consider the following diagram since X' is Xprojective, then there exists a homomorphism h such that $\phi oh = f$. Now, $0 \neq f'(x') = f(f(x')) \in \phi(L)$, implies that $0 \neq \phi \circ h \circ \phi \circ h(x') \in \phi(L)$, and hence $0 \neq \phi(h \circ \phi)^2(x) \in \phi(L)$. But $Ker\phi \leq L$, then $0 \neq (h \circ \phi)^2(x) \in L$. Since L is a WE-Semi-Prime submodule of X, then $(\phi \circ h)(x)$, implies that $\phi(h \circ \phi)(x) \in \phi(L)$ hence $(\phi \circ h)(\phi(x)) \in \phi(L)$ implies that $f(x') \in \phi(L)$. Therefore $\phi(L)$ is a WE-Semi-Prime submodule of X'.

As a direct consequence of Proposition (3.12) we get the following corollary.

Corollary (25)

Let L and K be a submodule of an R-module X with $K \le L$, and L is a WE-Semi-Prime submodule of X. Then $\frac{L}{K}$ is a WE-Semi-Prime submodule of $\frac{X}{K}$, where $\frac{X}{K}$ is an X-projective R-module.

Recall that an R-module X is multiplication if every submodule K of X is of the form K=IX for some ideal I of R [7].

Proposition (26)

Let X be a multiplication R-module and L is a weakly semi-prime submodule of X , then L is a WE-Semi-Prime submodule of X .

Proof

Suppose that $0 \neq f^2(x) \in L$, where $x \in X$, $f \in End(X)$. Since X is a multiplication, then by [8, Coro.1.2] there exists $s \in R$ such that f(x) = sx for all $x \in X$. Hence $0 \neq f(f(x)) = s^2x \in L$. But L is a weakly semi-prime, implies that $sx \in L$. Thus $f(x) \in L$, so L is a WE-Semi-Prime submodule of X.

It is well-known every cyclic R-module is a multiplication [7], we get the following result.

Corollary (27)

Let X be a cyclic R-module, and L is a proper submodule of X. Then L is a WE-Semi-Prime submodule if and only if L is a weakly semi-prime. We end this section by the following result.

Proposition (28)

Let X be a faithful multiplication R-module, and L is a proper submodule of X. Then L is a WE-Semi-Prime submodule of X if and only if [L: X] is a WE-Semi-Prime ideal of R.

Proof

(⇒) Since L is a WE-Semi-Prime submodule of X, then by Proposition (3.4) L is a weakly semi-prime submodule of X. Hence by [2, Prop.29], we have [L:X] is a weakly semi-prime ideal of R. Therefore [L:X] is a weakly semi-prime as R-submodule of R-module R. But R is cyclic R-module, implies that by Corollary (27) [L:X] is a WE-Semi-Prime R-submodule of R-module R. Hence [L:X] is a WE-Semi-Prime ideal of R.

(\Leftarrow) Since [L:X] is a WE-Semi-Prime ideal of R, implies that [L:X] is a weakly semiprime ideal of R. Hence by [2, Theo.30] we have L is a weakly semi-prime submodule of X. But X is a multiplication, then by Proposition (26) L is a WE-Semi-Prime submodule of X.

As a direct consequence of Proposition (27), we get the following result .

Corollary (3.17)

Let X be a faithful cyclic R-module , and L is a proper submodule of X. Then L is a WE-Semi-Prime submodule of X if and only if [L: X] is a WE-Semi-Prime ideal of R.

References

- 1. Hadi, A.M. On Weakly Prime Submodules. *Ibn al-Haitham J. For Pure and Appl. Sci.* 2009, 22, 3, 62-69.
- 2. Farzalipour, F. On Almost Semi-Prime Submodules. *Hindowi Publishing Corporation Algebra*. **2014**, 3, 231-237.
- 3. Kash, F. modules And Rings. Academic Press Inc. London. 1982.
- 4. Ozcan. C. A.; Haranc A.; F. Smith. P. Duo Modules. *Clasgow Math. Journal Trust.* 2006, 48, 533-545.
- 5. Azum, G. F.; Mbuntum; Varadarajan, K. On M-Projective and M-Injective Modules. *Pacific Journal of Math.* **1967**, *59*, *1*, 9-16.

Ibn Al-Haitham Jour. for Pure & Appl. Sci.	THIPAS	IHJPAS
https://doi.org/10.30526/31.3.2000		Vol. 31 (3) 2018

- 6. Shihap, N.B. Scalar Reflexine Modules. Ph.D. Thesis, University of Baghdad. 2004
- 7. Barnard, A. Multiplication Modules, J. of Algebra, 1981, 71, 174-178.
- 8. Naoum, G. A. On The Ring of Endomorphisms of a Multiplication Modules. *Mathematics Hungarica*. **1994**, *29*, *3*, 277-284.